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Recap

• N-gram models and feedforward architecture 

• Key limitation: a very short context (N-1 tokens)



This lecture

• Recurrent neural networks 

• In theory, infinite context 

• Motivates attention 

• Next lecture: attention and 
transformers

Next  
Token

Full context

P(X) ≈
T

∏
t=1

pθ (xt ∣ x1, …, xt−1)



Outline

• Recurrent neural networks 

• Vanishing gradients and other recurrent architectures 

• Encoder-decoder 

• Attention



Recurrent Neural Networks



Sequence model

•  

• : hidden state 

• Example task: language 
modeling: 

•

fθ(x1, …, x|x|) → h1, …, h|x|

ht ∈ ℝd

pθ( ⋅ |x<t) = softmax (Wh⊤
t )

fθ

W
softmax

…

x1 x2 x3 x4

h1 h2 h3 h4



Three Types of Sequence 
Models

• Recurrence: Condition 
representations on an 
encoding of the history 

• Convolution: Condition 
representations on local 
context 

• Attention: Condition 
representations on a weighted 
average of all tokens

RNN RNN RNN RNN

CNNCNN CNN CNN

AttnAttn Attn Attn



Recurrent neural network

RNN

x1

RNN

x2

RNN

x3

…

Wh ∈ ℝd×d

Wx ∈ ℝd×din

b ∈ ℝd

Parameters θ

Elman 1980

ht = σ (Whht−1 + Wxxt + b) : activation function  
(tanh, relu, …)

σ

h1 h2 h3h0

a bad movie



Example: sequence classification

RNN

a

RNN

bad

RNN

movie

softmax

W

Output class probabilities
[p1, p2, p3] = softmax(WhT)



Example: language modeling

RNN

a

RNN

bad

RNN

movie

Next-token probabilities

W
softmax

…

W
softmax

…

W
softmax

…

Mikolov et al 2010, Recurrent neural network based language model

p(xt |x<t) = softmax(Wht)

https://www.isca-archive.org/interspeech_2010/mikolov10_interspeech.pdf


Training RNNs

RNN

x1

RNN RNN

Output 
Layer

Output 
Layer

Output 
Layer

x2 x3

…
Label 1 Loss 1

…
Label 2 Loss 2

…
Label 3 Loss 3

+
Total loss



RNN Training

• The unrolled graph is a well-formed (DAG) 
computation graph—we can run backpropagation 
 
 
 

• This is historically called “backpropagation 
through time” (BPTT)

sum

total loss



Parameter tying

RNN

x1

RNN RNN

…

Output 
Layer

…

Output 
Layer

…

Output 
Layer

Label 1

x2 x3

Loss 1 Label 2 Loss 2 Label 3 Loss 3

+
Total lossSame parameters; gradients 

are accumulated



Training RNNs Example: Language 
Modeling

RNN

x1

RNN RNN

…

Output 
Layer

…

Output 
Layer

…

Output 
Layer

x2 x3

+
Total loss

−log pθ(x2 |x<2) −log pθ(x3 |x<3) −log pθ(END |x≤3)



• Maximum likelihood estimation (again!) 

•
 max ∑

x∈Dtrain

log pθ(x)

≡ min − ∑
x∈Dtrain

∑
t

log pθ(xt |x<t)

Training RNNs: Language Modeling

Previous slide



Training RNNs: Language Modeling

RNN

x1

RNN RNN

Output Output 
…

Output 

x2 x3

Loss 3

• Computing the  loss at step  requires computing 
the hidden state  

• Computing  requires  

• As a result, RNN training is difficult to parallelize

t
ht

ht ht−1, ht−2, …

h1 h2 h3

Loss 2Loss 1



RNN Inference: Language Models

• Generate one token, use the new hidden state for 
the next step, repeat

RNN

The

RNN

[S]

…

Output 
Layer

The
Sample

…

Output 
Layer

cat

…

cat

Sample



RNN Inference: Language Models

• We only need to store the previous hidden state 

• Constant memory as sequence length increases 

• Each step is a “local” computation,  

•  computation for a length  sequence

O(1)

O(T) T



Recap: RNNs
• A sequence model,  

• Transforms a hidden state at each step 

•  

• Intuitively, the hidden state is a “memory” mechanism 

• We can use it for tasks such as language modeling, 
and train it with backpropagation 

• Recurrent hidden state makes parallelization difficult

fθ(x1, …, x|x|) → h1, …, h|x|

ht = σ (Whht−1 + Wxxt + b)



In Code



In Code



Outline

• Recurrent neural networks 

• Vanishing gradients and other recurrent architectures

• Encoder-decoder 

• Attention



Vanishing Gradients



Vanishing gradient

• Gradients decrease as they get pushed back 

• Implication: Cannot model long dependencies!

RNN RNN RNN

softmax

W
∂L
∂h3

normal
∂L
∂h2

small
∂L
∂h1

tiny
∂L
∂h0

very  
tiny



Vanishing gradient: why?

Normal RNN: ,  

 

 

 

: when dominant eigenvalue < 1, 

ht = tanh(Winx + Wht) yT = WouthT

∂L
∂W

=
T

∑
t=0

∂L
∂yT

∂yT

∂hT

∂hT

∂ht

∂ht

∂W

∂hT

∂ht
=

hT

hT−1

∂hT−1

∂hT−2
⋯

∂ht+1

∂ht
=

T

∏
t′￼=t

∂ht′￼+1

∂ht′￼

∂ht′￼+1

∂ht′￼

= diag (tanh′￼(Winxt′￼+1 + Wht′￼
)) W

W = VDV−1 DT−t → 0

Derivative of  is in [0,1]tanh



A solution: gating and additive connections
• Basic idea: pass information across timesteps with a 

learned “gate”  

•   

• To retain a long-term dependency, the model can set 
 for multiple steps: 

•

zt = σ(Wzxx + Wzhht−1)

ht = (1 − zt) ⋅ ht−1 + zt ⋅ h̃t

z → 0

∂ht2

∂ht1
=

t2

∏
t=t1

∂ht

∂ht−1
ht−1

1

= 1



• Basic idea: pass information across timesteps with 
a learned “gate”  

•   

• When , incorporate a new hidden state , 
e.g. similar to a normal RNN

zt

ht = (1 − zt) ⋅ ht−1 + zt ⋅ h̃t

z > 0 h̃t

A solution: gating and additive connections



• No gate: learn the difference  (“residual”) 

•  

h̃t

ht = ht−1 + h̃t

A solution: gating and additive connections



Putting it all together:  
Gated Recurrent Unit (GRU)

 
GRU
RNN

x1

 
GRU
RNN

x2

 
GRU
RNN

x3

…

h1 h2 h3



• “Update gate” 

 

• “Reset gate” 

zt = σ (Wzxt + Uzht−1)

rt = σ (Wrxt + Urht−1)

Putting it all together:  
Gated Recurrent Unit (GRU)

• Recurrent update: 

 

•  is a “candidate state” 

ht = (1 − zt) ⊙ ht−1 + zt ⊙ ĥt

ĥt

ĥt = tanh (Whxt + Uh(rt ⊙ ht−1)



Putting it all together: gated architectures

• Gated recurrent unit (GRU) [Cho et al 2014]: 

• 2 gate architecture 

• Gate 1 (update): should I update the previous hidden state? 

• Gate 2 (reset): should I use the hidden state in the update?

• Long short term memory (LSTM) [Hochreiter & Schmidhuber 1997]:  

• 4 gate architecture using an additional context vector 

• Gate 1: should I update the previous context? 

• Other gates: how should I update?



Recap: vanishing gradients

• Basic RNN: gradients vanish, so we can’t model 
long dependencies in practice 

• Better recurrent models help overcome this 

• E.g., GRU, LSTM 

• In practice, a drop-in replacement



Outline

• Recurrent neural networks 

• Vanishing gradients and other recurrent architectures 

• Encoder-decoder

• Attention



Encoder-decoder



Encoder-decoder
• Motivation: conditional generation 

• Basic idea: use a sequence model to represent  as 
a vector

x

pθ(y1, …, yT |x)

English sentence
Chat historyResponse

Japanese sentence

… …



Encoder-decoder

RNN RNN RNN

Encoder Decoder
x1 x2 x3

c ∈ ℝd“Context vector”

RNN RNN RNN

Output Output Output

y0

y1

y1

y2

y2

y3

Use context to 
initialize the hidden 
state

Use context in the recurrent 
update, e.g. W[ht; xt; c]

Use context in the output layer:  
softmax (W[ht; c])

Cho et al 2014, Learning Phrase Representations using RNN Encoder–Decoder

https://arxiv.org/pdf/1406.1078


Encoder-decoder

RNN RNN RNN

Encoder Decoder
x1 x2 x3

c ∈ ℝd“Context vector”

RNN RNN RNN

Output Output Output

y0

y1

y1

y2

y2

y3

Training: 
min

θ ∑
(x,y)∈D

∑
t

− log pθ(yt |y<t, x)



Encoder-decoder

RNN RNN RNN

Encoder Decoder
x1 x2 x3

c ∈ ℝd“Context vector”

RNN RNN RNN

Output Output Output

y0

y1

y1

y2

y2

y3

A single context vector is used for all tokens:  
can we do better?



Attention



Basic Idea 
(Bahdanau et al. 2015)

• Encode each token in the sequence into a vector 

• When decoding, perform a linear combination of these 
vectors, weighted by “attention weights”

Bahdanau et al 2015, Neural Machine Translation by Jointly Learning to Align and Translate

https://arxiv.org/pdf/1409.0473


Attention
• Keys: Encoder states  

• Query: Current decoder hidden state  

• Compute attention scores 

•  

• Output: a weighted sum 

•

henc
1 , …, henc

N

h

αn = score(h, henc
n )

c =
N

∑
n=1

αnhenc
n

score(q, k) = q⊤k
Dot product

score(q, k) = qWk
Bilinear

score(q, k) = w⊤ tanh(W[q; k])
Nonlinear



Attention

RNN RNN RNN

x1 x2 x3

RNN RNN RNN

Output Output Output

y0

y1

y1

y2

y2

y3

Context vector is a 
weighted sum

α0 α1 α2 α3

“Query”
“Keys”

Weighted 
sum

Compute  
attention scores

Encoder Decoder

Key difference: 
New context vector at each 

decoder step



s(    ) s(    )

Attention

RNN RNN RNN

Encoder Decoder
x1 x2 x3

RNN RNN RNN

Output Output Output

y0

y1

y1

y2

y2

y3

henc
0

Context vector is a 
weighted sum

∑
n

αnhenc
n

Compute  
attention scores

α0 α1 α2 α3

c
henc

1 henc
2

henc
3

Example usage: 

logits = tanh(Wout[ct; ht])
s(    ) s(    )



Image from Bahdanau et al. (2015)

A Graphical Example



In code



In code



In code
Task

Reverse a name that 
has noise characters

romulus -> sulumor

rnommuudloutsv -> 
sulumor



Recap

• Basic encoder-decoder: encode a sequence into a context 
vector, use it in the decoder 

• Attention: context vector is a weighted sum of vectors 

• Using the hidden state as the “query” vector lets us 
compute a new context vector at each step 

• Attention is a general idea: e.g., next lecture we’ll see other 
variants and uses



Recap

• Recurrent neural networks 

• Vanishing gradients and other recurrent architectures 

• Encoder-decoder 

• Attention

Time permitting: extra topics



Overfitting
• Goal: fit a target distribution  

• The model may fit the training data (a sample from ), 
but the model may not generalize 

• Symptom: training loss is decreasing, validation loss is 
increasing 

• Choose different hyperparameters 

• Add regularization  

• Choose the model with minimum validation loss

p*

p*



Initialization
• Weight initialization impacts the optimization trajectory

Xavier initialization [Glorot and Bengio 2010]: W ∼ 𝒰 (−
6

nin + nout
,

6
nin + nout )

Weights are drawn from a uniform distribution around zero, scaled to balance 
variance across layers.



Learning rate schedule & warmup

Training steps Training steps

LRLR

Cosine schedule With warmup

• A schedule can help balance 
between exploration (large updates) 
and convergence (small updates)

• Warmup can help stabilize 
gradients early in training



Batching
• We typically process multiple examples at once (a batch) 

• Takes advantage of parallel hardware (GPU) 

• Can smooth out noise in individual gradients

example 1
example 2
example 3

…
example B



Batching
• When inputs are of variable length, we use a pad token 

• We may need to mask out operations involving pad tokens



Batching
• When outputs are of variable length, we mask out the loss 

for pad tokens 

We’ll see a concrete example next class!



Thank you!


