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From Wikipedia, the free encyclopedia

Generative Pre-trained Transformer 4 (GPT-4) is a multimodal large Generative Pre-trained Transformer
language model trained and created by OpenAl and the fourth in its series 4 (GPT-4)
of GPT foundation models.['! It was launched on March 14, 2023,/ and

made publicly available via the paid chatbot product ChatGPT Plus, via

Developer(s) OpenAl
Initial release March 14, 2023; 22 months ago

OpenAl's API, and via the free chatbot Microsoft Copilot.?! As a
Predecessor GPT-3.5

transformer-based model, GPT-4 uses a paradigm where pre-training
Successor GPT-40

using both public data and "data licensed from third-party providers" is

) ) . Type Multimodal
used to predict the next token. After this step, the model was then fine- | args language model
tuned with reinforcement learning feedback from humans and Al for human Generative pre-trained
alignment and policy compliance.[®l-2 transformer
Foundation model
Observers reported that the iteration of ChatGPT using GPT-4 was an License Proprietary
improvement on the previous iteration based on GPT-3.5, with the caveat Website \ openai.com/gpt-4 2

that GPT-4 retains some of the problems with earlier revisions.[*] GPT-4,
equipped with vision capabilities (GPT-4V),%! is capable of taking images as input on ChatGPT.!8! OpenAl has not
revealed technical details and statistics about GPT-4, such as the precise size of the model.!”]

Background iedi;

Further information: GPT-3 § Background, and GPT-2 § Background

OpenAl introduced the first GPT model (GPT-1) in 2018, publishing a B aas e
paper called "Improving Language Understanding by Generative Pre- ‘ Machine learnina

https://en.wikipedia.org/wiki/GPT-4
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= GPT-4

Article Talk
From Wikipedi = - ' -
i= OpenAl
Generative
Aricle Talk
language mc¢

of GPT foun( From Wikipedia, the free encyclopedia

made public| Not to be confused with OpenAL, OpenAPI, or Open-source artificial inte
OpenAl's AF
OpenAl is an American Artificial Intelligence (Al) research organization
transformer-| . _ _
_ founded in December 2015 and headquartered in San Francisco,
using both pi
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California. Its stated mission is to develop "safe and beneficial" artificial
general intelligence (AGI), which it defines as "highly autonomous systems
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Paragraph-level (e.g., \n)
Every k words (e.g., 100-250)

GPT-40 is a pre-trained transformer
developed by OpenAl.

Transformers is a series of science fiction
action films based on the Transformers
franchise.

GPT40 was released by OpenAl in May 2024.
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models, and a text-to-video model named Sora.l”!®] |ts release of
ChatGPT in November 2022 has been credited with catalyzing widespread
interest in generative Al.
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Paragraph-level (e.g., \n)
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Every k words (e.g., 100-250)

GPT-40 is a pre-trained transformer
developed by OpenAl.

Transformers is a series of science fiction
action films based on the Transformers
franchise.

GPT40 was released by OpenAl in May 2024.
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Post-processing

e.g., Remove short documents

GPT-40 is a pre-trained transformer
developed by OpenAl.

Transformers is a series of science fiction
action films based on the Transformers
franchise.

GPT40 was released by OpenAl in May 2024.
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Part 2: Retriever

Types of Retrievers

D € Top,Sim( - | x)
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Part 2: Retriever

Sparse Retrievers: One-hot Vectors

g=what is nlp d1 = what is life ? do = nlp is an ds = | like to do
candy is lite | acronym for natural good research
language processing on nlp
what 1 1 0 0
candy / 0 . 0 0
glle 1 0 T 1
S ‘ 1 | V
language 0 0 0 0
. 0 1 0 0
life
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Sparse Retrievers: One-hot Vectors

g=what is nlp d+ = what is lite 7 d> = nlp is an ds = | like to do
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language processing on nlp
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Check if a term appears in 2 document
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Sparse Retrievers: Computing Weighted Term Scores

- freq(t, d) B D
TF(tv d) — Zt’ freq(t’, d) IDF(#) = log <Zd’eD o(freq(t, d") > O))

TF-IDF(¢,d) = TF(t,d) x IDF(¢)

freq(, d) - (k1 + 1)
freq(t, d) + k1 - (1 —b+b. - )

avgdl

BM-25(t, d) = IDF () -

Part 2: Retriever
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Sparse Retrievers: Computing Weighted Term Scores

(" h
d{ = what is life 7
Candyjs life ! of documents
freq(t, d) D )
TFE(t,d) = IDF(t) =1
(?7 ) Zt’ freq(t’, d) (£) = log <deep 0(freq(t,d’) > 0)

t1 = what of documents where term t appears

TF-IDF(¢,d) = TF(t,d) x IDF(¢)

freq(, d) - (k1 + 1)
freq(t, d) + k1 - (1 —b+b. - )

avgdl

BM-25(t, d) = IDF () -

\_ J

Robertson et al. 2009. The Probabilistic Relevance Framework: BM25 and Beyond.
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Sparse Retrievers: Weighted-term Vectors
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Compute TF-IDF weights to build weighted vectors
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Sparse Retrievers: Weighted-term Vectors
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Compute cosine similarity

Part 2: Retriever

Sparse Retrievers: Weighted-term Vectors
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Sparse Retrievers: Weighted-term Vectors
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Compute cosine similarity q*d: = 0.44 g*ds = 0.21 g*ds = 0.32
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Computing TF-IDF Matrices: Weighted-term Vectors
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Computing TF-IDF Matrices: Weighted-term Vectors

g=what is nlp d¢y = what is life 7 d> = nlp is an dz = | like to do
candy is life ! acronym for natural good research
language processing on nlp
whnat 0.36 018 0 0
candy 0 0.18 0 0
glle 0.13 0 0.05 0.05
S 0.13 0.13 0.05 0
language 0 0 0.13 0
. 0 0.36 0 0
life
“Bag-of-words” q*d: = 0.44 g*dz = 0.21 g*ds = 0.32

Can’t fully capture semantic similarities
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28



Dense Retrievers: Overview

FIFA World Cup 2026
will expand to 48 teams.

In 2022, the 32 national
teams involved In the
tournament.

Team USA celebrated
after winning its match
against Iran ...

Part 2: Retriever
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Encoder

Encoder

Encoder

Z = Encoder(z)
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Dense Retrievers: Overview

X = How many teams will participate in FIFA World Cup 20267

Encoder

FIFA World Cup 2026
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Encoder

In 2022, the 32 national —
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tournament.

Team USA celebrated z = Encoder(z)
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25 ..., = arglop-k (X - z)
k retrieved chunks
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* Use output of [CLS] token
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BERT t a s = = = o ow o .......’. BERT
E E E Eery || E E Ec Ey Ecep E/ E,
q I = = . L = ) = = ) J =
[[[[[ ] Tok 1 ) [SEP] Tok 1 /TOT [CLS] ], T Tok N [S Tok 1
I | I | | | |
| I I I
Masked Sentence A Masked Sentence B Question Paragraph
& a*
\ Unlabeled Sentence A and B Pair J \\\\\ Question Answer Pair /
Pre-training Fine-Tuning

Part 2: Retriever

Dense Retrievers: Generating Embeddings

e.g.,

DP

Karpukhin et al. EMNLP 2020. Dense Passage Retrieval for Open-Domain Question Answering.
Reimers et al. EMNLP 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.
Muennighoff. 2022. SGPT: GPT Sentence Embeddings for Semantic Search.

Start/End Sph
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Dense Retrievers: Generating Embeddings

a———
el ) - (e ) - L)) (e [ ) -

in masked LMs Rd el

s E, Ey E[SEP] B/ . Ey Eais E, Ey E[SEP] E; |- Ew
e . g . ) | : . . ] . ] . ) ) ) ) = .
, / / N N N N T\ 4 / N / N / N N
[[[[[ ] Tok1 | ... ( Tok N [SEP] Tok1 | .. TokM [CLS] ] Tok1 | .. Tok N [SEP] Tok1 | .. TokM
I | I | I | | |
I I !
P

I
Masked Sentence A Masked Sentence B Question aragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

NLI | STSb

e Mean / Max pooling of output vectors Pooling Strategy
MEAN 80.78 | 87.44

Nxd MAX 79.07 | 69.92
e.q., SBERT, SGPT R CLS 7980 | 86.62
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Method

Exact Search
for L2

Exact Search
for Inner
Product
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Navigable
Small World
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Inverted file
with exact
post-
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Locality-
Sensitive
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(binary flat
index)

Scalar
quantizer
(SQ) in flat
mode

Product
quantizer
(PQ) in flat
mode

IVF and
scalar
quantizer

IVFADC
(coarse
quantizer+PQ
on residuals)
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Class name

IndexFlatL2

IndexFlatIP

IndexHNSWFlat

IndexIVFFlat

IndexLSH

IndexScalarQuantizer

IndexPQ

IndexIVFScalarQuantizer

IndexIVFPQ

Fast Nearest Neighbor Search

index_factory

“Flat"

“Flat"

"HNSW, Flat"

“IVFx,Flat"

"508"

" Poxll ,
" POIIMII xllnbit S

"IVFx,SQ4"
"IVFx,SQ8"

“IVFx,PQ"y"x"nbits

Main
parameters

d

quantizer ,
d, nlists,
metric

d, nbits

d, M, nbits

quantizer ,
d, nlists,
qtype

quantizer,
d, nlists,
M, nbits

Bytes/vector

4xd

4xd

dxd + x = M
* 2 % 4

4xd + 8

ceil(nbits/8)

ceil(M *
nbits / 8)

SQfp16:2* d
+8,5Q8: d +
8 orSQ4: d/2
+8

ceil(M *
nbits/8)+8

Exhausti

yes

yes

no

no

yes

yes

yes

no

no

https.//github.com/facebookresearch/faiss/wiki

https://speakerdeck.com/matsui 528/cvpr20-tutorial-

billion-scale-approximate-nearest-neighbor-search (CVPR

2020 Tutorial)
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Method

f Exact Search
'; for L2

‘ Exact Search

] for Inner

\ Product

Hierarchical
Navigable
Small World
graph
exploration

Inverted file
with exact
post-
verification

Locality-
Sensitive
Hashing
(binary flat
index)

Scalar
quantizer
(SQ) in flat
mode

Product
quantizer
(PQ) in flat
mode

IVF and
scalar
quantizer

IVFADC
(coarse
quantizer+PQ
on residuals)

Part 2: Retriever

Class name

IndexFlatL2

IndexFlatIP

IndexHNSWFlat

IndexIVFFlat

IndexLSH

IndexScalarQuantizer

IndexPQ

IndexIVFScalarQuantizer

IndexIVFPQ

Fast Nearest Neighbor Search

index_factory

“Flat"

“Flat"

"HNSW, Flat"

"IVFx,Flat"

"508“

" Poxll ,
“PQ"M"x"nbits

"IVFx,SQ4"
"IVFx,SQ8"

“IVFx,PQ"y"x"nbits

Main

parameters

d

quantizer ,
d, nlists,
metric

d, nbits

d, M, nbits

quantizer ,
d, nlists,
qtype

quantizer,
d, nlists,
M, nbits

Bytes/vector

4xd

4xd

dxd + x = M
* 2 % 4

4xd + 8

ceil(nbits/8)

ceil(M *
nbits / 8)

SQfp16:2* d
+8,SQ8: d +
8 or SQ4: d/2
+8

ceil(M *
nbits/8)+8

Exhausti

yes

yes

no

no

yes

yes

yes

no

no

Exact search (still fast for 1026~1077 scale)
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Method

f Exact Search
2 for L2

‘ Exact Search

| for Inner

Class name

IndexFlatL2

IndexFlatIP

Fast Nearest Neighbor Search

index_factory

Bytes/vector

para eters 7

“Flat"

“Flat"

\ Product

b Navigable
4
. Small World

£ graph
% exploration

Inverted file
with exact
post-
verification

Locality-
Sensitive
Hashing
(binary flat
index)

Scalar
quantizer
(SQ) in flat
mode

Product
quantizer
(PQ) in flat
mode

IVF and
scalar
quantizer

IVFADC
(coarse
quantizer+PQ
on residuals)

Part 2: Retriever

IndexHNSWFlat

IndexIVFFlat

IndexLSH

IndexScalarQuantizer

IndexPQ

IndexIVFScalarQuantizer

IndexIVFPQ

"HNSW, Flat"

"IVFx,Flat"

"508“

" Poxll ,
" POIIMIIxIlnbitS

"IVFx,SQ4"
"IVFx,SQ8"

"IVFx,PQ"y"x"nbits

Main
d
d

quantizer ,
d, nlists,
metric

d, nbits

d, M, nbits

quantizer ,
d, nlists,
qtype

quantizer,
d, nlists,
M, nbits

4=d

4xd

4xd + x = M
* 2 % 4

4xd + 8

ceil(nbits/8)

ceil(M *
nbits / 8)

SQfp16:2* d
+8,5Q8: d +
8 or SQ4: d/2
+8

ceil(M *
nbits/8)+8

Exhausti

yes

yes

no

yes

yes

yes

no

no

Exact search (still fast for 1026~1077 scale)

Approximate search (faster but more memory)
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Fast Nearest Neighbor Search

Main

\ Product

}  Navigable
‘ Small World

£ graph
% exploration

Inverted file
with exact
post-
verification

Locality-
Sensitive
Hashing
(binary flat
index)

IndexHNSWFlat

IndexIVFFlat

IndexLSH

quantizer
¥ (SQ)inflat
+  mode

{ Product
¥ quantizer
! (PQ)in flat

¢ mode

i IVFand
¢ scalar
T quantizer

. IVFADC

£ (coarse
£ quantizer+PQ
I onresiduals)

Part 2: Retriever

IndexScalarQuantizer

IndexPQ

IndexIVFScalarQuantizer

IndexIVFPQ

"HNSW, Flat"

"IVFx,Flat"

llSOSll

" POXII ,
" POIIMIIxIlnbitS

"IVFx,SQ4"
"IVFx,SQ8"

"IVFx,PQ"y"x"nbits

quantizer ,
d, nlists,
metric

d, nbits

d, M, nbits

quantizer ,
d, nlists,
qtype

quantizer,
d, nlists,
M, nbits

4xd + 8

ceil(nbits/8)

ceil(M *
nbits / 8)

SQfp16:2* d
+8,SQ8: d +

8 or SQ4: d/2
+8

ceil(M *
nbits/8)+8

no

yes

yes

yes

no

Method Class name index_factory Bytes/vector Exhausti
e e . R
f E;?E;Search IndexFlatL2 "Flat" d 4xd yes
( ]
N6~ 1077 scal
ot e Exact search (still fast for 1076~ scale
| for Inner IndexFlatIP "Flat" d 4%d yes

Approximate search (faster but more memory)

Reduce index size with quantization
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Training Dense R

Dot Product Similarity

OOO0OOOOO

Encoder

q
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Part 2: Retriever
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Training Dense Retriever

Contrastive learning

Dot Product Similarity

N @ Positive @ Positive
eleYelelelele - - & ‘o
“ Negative Negative
Encoder
f L(q.p*. PP+ - D7)
q exp(sim(q, p))
— _ 1o P q,p
Query Text chunks S

exp(sim(qg, pt)) + Z;lzl exp(sim(q, p;))
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Training Dense Retriever

Contrastive learning

Dot Product Similarity

- @ Fositive @ Positive
ololorororere - - O .o
“ Negative Negative
Encoder
+ = = —
1 L(q.p"pi>DPys-->Pn)
9 exp(sim(g, p™))
= — 1o P il
Query Text chunks S

exp(sim(q, pt)) + Z;lzl exp(sim(q, p;))
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Training Dense Retriever

Contrastive learning

Dot Product Similarity

- @ Fositive @ Positive
ololorororere - - O .o
“ Negative Negative
Encoder
+ - = —
1 L(q,p" Py P3Py )
9 exp(sim(g, p™))
= — 1o P il
Query Text chunks S

exp(sim(qg, p™)) + 2;;1 exp(sim(q, p;))
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Training Dense Retriever

L(q,p",pysPys---sPp)
exp(sim(g, p™))

= — log

In-batch negatives

Hard negative retrieved by the same / another model

Part 2: Retriever

Training batch

o ositive ik | d
...It was incorporate
Who founded P by Jobs and Wozniak
Apple? e as Apple Computer,
s Inc. in 1977. ...
L +
—h P
What is the s % 12-year-old Spanish
name of football club Real

Spain's most
famous soccer

*, | Madrid is undoubtedly

the best football club

team? Spain has ever...
negatives
‘ +
q”l nn
\Who was the Thomas Umunnakwe

first ministry
head of state in
Nigeria?

% | Aguiyi-Ironsi seized

" | power during the

ensuing chaos after
the 15 January ...
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Unsupervised Iraining

Independent Cropping

—¥  Apple merged with NeXT

n 1997 [Apple merged with NexT] and
Stpve Jobs became LEU OT Nis Tojmer

company. He became the saviour of his

Steve Jobs became CEO of

Positives

Unsupervised dense retrieval model

Part 2: Retriever lzacard et al. TMLR 2022. Unsupervised Dense Information Retrieval with Contrastive Learning. 34



Instruction Tuning for Retriever

Explicit user query Implicit user intents
SR pyvthon ; ot opooebackand Retrieval with Instructions
— N = dout.shape[0]
: Im IementatiOnS ! x_norm, x_centered, std, )
q: bmmmm e p ------------------- d1 gamma = cache tI: Lwantéo f’nd q dI
. n
Implementing .'"I'D"'i."'t"a """ :(.' """ i I am developing batch pyifion coge
batch __uplicated questions_ normalization from scratch t : Retrieve i d
C e d 2 : q Retriever .
normalization in 2 related questions
Pvih e Answer:
ython | Answer — You can just ‘import t?: Please q
"""""""""""""" torch.nn.BatchNorm2d' find answers

Part 2: Retriever Asai et al. Findings of ACL 2023. Task-aware Retrieval with Instructions. 35



Instruction Tuning for Retriever

Explicit user query Implicit user intents
(T Ppvthon ! ?Ziu’:‘j“‘ii‘i.‘ﬁ:? r Retrieval with Instructions
: Y . — N = dout.shape[0]
q: - mplementations 4 d, [ SR SSaTE {: 1want tofind a
Imo| ¢ python code 9 1
mplementing f"b’"i_ """ (-j """" . | [ am developing batch
batch __Duplicated questions_ . d normalization from scratch t,: Retrieve Retriever d
normalization in 2 related questions I .
Pyth R Answer:
ython | Answer ——— You can just ‘import t,: Please q
"""""""""""""""" ' torch.nn.BatchNorm2d" find answers
Dup. Question Retrie\.ral How can we calculate Hard negative documents gHP Instruction-unfollowing negatives dUF
L : Retrieve a question asked in the square root in Which python function can You can just use the Objective
StackOverflow similar to this Objective C or Swift? | use to compute sq root? C or Swift’s sqrt function
q: How to compute square root in iOS? StackOverflow Question StackOverflow Question StackOverflow Answer
e e e Yes, they are most | love animals and think Armadillos are medium-sized
L : Find an informative dialogue commonly found in armadillos are awesome mammals found in North,
response to this user’s conversation North, Central, and with their leathery shell. Central, and South America
q: Are armadillos native to a South America. Dialogue Response Wikipedia Paragraph
Spanish-speaking part of the world? Dialogue Response
Tasks Gold documents d™ Negative documents d~

Part 2: Retriever Asai et al. Findings of ACL 2023. Task-aware Retrieval with Instructions. 35



Reranking with Cross-encoder

Bi-Encoder

Encoder

Encoder

CIEA World Cup 202 How many teams will
orld Cup 2026 varticipate in FIFA

will expand to 48 teams. World CUP 20267

Part 2: Retriever
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Reranking with Cross-encoder

Bi-Encoder

[ e  Shallow instructions

Encoder

Encoder

FA Worl 05 How many teams will
FIFA World Gup 2026 participate in FIFA

will expand to 48 teams. World CUP 20267
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Bi-Encoder Cross-Encoder

[ e  Shallow instructions

Encoder

Encoder

How many teams will
FIFA World Cup 2026 participate in FIFA
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Reranking with Cross-encoder

Bi-Encoder

[ e  Shallow instructions

Encoder

FIFA World Cup 2026
will expand to 48 teams.

Part 2: Retriever

How many teams will

Encoder

participate in FIFA

World CU

P 20267

Cross-Encoder

FIFA World Cup 2026
will expand to 48 teams.

How many teams will
participate in FIFA World Cup
20267
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Reranking with Cross-encoder

Bi-Encoder

° Shallow instructions

Encoder

FIFA World Cup 2026
will expand to 48 teams.

Part 2: Retriever
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Cross-Encoder

“Encoder

Encoder
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Reranking with Cross-encoder

Bi-Encoder

° Shallow instructions

Encoder

FIFA World Cup 2026
will expand to 48 teams.

Part 2: Retriever

How many teams will

Encoder

participate in FIFA

World CU

P 20267

Cross-Encoder

0.9

Clasifier

Encoder

FIFA World Cup 2026
will expand to 48 teams.

How many teams will
participate in FIFA World Cup
20267
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Part 2: Retriever

Evaluation Metrics for Retriever
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Evaluation Metrics for Retriever

Evaluation of unranked retrieval sets

#(relevant items retrieved) relevant items retrieved)

Recall = #
#(retrieved items) - #(relevant items)

Precision =

Part 2: Retriever Manning et al. 2009. An Introduction to Information Retrieval. 37



Evaluation Metrics for Retriever

Evaluation of unranked retrieval sets

» #(relevant items retrieved) #(relevant items retrieved)
Precision = , , Recall = ,
#(retrieved items) #(relevant items)
Evaluation of ranked retrieval sets
Q| 1 ity Q| k ] m) _ 1
MAP - — recision(R NDCG(Q, k)
Q) \Q gmg Ki) Q ; Z_: 0821+m)

Part 2: Retriever Manning et al. 2009. An Introduction to Information Retrieval. 37



Evaluation Metrics for Retriever

Evaluation of unranked retrieval sets

» #(relevant items retrieved) #(relevant items retrieved)
Precision = : : Recall = :
#(retrieved items) #(relevant items)
Evaluation of ranked retrieval sets
IyLly @b =5 Y7 ¥ 2L
MAP(Q — ) Precision(R;x) NDCG(Q,k) = —
i=1 ™M k=1 / Q] i=1 — log,(1 +m)

nDCG@ 10 is widely used (e.g., BEIR)

Part 2: Retriever Manning et al. 2009. An Introduction to Information Retrieval. 37



Retrieval Benchmarks: BEIR and MTEB
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______________________________________________

9 Tasks

. Quora =
rro oo X 18 Datasets
: QUERY Query Title : a

e e I R .

- e mm mm mm omm o W

QUERY Natural Query QUERY COVID-19 Query

QUERY Natural Claim

R B R W W W R e e e e e e e e

I i
I I
I | ' I
| | ! I
I I
DOCS Wikipedia Articles Quor(l DOCS  Quora Questions : pDocs  Wikipedia Articles : : Scientiﬁc DOCS CORD-19 Articles :
| I
| i ' I
! ! I .
' Climate-FEVER — CQADupStack { ' HotpotQA ! @ E BioASQ E
------------------ . - e Fr--""-"-"========s=== 1| . |
oUERY Climate-based Claim : v : QUERY Query Title : : QUERY Multi-Hop Query : : [ : QuEry Bio-Medical Query :
. [ sy . . . . .
DOCS Wikipedia Articles E \\StaCkEx- : bocs  Query Title + Body ! : DOCS | MEktpecie Azticles E : Saentlﬁc : DoCs PubMed Articles :
l R R e R R R - ;! [
I sl ETEEEEEEEEEEEEEEEEEEEES ~ ! - | ! L I
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_ 1 1 ] — i ] | I
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Thakur et al. 2021. NeurlPS D&B. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models.
Part 2: Retriever Muennighoff et al. 2022. MTEB: Massive Text Embedding Benchmark. 38



BM25 BM25+4+CE

MS MARCO 22.8 41.3
Trec-COVID 65.6 75.7
NFCorpus 32.5 35.0
NQ 32.9 53.3
HotpotQA 60.3 70.7
FiQA 23.6 34.7
ArguAna 31.5 31.1
Touche-2020 36.7 27.1
CQADupStack 29.9 37.0.
Quora 78.9 82.5
DBPedia 31.3 40.9
Scidocs 15.8 16.6
FEVER 75.3 81.9
Climate-FEVER  21.3 25.3
Scifact 66.5 68.8
Avg. w/o CQA 44.0 49.5
Avg. 43.0 48.6
Best on 1 3

Part 2: Retriever Thakur et al. 2021. NeurlPS D&B. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models.

BEIR Results

lzacard et al. TMLR 2022. Unsupervised Dense Information Retrieval with Contrastive Learning.
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Adding CE (cross-encoder) helps
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BEIR Results

BM25 BM254+CE DPR

MS MARCO 22.8 41.3 17.7
Trec-COVID 65.6 75.7 33.2
NFCorpus 32.5 35.0 18.9
NQ 32.9 53.3 47.4
HotpotQA 60.3 70.7 39.1
FiQA 23.6 34.7 11.2
ArguAna 31.5 31.1 17.5
Touche-2020 36.7 27.1 13.1
CQADupStack 29.9 37.0. 15.3
Quora 78.9 82.5 24.8
DBPedia 31.3 40.9 26.3
Scidocs 15.8 16.6 7.7
FEVER 75.3 81.9 56.2
Climate-FEVER  21.3 25.3 14.8
Scifact 66.5 68.8 31.8
Avg. w/o CQA 44.0 49.5 26.3
Avg. 43.0 48.6 25.5
Best on 1 3 0

Part 2: Retriever

Adding CE (cross-encoder) helps

lzacard et al. TMLR 2022. Unsupervised Dense Information Retrieval with Contrastive Learning.

Thakur et al. 2021. NeurlPS D&B. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models.
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Best on 1 3 0

Part 2: Retriever

Adding CE (cross-encoder) helps

Dense retrievers could struggle
in OOD

lzacard et al. TMLR 2022. Unsupervised Dense Information Retrieval with Contrastive Learning.

Thakur et al. 2021. NeurlPS D&B. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models.
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BEIR Results

Contriever
BM25 BM254+CE DPR Ours Ours+CE

MS MARCO 22.8 41.3 17.7 40.7 47.0
Trec-COVID 65.6 75.7 33.2 59.6 70.1
NFCorpus 32.5 35.0 18.9 32.8 34.4
NQ 32.9 53.3 47.4 49.8 57.7
HotpotQA 60.3 70.7 39.1 63.8 71.5
FiQA 23.6 34.7 11.2 32.9 36.7
ArguAna 31.5 31.1 17.5 44.6 41.3
Touche-2020 36.7 27.1 13.1 23.0 29.8
CQADupStack 29.9 37.0. 15.3 34.5 37.7
Quora 78.9 82.5 24.8 86.5 82.4
DBPedia 31.3 40.9 26.3 41.3 47.1
Scidocs 15.8 16.6 7.7 16.5 17.1
FEVER 75.3 81.9 56.2 75.8 81.9
Climate-FEVER  21.3 25.3 14.8 23.7 25.8
Scifact 66.5 68.8 31.8 67.7 69.2
Avg. w/o CQA 44.0 49.5 26.3 47.5 51.2
Avg. 43.0 48.6 25.5 46.6 50.2
Best on 1 3 0 1 9

Part 2: Retriever

Adding CE (cross-encoder) helps

Dense retrievers could struggle
in OOD

lzacard et al. TMLR 2022. Unsupervised Dense Information Retrieval with Contrastive Learning.

Thakur et al. 2021. NeurlPS D&B. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models.
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BEIR Results

Contriever
BM25 BM25+CE DPR Ours Ours+CE

MS MARCO 22.8 41.3 17.7 40.7 47.0
Trec-COVID 65.6 75.7 33.2 59.6 70.1
NFCorpus 32.5 35.0 18.9 32.8 34.4
NQ 32.9 53.3 47.4 49.8 57.7
HotpotQA 60.3 70.7 39.1 63.8 71.5
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Scifact 66.5 68.8 31.8 67.7 69.2
Avg. w/o CQA 44.0 49.5 26.3 47.5 51.2
Avg. 43.0 48.6 25.5 46.6 50.2
Best on 1 3 0 1 9

Part 2: Retriever

Adding CE (cross-encoder) helps

Dense retrievers could struggle
in OOD

Unsupervised training helps in
OOD

lzacard et al. TMLR 2022. Unsupervised Dense Information Retrieval with Contrastive Learning.

Thakur et al. 2021. NeurlPS D&B. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models. 39



Retrieval Benchmarks: BEIR and MTEB
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Summary of Part 2

X : Which company developed GPT407?

— D
C: Q % y : OpenAl

Datastore Retriever LM
v/ Types of retrievers o Different types of retrievers
v~/ Training * [raining with contrastive loss

e Common metrics; NDCG@10, Recall ... etc
v/ Evaluations e Performance v.s. cost trade off

Part 2: Retriever
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=
=

Datastore

Part 3: LMs and Pipeline

Today’s Outline

X : Which company developed GPT407?

Q D

Retriever LM

Common architectures

Recent progress

y: OpenAl
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Categorizing Retrieval-Augmented LMs

45



Categorizing Retrieval-Augmented LMs

to retrieve?

Part 3: LMs and Pipeline

45



Categorizing Retrieval-Augmented LMs

to retrieve?

Text chunks (passages)”

Part 3: LMs and Pipeline

45
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to retrieve?

Text chunks (passages)”
Tokens?
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Categorizing Retrieval-Augmented LMs

to retrieve?

Text chunks (passages)”
Tokens?
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How to Use Retrieval

Input Augmentation Intermediate Fusion

e Augment input of LMs e Modity LMs to incorporate D
e Easy to apply (w/o training) INn Intermediate layers
& effective e Scalable to many passages
o Difficulty of using many D e Requires retraining
e.q., RAG e.qg., RETRO, InstructRETRO

Part 3: LMs and Pipeline

Output Interpolation

o [)
(@]

rectly ma

nipulate output

<en distri

outions

e No training required”

e | imited effectiveness on tasks

e.g.

, KNNLM
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Input Augmentation

e Augment input of LMs

e Fasy to apply (w/o training)
& effective
o Difficulty of using many D

e.q., RAG

Part 3: LMs and Pipeline

How to Use Retrieval
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Retrieval-Augmented Generation (Lewis et al., 2020)

X : Which company developed GPT40?

= At

Datastore Retriever LM

D € Top, Sim( - | x)

GPT-40 is a pre-trained transformer

developed by OpenAl. 0.9

GPT40 was released by OpenAl in May 2024. O 8

Part 3: LMs and Pipeline
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Retrieval-Augmented Generation (Lewis et al., 2020)

X : Which company developed GPT40?

D

LM

GPT-40 is a pre-trained transformer
developed by OpenAl.

GPT40 was released by OpenAl in May 2024.

Part 3: LMs and Pipeline
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Retrieval-Augmented Generation (Lewis et al., 2020)

Question: Which company developed

X : Which company developed GPT40?
GPT40?

‘l' References:
D
S — —
LM

GPT-40 is a pre-trained transformer
developed by OpenAl.

GPT40 was released by OpenAl in May 2024.
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Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-intensive NLP Tasks.
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‘l' References:
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Retrieval-Augmented Generation (Lewis et al., 2020)

Question: Which company developed
GPT40?

‘l' References:
D
- > — GPT-40 is a pre-trained transformer
developed by OpenAl.
LM

X : Which company developed GPT40?

GPT40 was released by OpenAl in May 2024.

y : OpenAl
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Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-intensive NLP Tasks.
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Training RAG
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Part 3: LMs and Pipeline

Training RAG

Independent training
® DPR (Karpukhin et al., 2020)

® DRQA (Chenetal., 2017)
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Training RAG

Independent training

Q@ ‘ ‘ %Q ® DPR (Karpukhin et al., 2020)

® DRQA (Chenetal., 2017)

Sequential training

Q_. § Qh% ® [videntiality Generator (Asai et al., 2023)

® REPLUG (Shi et al., 2023)
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Training RAG

Independent training
® DPR (Karpukhin et al., 2020)

® DRQA (Chenetal., 2017)

Sequential training

Q_. § Qh% ® [videntiality Generator (Asai et al., 2023)

=

Part 3: LMs and Pipeline

® REPLUG (Shi et al., 2023)

Joint training

® RAG (Lewis et al., 2021)

® REALM (Guu et al., 2021)
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End-to-end training for RAG

‘ ----------------------------- The middle ear includes
End-to-End Backprop through q and pe the tympanic cavity and

the three ossicles. (y)

Define "middle ear" (x)

Question Answering:

Question Query Query Retriever pn Document Generator PO Question Answering:

Answer Generation
Encoder (Non-Parametric) Index (Parametric)

Barack Obama was
born in Hawaii. (x) q(X)

supports (y)

Fact Verification:

Fact Verification: Fact Query :
Label Generation

The Divine

P This 14th century work

comeely () is divided into 3
Jeopardy Question sections: "Inferno",

Generation: "Purgatorio" &

Answer Query "Paradiso" (y)

Question Generation

2 o longAG(yj | xj) Minimize NLL as in nhormal generation training
J
Retriever score (Generator score
Update retriever encoder
PrRAG ~ H Z pﬂ(z ‘ x)pﬁ(yi ‘ A &5 ylii—l) and generator
i zetop—k(p(|x))

Part 3: LMs and Pipeline Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-intensive NLP Tasks.



Now people often combine retrieval with off-the-shelf LMs

Widely referred to as RAG




Effectiveness of Simple RAG

RAG constantly gives performance improvements esp. in long-tail

® GPT3 ® GPT3 + Retrieval
70
Q
52.5 %
=
=
O
G
S 35
O
<
17.5 .
0
Rare Neutral Popular

Relative popularity

Mallen™, Asai* (contributed equally) et al. ACL 2023.When Not to Trust Language Models:

Part 3:LMs and Pipeline Investigating Effectiveness of Parametric and Non-Parametric Memories 2%



Limitations of Simple RAG
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Limitations of Simple RAG

Unnecessary retrieval
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Limitations of Simple RAG

Liu et al. Findings of EMNLP 2023. Evaluating Verifiability in Generative Search Engines

Part 3: LMs and Pipeline 56

Jin et al. RAGCache: Efficient Knowledge Caching For Retrieval-Augmented Generation



Limitations of Simple RAG

,- What are the latest discoveries from the James Webb Cited Webpages
s Space Telescope? [1]: @ nasa.gov (Xcitation does not support its associated statement)
NASA's Webb Confirms Its First Exoplanet ]
... Researchers confirmed an exoplanet, a planet that orbits another O f
, The James Webb Space T6|eSCOpe IS designed to peer star, using NASA's James Webb Space Telescope for the first time. ... UtP Uts a re n t O te n
;ﬁ: ‘ into the dUSty clouds of gas where stars and p|a!1€tary [2]: BB cnn.com (i, citation partially supports its associated statement) S u P PO rte d by C Itatl O n S
systems are born. Webb has captured the first direct Pillars of Creation: James Webb Space Telescope ...
|mage of an exoplanet and the Pillars of Creation in the ... The Pillars of Creation, in the Eagle Nebula, is a star-forming region
' . captured in a new image (right) by the James Webb Space Telescope
Eagle Nebula[1][2] Addltlona"y. the telescope will be that reveals more detail than a 2014 image (left) by Hubble ...
used to study the next interstellar interloper{3].
(*Some generated statements may not be fully supported by
citations, while others are fully supported.)

Liu et al. Findings of EMNLP 2023. Evaluating Verifiability in Generative Search Engines

Part 3: LMs and Pipeline 56

Jin et al. RAGCache: Efficient Knowledge Caching For Retrieval-Augmented Generation



Limitations of Simple RAG

@ What are the latest discoveries from the James Webb
S Space Telescope?

The James Webb Space Telescope is designed to peer
into the dusty clouds of gas where stars and planetary
systems are born. Webb has captured the first direct
image of an exoplanet, and the Pillars of Creation in the
Eagle Nebula[1][2]. Additionally, the telescope will be
used to study the next interstellar interloper{3].

(*Some generated statements may not be fully supported by
citations, while others are fully supported.)

—
N O
O
o O

Time (ms)
N O
o O
o O

-

0 1000 2000 3000 4000

Prompt Length (# tokens)
Figure 2. Inference time with different input lengths.
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Cited Webpages

[1]: @ nasa.gov ()Xcitation does not support its associated statement)
NASA's Webb Confirms Its First Exoplanet

R h firmed lanet, a planet that orbi th )
e o eacplanel s planel ot aibile snether Outputs aren’t often
[2]: I:)mlcnn.com (A ci?atictn partially supports its associated statement) S u P P o rte d by C itati o n S
illars of Creation: James Webb Space Telescope ...

... The Pillars of Creation, in the Eagle Nebula, is a star-forming region
captured in a new image (right) by the James Webb Space Telescope
that reveals more detail than a 2014 image (left) by Hubble ...

Vanilla

83

5

>

o

S Increased latency to encode
3t much longer context
20

© GPT-3 davinci 003

Liu et al. Findings of EMNLP 2023. Evaluating Verifiability in Generative Search Engines

Jin et al. RAGCache: Efficient Knowledge Caching For Retrieval-Augmented Generation o6



Self-RAG: Learn to Retrieve and Critique

Q LMs aren’t trained with retrieval

o

Q Fixed two-stage pipeline

Q

Part 3: LMs and Pipeline Asai et al. ICLR 2024. Self-RAG: Learning to Retrieve, Generate and Critique through Self-Reflections 57
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Self-RAG: Learn to Retrieve and Critique

Input

% Is retrieval needed?
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Input

% Is retrieval needed?
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Self-RAG: Learn to Retrieve and Critique

Input

% Is retrieval needed?
Yes
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Input

% Is retrieval needed?
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Deep Research: Coupling Reasoning LM with Search

Example from WebWalkerQA Dataset

Question:

What was the specific schedule for the social event held on the evening after the ACL 2023 best paper awards Tea-c h reasoni ng LM S to P I an adn d
ceremony”? o
LabeledyAnswer: S€arc h via S FT / R L

The social event was scheduled from 7:00 PM to 10:30 PM on July 1 1th.
Model Output by WebThinker

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after*
the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually
happened. Let me search for that specifically.

<lbegin_search_query|> IACL 2023 best paper awards ceremony date|<lend_search_queryl>
| <Ibegin_search_resultl>[The ACL 2023 best paper awards ceremony took place on **July 11, 2023**, according
to multiple sources: [...] Web Page 4 [...] explicitly states that the awards were announced on July 11, 2023.
[...] Web Page 5 [...] mentions the award presentation occurred on July 11, 2023 [...]. Web Page 6 [...] confirms
the awards were announced on July 11, 2023. [...] Web Page 9 [...] also indicates the awards were announced
on July 11, 2023. [...] the awards ceremony itself was held on the **11th**, [...][<lend_search_result|>
Okay, the awards ceremony was definitively on July 11, 2023. The question asks for the social event on the
evening *after™ the ceremony, which would be the evening of July 12. Let me search for the social events
schedule to see what was planned.

klbcgin_scarch_qucryl> CL 2023 social events schedule| <lend_search_queryl>
mﬁhe ACL 2023 social events schedule includes the following relevant details: 1. **Social
Event on July 11, 2023%**: - #*Time**: 7:00 PM — 10:30 PM (EDT) - **Location**: Steam Whistle Brewing
[...] - ®*Description®**: This event occurred on the evening of July 11, immediately following the Best Paper
Awards ceremony (which took place earlier that day at 16:00-17:30). [...] 2. **No Explicit Social Events
on July 12, 2023*%*: - The evening of July 12, 2023, is not listed as having any official social events in the
provided sources. [...] ¥*Note**: The primary social event referenced in the sources is on July 11, not July 12.
The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the
Social Event on that same day. For July 12, only daytime sessions are documented. [...]| <lend_search_resultl>
Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of
July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly
state there were no official social events scheduled for the evening of July 12, which is technically the evening
*after™® the July 11 ceremony.
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mnhe ACL 2023 social events schedule includes the following relevant details: 1. **Social
Event on July 11, 2023%**: - #*Time**: 7:00 PM — 10:30 PM (EDT) - **Location**: Steam Whistle Brewing
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Social Event on that same day. For July 12, only daytime sessions are documented. [...]|<lend_search_resultl>
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*after™® the July 11 ceremony.
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Question:

What was the specific schedule for the social event held on the evening after the ACL 2023 best paper awards Tea-c h reaso Ni ng LM S to P I an an d
? .
Labelod Anrwer: search via SFT / RL

The social event was scheduled from 7:00 PM to 10:30 PM on July 1 1th.
Model Output by WebThinker

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after* T h i n ki n
the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually g

happened. Let me search for that specifically.
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Okay, the awards ceremony was definitively on July 11, 2023. The question asks for the social event on the T h i n k i ng

evening *after™ the ceremony, which would be the evening of July 12. Let me search for the social events
schedule to see what was planned.
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<lbegin_search_resultl> [The ACL 2023 social events schedule includes the following relevant details: 1. **Social
Event on July 11, 2023%**: - #*Time**: 7:00 PM — 10:30 PM (EDT) - **Location**: Steam Whistle Brewing
[...] - ¥*Description®**: This event occurred on the evening of July 11, immediately following the Best Paper
Awards ceremony (which took place earlier that day at 16:00-17:30). [...] 2. **No Explicit Social Events
on July 12, 2023%*%*: - The evening of July 12, 2023, is not listed as having any official social events in the
provided sources. [...] ¥*Note**: The primary social event referenced in the sources is on July 11, not July 12.
The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the
Social Event on that same day. For July 12, only daytime sessions are documented. [...]|<lend_search_resultl>
Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of
July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly
state there were no official social events scheduled for the evening of July 12, which is technically the evening
*after® the July 11 ceremony.
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mnhe ACL 2023 social events schedule includes the following relevant details: 1. **Social

Event on July 11, 2023%%*: - **Time**: 7:00 PM — 10:30 PM (EDT) - **Location**: Steam Whistle Brewing

[...] - ¥*Description®**: This event occurred on the evening of July 11, immediately following the Best Paper

Awards ceremony (which took place earlier that day at 16:00-17:30). [...] 2. **No Explicit Social Events

on July 12, 2023%*%*: - The evening of July 12, 2023, is not listed as having any official social events in the

provided sources. [...] ¥*Note**: The primary social event referenced in the sources is on July 11, not July 12.

The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the

Social Event on that same day. For July 12, only daytime sessions are documented. [...]|<lend_search_resultl>
Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of
July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly
state there were no official social events scheduled for the evening of July 12, which is technically the evening
*after® the July 11 ceremony.
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Deep Research: Coupling Reasoning LM with Search

Example from WebWalkerQA Dataset

Question:

What was the specific schedule for the social event held on the evening after the ACL 2023 best paper awards Tea-c h reaso Ni ng LM S to P I an an d
? .
Labelod Anrwer: search via SFT / RL

The social event was scheduled from 7:00 PM to 10:30 PM on July 1 1th.
Model Output by WebThinker

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after* T h i n ki n
the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually g

happened. Let me search for that specifically.

<|begin_search_queryl> IACL 2023 best paper awards ceremony date| <lend_search_queryl> TOOI cal I
mrrhe ACL 2023 best paper awards ceremony took place on **July 11, 2023**_ according

to multiple sources: [...] Web Page 4 [...] explicitly states that the awards were announced on July 11, 2023.

[...] Web Page 5 [...] mentions the award presentation occurred on July 11, 2023 [...]. Web Page 6 [...] confirms

the awards were announced on July 11, 2023. [...] Web Page 9 [...] also indicates the awards were announced S earc h o UtPUt
on July 11, 2023. [...] the awards ceremony itself was held on the **11th**. [...][<lend_search_resultl>

Okay, the awards ceremony was definitively on July 11, 2023. The question asks for the social event on the T h i n k i ng

evening *after™ the ceremony, which would be the evening of July 12. Let me search for the social events
schedule to see what was planned.

CL 2023 social events schedule|<lend_search_queryl> I OOI cal I

<lbegin_search_resultl> [The ACL 2023 social events schedule includes the following relevant details: 1. **Social

Event on July 11, 2023%%*: - **Time**: 7:00 PM — 10:30 PM (EDT) - **Location**: Steam Whistle Brewing

[...] - ¥*Description®**: This event occurred on the evening of July 11, immediately following the Best Paper

Awards ceremony (which took place earlier that day at 16:00-17:30). [...] 2. **No Explicit Social Events

on July 12, 2023*%*: - The evening of July 12, 2023, is not listed as having any official social events in the searCh OUtPUt
provided sources. [...] **Note**: The primary social event referenced in the sources is on July 11, not July 12.

The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the

Social Event on that same day. For July 12, only daytime sessions are documented. [...]| <lend_search_resultl>
Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of
July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly
state there were no official social events scheduled for the evening of July 12, which is technically the evening
*after® the July 11 ceremony.

<Ibegin_search_queryl>
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Labelod Anrwer: search via SFT / RL

The social event was scheduled from 7:00 PM to 10:30 PM on July 1 1th.
Model Output by WebThinker

Okay, so the user is asking about the specific schedule of a social event that took place on the evening *after* T h i n ki n

the ACL 2023 best paper awards ceremony. First, I need to figure out when the awards ceremony actually g

happened. Let me search for that specifically.

<|begin_search_queryl> IACL 2023 best paper awards ceremony date| <lend_search_queryl> TOOI cal I

mrrhe ACL 2023 best paper awards ceremony took place on **July 11, 2023**_ according

to multiple sources: [...] Web Page 4 [...] explicitly states that the awards were announced on July 11, 2023.

[...] Web Page 5 [...] mentions the award presentation occurred on July 11, 2023 [...]. Web Page 6 [...] confirms

the awards were announced on July 11, 2023. [...] Web Page 9 [...] also indicates the awards were announced S earc h o UtPUt

on July 11, 2023. [...] the awards ceremony itself was held on the **11th**. [...][<lend_search_resultl>

Okay, the awards ceremony was definitively on July 11, 2023. The question asks for the social event on the T h o o
inking

evening *after™ the ceremony, which would be the evening of July 12. Let me search for the social events
schedule to see what was planned.

CL 2023 social events schedule|<lend_search_queryl> I OOI cal I

<lbegin_search_result/> [The ACL 2023 social events schedule includes the following relevant details: 1. **Social

Event on July 11, 2023%%*: - **Time**: 7:00 PM — 10:30 PM (EDT) - **Location**: Steam Whistle Brewing

[...] - ¥*Description®**: This event occurred on the evening of July 11, immediately following the Best Paper

Awards ceremony (which took place earlier that day at 16:00-17:30). [...] 2. **No Explicit Social Events

on July 12, 2023*%*: - The evening of July 12, 2023, is not listed as having any official social events in the searCh OUtPUt
provided sources. [...] ¥*Note**: The primary social event referenced in the sources is on July 11, not July 12.

The Best Paper Awards ceremony was held on July 11, so the subsequent evening event likely refers to the

Social Event on that same day. For July 12, only daytime sessions are documented. [...]| <lend_search_resultl>
Hmm, interesting. The awards were on July 11, and the search results show a social event on the evening of

July 11, immediately following the awards ceremony (7:00 PM - 10:30 PM). However, the results explicitly T h i n ki n
state there were no official social events scheduled for the evening of July 12, which is technically the evening g
*after® the July 11 ceremony.

<Ibegin_search_queryl>
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e Augment input of LMs
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How to Use Retrieval

g Not scalable to many documents (needs context
engineering)
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How to Use Retrieval

Intermediate Fusion

e Modify LMs to incorporate D
INn Intermediate layers

e Scalable to many passages
e Requires retraining

e.qg., RETRO, InstructRETRO
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RETRO (Borgeaud et al.,, 2022)
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How to Use Retrieval
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KNIN-LM (Khandelwal et al. 2020)

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; Uy ki = f(c) d; = d(q, k;) p(k;) o< exp(—d;) PkNN(Y) = Z ly=v;p(ki)
Obama was senator for | llinois @00® ' Hawaii |3 | Hawaii|0.7 |—%  Hawaii|0.8
Barack is married to | Michelle @QQ@ e 100 lllinois |4 | lllinois |0.2 74 lllinois | 0.2
Obama was born in | Hawaii @O00® 5 * Hawaii |5 | Hawaii|0.1 l
Obama is a native of | Hawail @000 > 3 Classification Interpolation
+ v (Y) p(y)=APNN(Y)+(1=A)prm(y)
Test Context Target Representation )
_ Hawaii | 0.2 Hawaii | 0.6
T q=f(z) e
— lllinois [0.2 > lllinois [ 0.2
Obama’s birthplace is ? @00® >

Pian—iv 1) = (1 = HP (v [ x) + AP n (Y | X)
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Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; Uy ki = f(ci) di = d(q, k;) p(k;) o< exp(—d;) PkNN(Y) = ZQ, ly=v;p(k;)
Obama was senator for | lllinois @00® |~ 4 Hawaii |3 |—>  Hawaii[0.7 |—% Hawaii | 0.8
Barack is married to | Michelle Ce00 [—| 100 lllinois |4 [—>  Illinois |0.2 74 lllinois | 0.2
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4 pLm(Y) p(y) = AP () +(1-NpLa(y)
Test Context Target Representation , ) )
L 1=12) Pajrametric distribution rawai| 5.2 rawai | 8.
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PanoimO [ x) = (1 = /1 _ .. AP N (Y | X)
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KNIN-LM (Khandelwal et al. 2020)

Nonparametric distribution

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; Uy ki = f(c) di = d(q, k;) p(k;) o exp(—d;) PN () = Eg, Ly—v;p (ki)
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KNIN-LM (Khandelwal et al. 2020)

Nonparametric distribution

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; Uy ki = f(c) i = d(q, ki) p(k;) o exp(—d;) PN () = Eg, Ly—v;p (ki)
Obama was senator for | lllinois @00® || 4 Hawaii |3 |—  Hawaii |0.7 Hawaii | 0.8 | ]
Barack is married to | Michelle Ce0O0 | 100 lllinois |4 |—>  lllinois [0.2 lllinois |0.2 | &
Obama was born in | Hawaii @O00® 5 * Hawaii |5 —| Hawaii [0.1 L ,
Obama is a native of | Hawaii @000 > 3 Classification Interpolation
* v (Y) p(y)=ApnN(y)+(1=A)pLm(y)
Test Context Target Representation _ ) )
T g = f(z) p i distributi Hawaii | 0.2 Hawalii | 0.6
arametric distribution {1 inojs |0.2 lllinois | 0.2
Obama’s birthplace is ? @O00O® i

A:hyperparameter
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Summary of Part 3

X : Which company developed GPT407?

C— D
C: Q % y: OpenAl

Datastore Retriever LM

v/ Common architectures -
e RAG is widely used but several limitations

v/ Recent progress e Recent progress to overcome such shortcomings

e Other architectures: intermediate incorporation
or output interpolation
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Retrieval and Retrieval-Augmented Generation

X : Which company developed GPT40?

= D

Datastore Retriever LM
v Sources of datastore ' Types of retrievers v Common architectures
v/ Processing v Training v/ Recent progress in RAG
v/ Scaling v/ Evaluations
Contact:

&) https://akariasai.github.io/ |l aasai@andrew.cmu.edu | akaria@allenai.org
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