CS11-711 Advanced NLP Recurrent Neural Networks

Sean Welleck

https://cmu-l3.github.io/anlp-fall2025/

https://github.com/cmu-l3/anlp-fall2025-code

Recap

- N-gram models and feedforward architecture
 - Key limitation: a very short context (N-1 tokens)

This lecture

- Recurrent neural networks
 - In theory, infinite context
 - Motivates attention
- Next lecture: attention and transformers

Outline

- Recurrent neural networks
- Vanishing gradients and other recurrent architectures
- Encoder-decoder
- Attention

Recurrent Neural Networks

Sequence model

- $f_{\theta}(x_1, ..., x_{|x|}) \to h_1, ..., h_{|x|}$
 - $h_t \in \mathbb{R}^d$: hidden state
- Example task: language modeling:
 - $p_{\theta}(\cdot \mid x_{< t}) = \operatorname{softmax}\left(Wh_{t}^{\top}\right)$

Three Types of Sequence Models

- Recurrence: Condition representations on an encoding of the history
- Convolution: Condition representations on local context
- Attention: Condition representations on a weighted average of all tokens

Recurrent neural network

Example: sequence classification

Output class probabilities

Example: language modeling

Next-token probabilities

$$p(x_t | x_{< t}) = \text{softmax}(Wh_t)$$

Mikolov et al 2010, Recurrent neural network based language model

Training RNNs

RNN Training

 The unrolled graph is a well-formed (DAG) computation graph—we can run backpropagation

 This is historically called "backpropagation through time" (BPTT)

Parameter tying

Training RNNs Example: Language Modeling

Training RNNs: Language Modeling

Maximum likelihood estimation (again!)

$$\max_{x \in D_{train}} \log p_{\theta}(x)$$

$$\equiv \min - \sum_{x \in D_{train}} \sum_{t} \log p_{\theta}(x_t | x_{< t})$$

Previous slide

Training RNNs: Language Modeling

- Computing the loss at step t requires computing the hidden state h_t
 - Computing h_t requires h_{t-1}, h_{t-2}, \dots
- As a result, RNN training is difficult to parallelize

RNN Inference: Language Models

 Generate one token, use the new hidden state for the next step, repeat

RNN Inference: Language Models

- We only need to store the previous hidden state
 - Constant memory as sequence length increases
- Each step is a "local" computation, O(1)
 - O(T) computation for a length T sequence

Recap: RNNs

- A sequence model, $f_{\theta}(x_1, ..., x_{|x|}) \rightarrow h_1, ..., h_{|x|}$
- Transforms a hidden state at each step

•
$$h_t = \sigma \left(W_h h_{t-1} + W_x x_t + b \right)$$

- Intuitively, the hidden state is a "memory" mechanism
- We can use it for tasks such as language modeling, and train it with backpropagation
- Recurrent hidden state makes parallelization difficult

In Code

```
class RNNCell(torch.nn.Module):
    def __init__(self, input_size, hidden_size):
        super(RNNCell, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.Wh = torch.nn.Linear(hidden_size, hidden_size)
        self.Wx = torch.nn.Linear(input_size, hidden_size)
        self.activation = torch.nn.Tanh()
    def forward(self, x, h):
        h = self.activation(self.Wh(h) + self.Wx(x))
        return h
```

In Code

```
class RNNLM(nn.Module):
   def __init__(self, vocab_size, hidden_size):
       super(RNNLM, self).__init__()
       self.embedding = nn.Embedding(vocab_size, hidden_size)
       self.rnn = RNNCell(hidden_size, hidden_size)
       self.output = nn.Linear(hidden_size, vocab_size)
       self.hidden_size = hidden_size
   def forward(self, x, hidden=None):
       if hidden is None:
            hidden = self.init_hidden(x.size(0))
       x = self.embedding(x)
       outs = []
       for i in range(x.size(1)):
            hidden = self.rnn(x[:, i:i+1], hidden)
            out = self.output(hidden)
            outs.append(out)
       outs = torch.cat(outs, dim=1)
        return outs, hidden
   def init_hidden(self, batch_size):
        return torch.zeros(batch_size, 1, self.hidden_size)
```

Outline

- Recurrent neural networks
- Vanishing gradients and other recurrent architectures
- Encoder-decoder
- Attention

Vanishing Gradients

Vanishing gradient

- Gradients decrease as they get pushed back
- Implication: Cannot model long dependencies!

Vanishing gradient: why?

Normal RNN: $h_t = \tanh(W_{in}x + Wh_t)$, $y_T = W_{out}h_T$

$$\frac{\partial L}{\partial W} = \sum_{t=0}^{T} \frac{\partial L}{\partial y_T} \frac{\partial y_T}{\partial h_T} \frac{\partial h_T}{\partial h_t} \frac{\partial h_t}{\partial W}$$

$$\frac{\partial h_T}{\partial h_t} = \frac{h_T}{h_{T-1}} \frac{\partial h_{T-1}}{\partial h_{T-2}} \cdots \frac{\partial h_{t+1}}{\partial h_t} = \prod_{t'=t}^T \frac{\partial h_{t'+1}}{\partial h_{t'}}$$

$$\frac{\partial h_{t'+1}}{\partial h_{t'}} = \operatorname{diag}\left(\frac{\tanh'(W_{in}x_{t'+1} + Wh_{t'})}{W}\right)$$
 Derivative of tanh is in [0,1]

 $W = VDV^{-1}$: when dominant eigenvalue < 1, $D^{T-t} \rightarrow 0$

A solution: gating and additive connections

• Basic idea: pass information across timesteps with a learned "gate" $z_t = \sigma(W_{zx}x + W_{zh}h_{t-1})$

$$\bullet \ \ \boldsymbol{h}_t = (1 - \boldsymbol{z}_t) \cdot \boldsymbol{h}_{t-1} + \boldsymbol{z}_t \cdot \tilde{\boldsymbol{h}}_t$$

• To retain a long-term dependency, the model can set $z \to 0$ for multiple steps:

$$\frac{\partial h_{t_2}}{\partial h_{t_1}} = \prod_{t=t_1}^{t_2} \frac{\partial h_t}{\partial h_{t-1}} h_{t-1} = 1$$

A solution: gating and additive connections

• **Basic idea:** pass information across timesteps with a learned "gate" z_t

•
$$h_t = (1 - z_t) \cdot h_{t-1} + z_t \cdot \tilde{h}_t$$

• When z>0, incorporate a new hidden state \tilde{h}_t , e.g. similar to a normal RNN

A solution: gating and additive connections

• No gate: learn the difference \tilde{h}_t ("residual")

•
$$h_t = h_{t-1} + \tilde{h}_t$$

Putting it all together: Gated Recurrent Unit (GRU)

Putting it all together: Gated Recurrent Unit (GRU)

"Update gate"

$$z_{t} = \sigma \left(W_{z} x_{t} + U_{z} h_{t-1} \right)$$

$$h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \hat{h}_t$$

"Reset gate"

•
$$\hat{h}_t$$
 is a "candidate state"

$$r_{t} = \sigma \left(W_{r} x_{t} + U_{r} h_{t-1} \right)$$

$$\hat{h}_t = \tanh\left(W_h x_t + U_h (r_t \odot h_{t-1})\right)$$

Putting it all together: gated architectures

- Gated recurrent unit (GRU) [Cho et al 2014]:
 - 2 gate architecture
 - Gate 1 (update): should I update the previous hidden state?
 - Gate 2 (reset): should I use the hidden state in the update?
- Long short term memory (LSTM) [Hochreiter & Schmidhuber 1997]:
 - 4 gate architecture using an additional context vector
 - Gate 1: should I update the previous context?
 - Other gates: how should I update?

Recap: vanishing gradients

- Basic RNN: gradients vanish, so we can't model long dependencies in practice
- Better recurrent models help overcome this
 - E.g., GRU, LSTM
- In practice, a drop-in replacement

```
class RecurrentLM(nn.Module):
    def __init__(self, vocab_size, embedding_size, hidden_size):
        super(RecurrentLM, self).__init__()
        self.embedding = nn.Embedding(vocab_size, hidden_size)
        self.rnn = nn.RNN(embedding_size, hidden_size)
        self.output = nn.Linear(hidden_size, vocab_size)
        self.hidden_size = hidden_size
        self.hidden_size = hidden_size
class RecurrentLM(nn.Module):
        def __init__(self, vocab_size, em
        super(RecurrentLM, self).__in
        self.embedding = nn.Embedding
        self.rnn = nn.GRU(embedding_size)
        self.output = nn.Linear(hidden_size)
        self.hidden_size = hidden_size
```

Outline

- Recurrent neural networks
- Vanishing gradients and other recurrent architectures
- Encoder-decoder
- Attention

Encoder-decoder

Encoder-decoder

Motivation: conditional generation

 Basic idea: use a sequence model to represent x as a vector

Encoder-decoder

Use context in the recurrent update, e.g. $W[h_t; x_t; c]$

Encoder-decoder

Training:

 $\min_{\theta} \sum_{t=1}^{n} \sum_{t=1}^{n} -\log p_{\theta}(y_t | y_{< t}, x)$

 $(x,y)\in D$ t

Encoder-decoder

A single context vector is used for all tokens: can we do better?

Basic Idea

(Bahdanau et al. 2015)

- Encode each token in the sequence into a vector
- When decoding, perform a linear combination of these vectors, weighted by "attention weights"

- **Keys**: Encoder states $h_1^{enc}, ..., h_N^{enc}$
- Query: Current decoder hidden state h
- Compute attention scores

•
$$\alpha_n = \text{score}(h, h_n^{enc}) /$$

Output: a weighted sum

$$c = \sum_{n=1}^{N} \alpha_n h_n^{enc}$$

Dot product

$$score(q, k) = q^T k$$

Bilinear

$$score(q, k) = qWk$$

Nonlinear

$$score(q, k) = w^{T} tanh(W[q; k])$$

A Graphical Example

Image from Bahdanau et al. (2015)

In code

```
class DotAttention(nn.Module):
    def __init__(self):
        super(DotAttention, self).__init__()

def forward(self, query, keys, values):
    # query: (B, Ty, D)
    # keys: (B, Tx, D)
    # values: (B, Tx, D)
    dot = torch.bmm(keys, query.transpose(1, 2))
    weights = torch.softmax(dot, dim=1)
    out = torch.bmm(weights.transpose(1, 2), values)
    return out, weights
```

In code

```
def forward(self, X, Yin):
   # Encode
    X_embed = self.embed(X)
    Henc, henc_last = self.encoder(X_embed)
   # Decode
    Yin_embed = self.embed(Yin)
    Hdec, _ = self.decoder(Yin_embed, henc_last)
    # Attention
    query = self.query(Hdec)
    context, _ = self.attention(query, Henc, Henc)
    # Combine
    out = torch.cat([Hdec, context], dim=2)
    out = self.out(out)
    return out
```

Task

Reverse a name that has noise characters

romulus -> sulumor

rnommuudloutsv -> sulumor

Recap

- Basic encoder-decoder: encode a sequence into a context vector, use it in the decoder
- Attention: context vector is a weighted sum of vectors
 - Using the hidden state as the "query" vector lets us compute a new context vector at each step
- Attention is a general idea: e.g., next lecture we'll see other variants and uses

Recap

- Recurrent neural networks
- Vanishing gradients and other recurrent architectures
- Encoder-decoder
- Attention

Time permitting: extra topics

Overfitting

- Goal: fit a target distribution p_st
 - The model may fit the training data (a sample from p_*), but the model may not generalize
- Symptom: training loss is decreasing, validation loss is increasing
 - Choose different hyperparameters
 - Add regularization
 - Choose the model with minimum validation loss

Initialization

Weight initialization impacts the optimization trajectory

```
class DeepCBoW(torch.nn.Module):
    def __init__(self, vocab_size, num_labels, emb_size, hid_size):
        super(DeepCBoW, self).__init__()
        self.embedding = nn.Embedding(vocab_size, emb_size)
       self.linear1 = nn.Linear(emb_size, hid_size)
       self.output_layer = nn.Linear(hid_size, num_labels)
       nn.init.xavier_uniform_(self.embedding.weight)
       nn.init.xavier_uniform_(self.linear1.weight)
       nn.init.xavier_uniform_(self.output_layer.weight)
   def forward(self, tokens):
       emb = self.embedding(tokens)
       emb_sum = torch.sum(emb, dim=0)
       h = emb_sum.view(1, -1)
       h = torch.tanh(self.linear1(h))
       out = self.output_layer(h)
        return out
```

Xavier initialization [Glorot and Bengio 2010]:
$$W \sim \mathcal{U}\left(-\frac{\sqrt{6}}{\sqrt{n_{in}+n_{out}}}, \frac{\sqrt{6}}{\sqrt{n_{in}+n_{out}}}\right)$$

Weights are drawn from a uniform distribution around zero, scaled to balance variance across layers.

Learning rate schedule & warmup

Warmup can help stabilize gradients early in training

Batching

- We typically process multiple examples at once (a batch)
 - Takes advantage of parallel hardware (GPU)
 - Can smooth out noise in individual gradients

```
example 1
example 2
example 3
...
example B
```

```
x_batch = X_train[:8]

x_batch

✓ 0.0s

tensor([[26, 26, 26, 26, 26],

[26, 26, 26, 26, 11],

[26, 26, 26, 11, 20],

[26, 26, 11, 20, 0],

[26, 11, 20, 0, 13],

[11, 20, 0, 13, 13],

[26, 26, 26, 26, 26],

[26, 26, 26, 26, 26],
```

Batching

• When inputs are of variable length, we use a pad token

We may need to mask out operations involving pad tokens

```
def forward(self, words, mask):
    emb = self.embedding(words)

#·Mask·out·the·padding·tokens
emb = emb * mask.unsqueeze(-1)
h = torch.sum(emb, dim=1)
for i in range(self.nlayers):
    h = torch.relu(self.linears[i](h))
    h = self.dropout(h)
out = self.output_layer(h)
return out
```

Batching

 When outputs are of variable length, we mask out the loss for pad tokens

```
# NOTE: We ignore the loss whenever the target token is a padding token
criterion = nn.CrossEntropyLoss(ignore_index=token_to_index['[PAD]'])
```

We'll see a concrete example next class!

Thank you!