CS11-711 Advanced NLP Pretraining

Sean Welleck

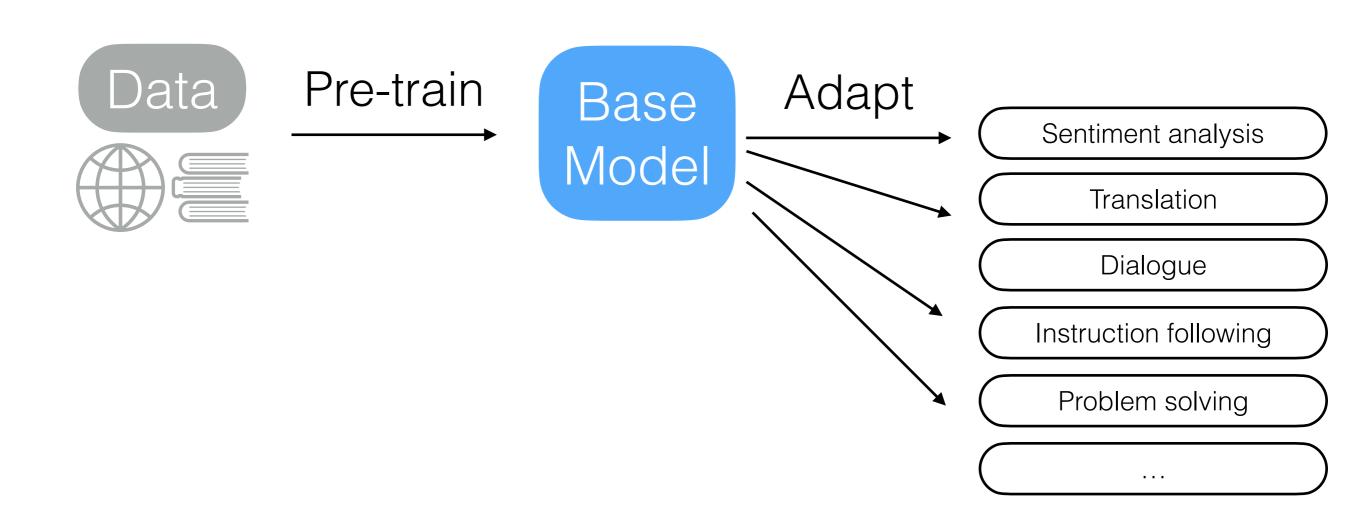
https://cmu-l3.github.io/anlp-fall2025/

https://github.com/cmu-l3/anlp-fall2025-code

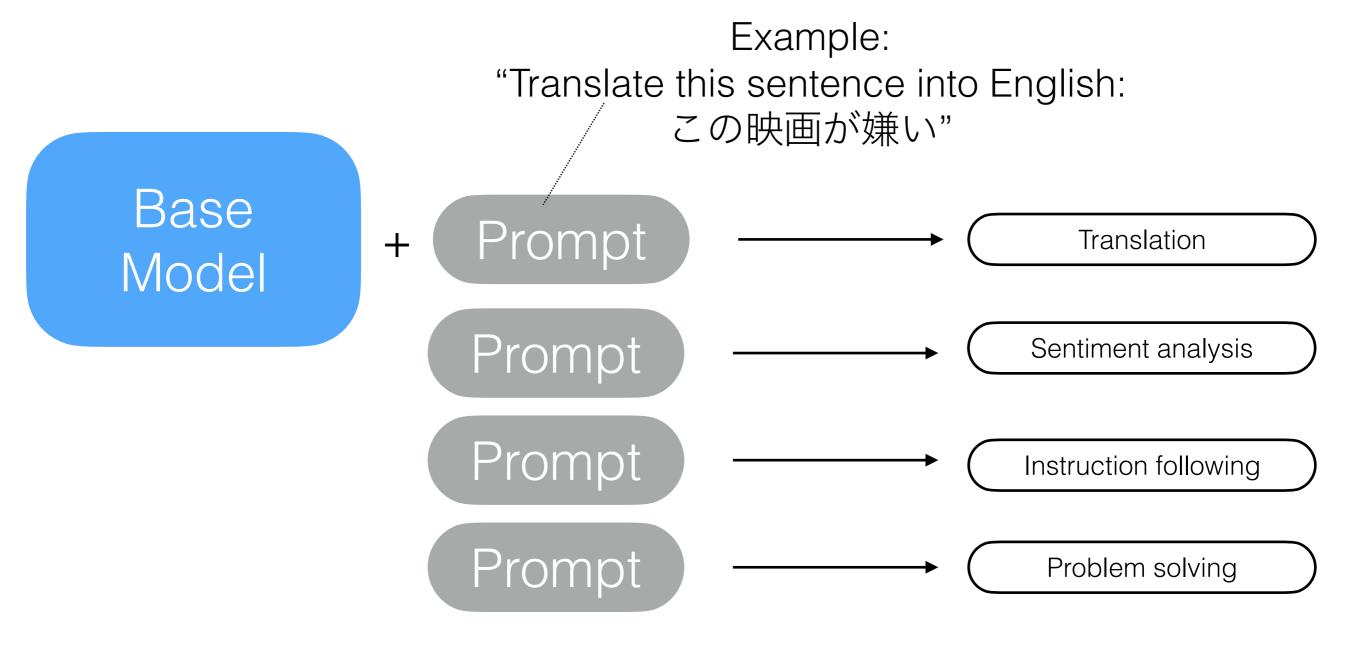
Recap

- Classification, language modeling, sequence architectures
- So far:
 - Train from scratch
 - 1 model, 1 task
- Today:
 - Pretrain a single model, adapt it to many tasks

Basic idea

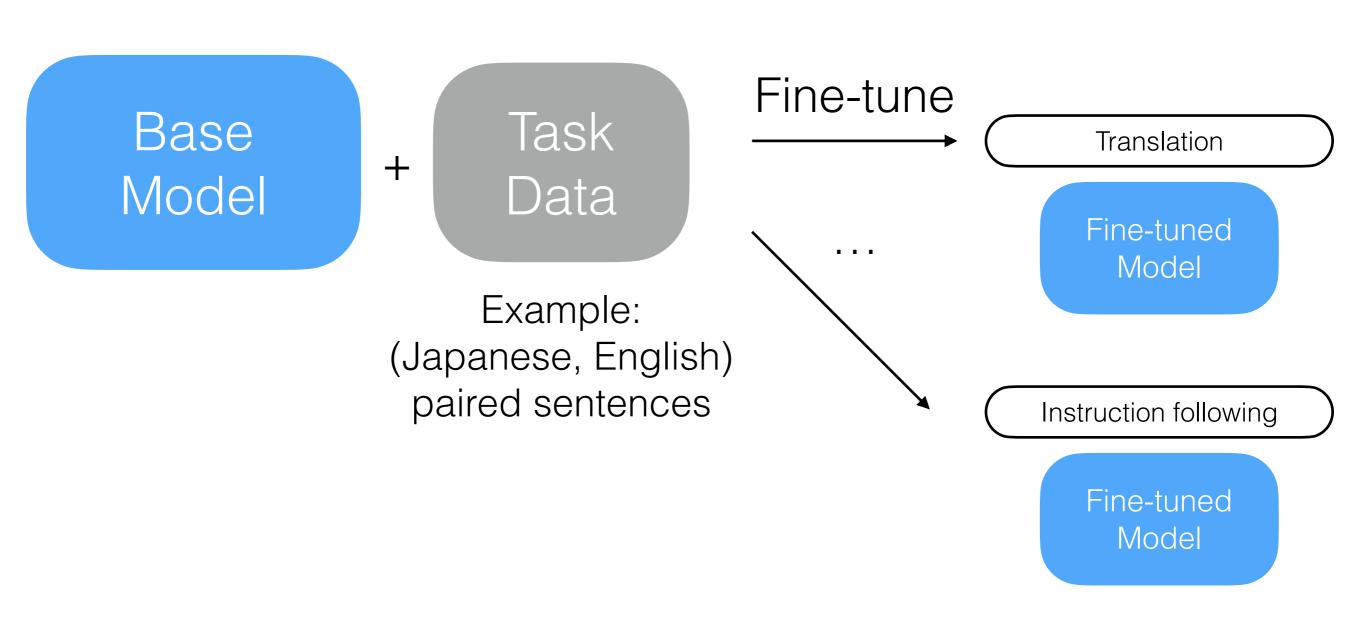


Adaptation: prompting [Lecture 7]



. . .

Adaptation: fine-tune [Lecture 8]



Why pre-train?

- Transfer learning: take "knowledge" from one task and apply it to another task
 - Less task data: use less data to reach a given level of performance
 - Better task performance: reach higher performance than training from scratch
 - One model, multiple tasks: convenient,
 amortizes cost, a starting point for many uses, ...

Major factors

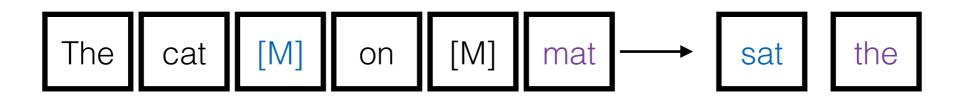
- Pre-trained models have names like BERT, GPT-3, Llama, Deepseek-v3, ...
- Each model is influenced by 4 major factors:
 - Architecture: neural network architecture
 - Task: what the model predicts (e.g. next-token)
 - Data: the data used to train the model
 - Hyper-parameters: e.g. learning rate, batch size

Today's lecture

- Tasks
 - Masked language modeling objective
 - Autoregressive language modeling objective
- Data: sources, quality, and quantity
- Thinking about pretraining
 - Tokens, model size, compute
 - Scaling laws

Masked Language Modeling

• Predict masked tokens x_M given visible tokens $x_{\neg M}$



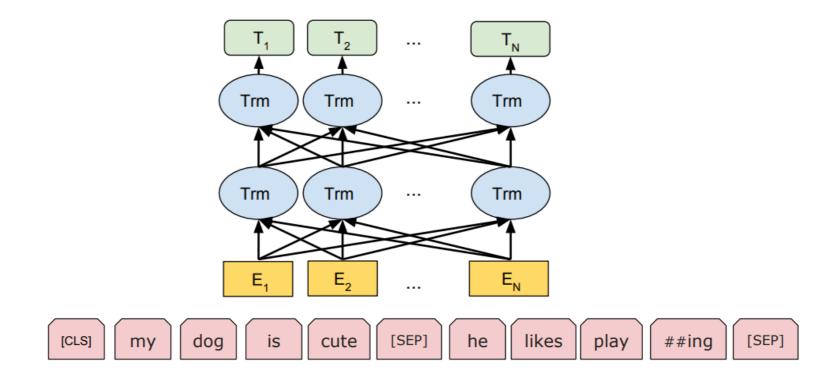
$$\mathcal{L}_{\mathrm{MLM}}(\theta; D) = -\frac{1}{|D|} \sum_{x \in D} \mathbb{E}_{M \sim \mathrm{corrupt}(x)} \sum_{t \in M} \log p_{\theta}(x_t \,|\, x_{\neg M})$$

- View as *denoising*: corrupt $x \rightarrow \text{reconstruct } x$
- Maximizes pseudo-likelihood

Example: BERT

(Devlin et al. 2018)

Model: Transformer



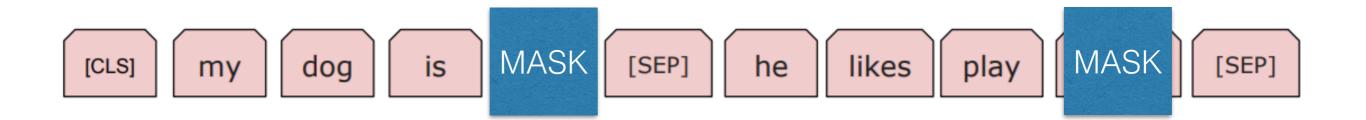
- Data: BooksCorpus + English Wikipedia
- Task: Masked language modeling

Example: BERT

(Devlin et al. 2018)

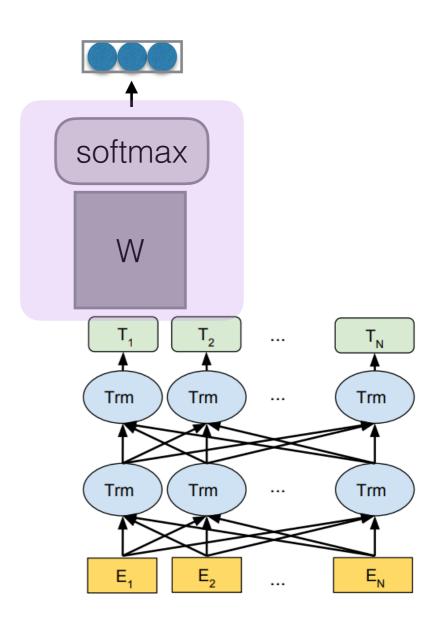
Predict a masked token

- 80%: substitute input token with [MASK]
- 10%: substitute input token with random token
- 10%: no change



Adapting a masked language model

- Add an output layer that maps a hidden vector to scores
- Fine-tune the weights (either just W, or all weights). Example:
 - Data: (movie review, {positive, neutral, negative})
 - Initialize the model with BERT
 - Minimize cross-entropy loss with gradient-based optimization

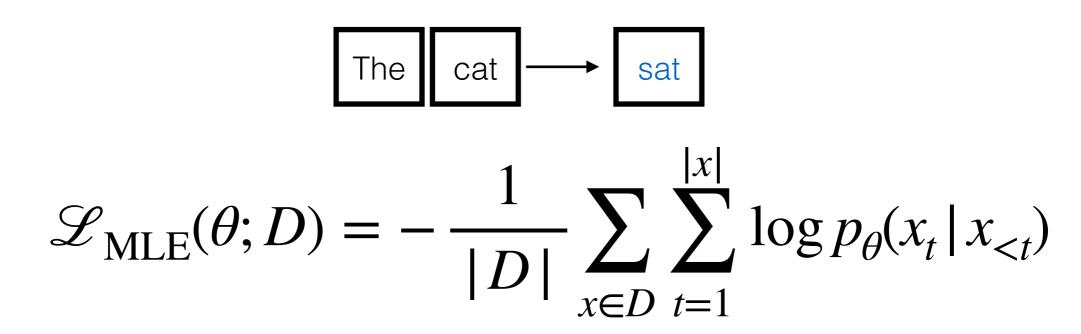


Today's lecture

- Tasks
 - Masked language modeling
 - Autoregressive language modeling

Autoregressive language modeling

• Predict next token x_t given previous tokens $x_{< t}$



- Maximizes likelihood
 - Fits a data distribution p_*
 - Learns to *compress* data generated by p_st

Maximum likelihood: fits a data distribution

• Makes $p_{ heta}$ match the data distribution p_{data} (p_* for brevity)

$$\begin{split} \min_{\theta} D_{\mathit{KL}}(p_* \,|\, | p_\theta) &= \min_{\theta} - \sum_{x \in \mathcal{X}} p_*(x) \log \frac{p_\theta(x)}{p_*(x)} \\ &\equiv \min_{\theta} - \sum_{x \in \mathcal{X}} p_*(x) \log p_\theta(x) + \mathsf{const} \\ &= \min_{\theta} - \mathbb{E}_{x \sim p_*} \log p_\theta(x) \\ &= \min_{\theta} - \frac{1}{|D|} \sum_{x \in D} \log p_\theta(x) \\ &\text{Dataset:} \\ &= \max_{\theta} \sum_{x \in D} \log p_\theta(x) \\ &\text{samples from } p_* \\ &\equiv \max_{\theta} \sum_{x \in D} \log p_\theta(x) \\ &\stackrel{\bullet}{\leadsto} &\stackrel{\bullet}{\leadsto} & \mathsf{Maximum} \end{split}$$

likelihood!

Maximum likelihood: learns to compress

- Goal: compress data from a distribution p_* into a binary code, $c(x_{1:n}) \to \{0,1\}^*$
- Arithmetic coding turns a distribution p into a code $c(\cdot)$
- Minimum expected code length is the entropy [Shannon 1948]:

$$H(p_*) = \mathbb{E}_{x \sim p_*} [-\sum_{i=1}^N \log_2 p_*(x_i | x_{< i})]$$

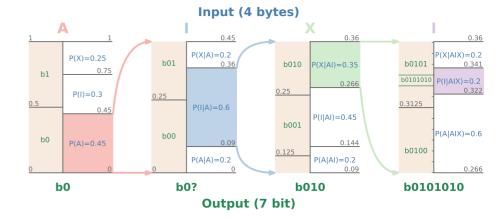


Figure: [Deletang et al 2024]

• When we use a model $p_{ heta}$, the expected code length is the cross-entropy:

$$H(p_*, p_{\theta}) = \mathbb{E}_{x \sim p} [-\sum_{i=1}^{N} \log_2 p_{\theta}(x_i | x_{< i})]$$

$$H(p_*, p_{\theta}) = H(p_*) + KL(p_* || p_{\theta})$$

To achieve the minimum expected code length $H(p_st)$, minimize KL divergence via MLE

Key factors

$$\mathcal{L}_{\text{MLE}}(\theta; D) = -\mathbb{E}_{x \sim D} \sum_{t=1}^{|x|} \log p_{\theta}(x_t | x_{< t})$$

- Things we can change:
 - θ : model architecture and size
 - D: training data
 - Optimization hyper-parameters, e.g. learning rate, batch size

Example: GPT-2



- Model: Transformer (1.5B)
- Data: WebText (millions of web pages)

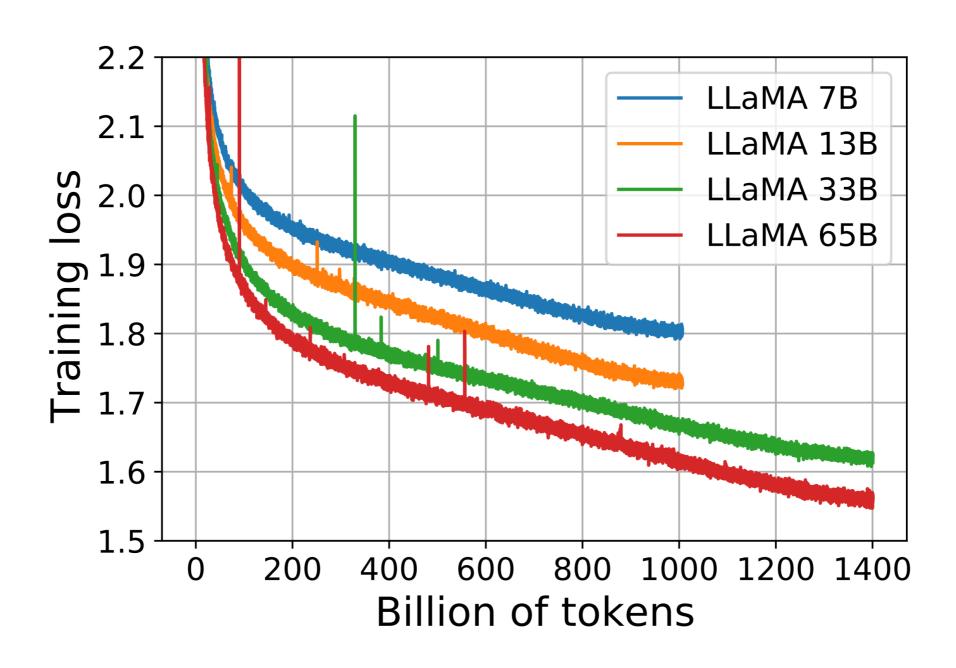
Example: Llama

Model: Transformer, {6.7B, 13B, 32B, 65B}

• **Data:** 1.4 trillion tokens, sources:

Dataset	Sampling prop.	Epochs	Disk size
CommonCraw	67.0%	1.10	3.3 TB
C 4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	2.0%	1.03	78 GB

Llama: training loss



Evaluating a model

- Loss (training, validation, test)
 - Diagnose training trajectory, compare models in the same family
- Few-shot prompting
- Fine-tuning

```
Translate English to French: 

sea otter => loutre de mer 

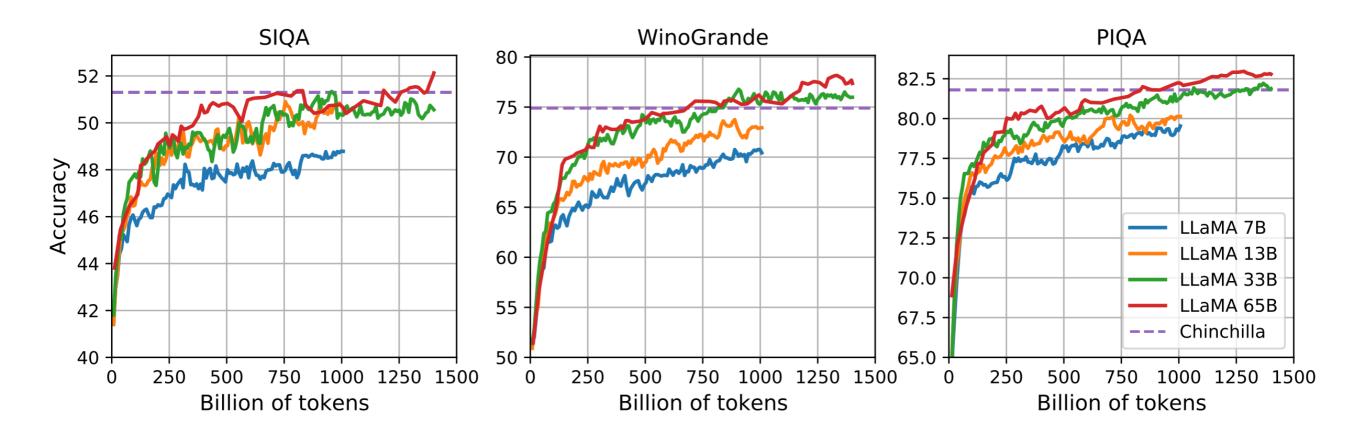
peppermint => menthe poivrée

plush girafe => girafe peluche

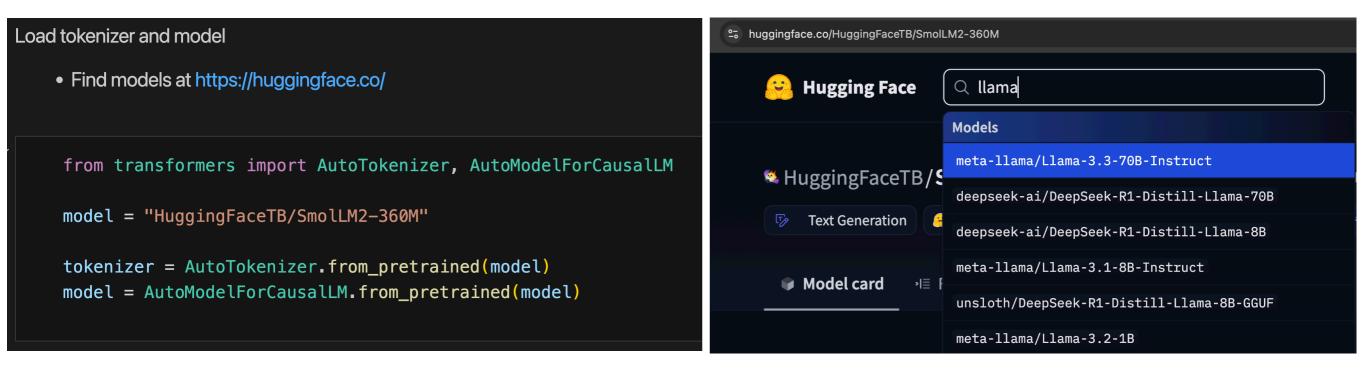
cheese => 

prompt
```

Llama: few-shot performance trajectory



Practical tools: HuggingFace

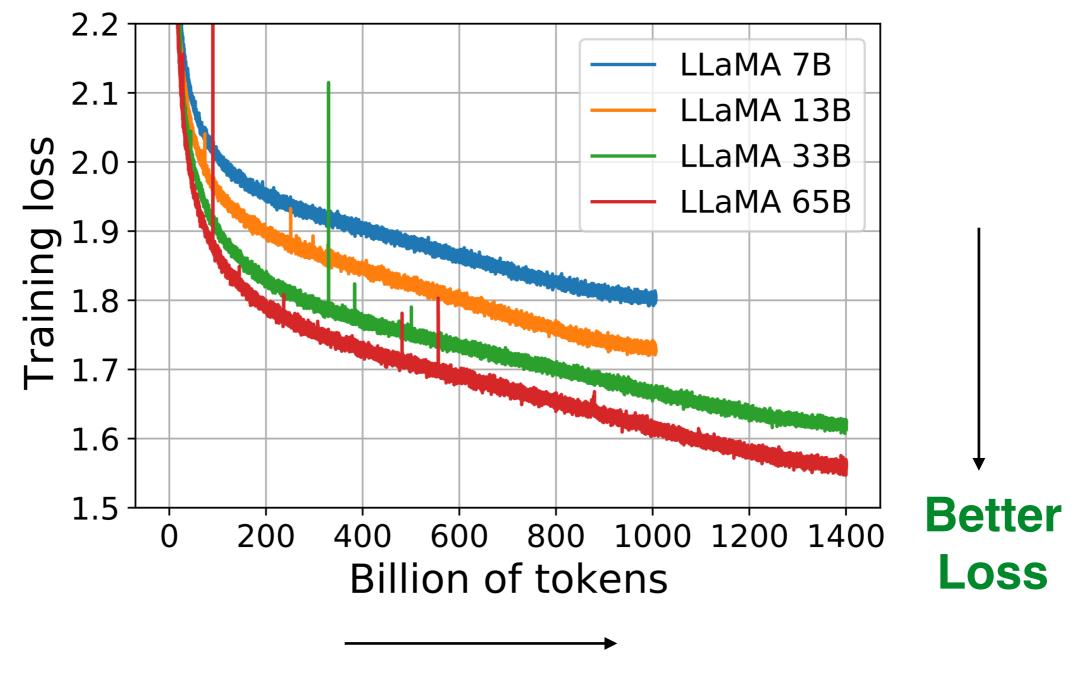


https://github.com/cmu-l3/anlp-fall2025-code/blob/main/ 06_pretraining/pretraining.ipynb

Today's lecture

Tasks

• Data: sources, quality, and quantity



More data

Data factors

- Quantity: How much data do I have?
- Quality: Is it beneficial for training?
- Coverage: Does the data cover the domain(s) I care about, and in the right proportions?

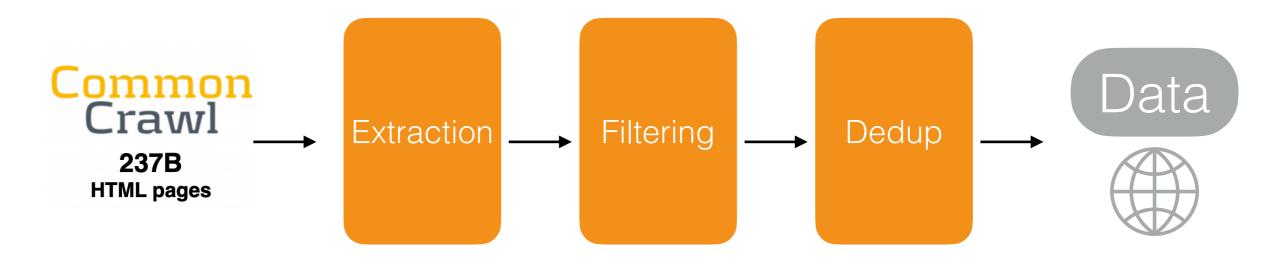
Data quantities

	Tokens of training data	
Llama 1	1.4 trillion	
Llama 2	1.8 trillion	
Llama 3	15 trillion	
Deepseek 3	15 trillion	

Wikipedia: < 10 billion

Web data: common crawl

- Large snapshots of web pages.
 - Extraction: HTML to text
 - Filtering: filter out unwanted pages
 - Deduplication: many duplicate web pages



Quality: Extraction

- Extraction: HTML to text
 - Remove boilerplate
 - Retain Latex, code, etc.

```
39

30

34

33

30

5

10

15

20

25

30

Training tokens (billions)
```

```
This paper concerns the quantity \leq xc = \text{https:}//s0.\text{wp.com}/ latex.php?latex=%7BM%28x%29..." alt="{M(x)}" />, defined as the length of the longest subsequence of the numbers from
```

```
Suppose I have a smooth map
[tex]f\colon \mathbb{R}^3
\longrightarrow S^2[/tex]. If I
identify [tex]\mathbb{R}^3[/tex]
with [tex]U_S = S^3 - \
{(0,0,1)\}[/tex] via
stereographic projection
```

Custom CommonCrawl Extraction Default

Penedotetial 2024
{\displaystyle \mathrm {MA}}
={\frac{f_{0}}{f_{E}}}}
</annotation>
</semantics>
</math>

Image Equations

Delimited Math

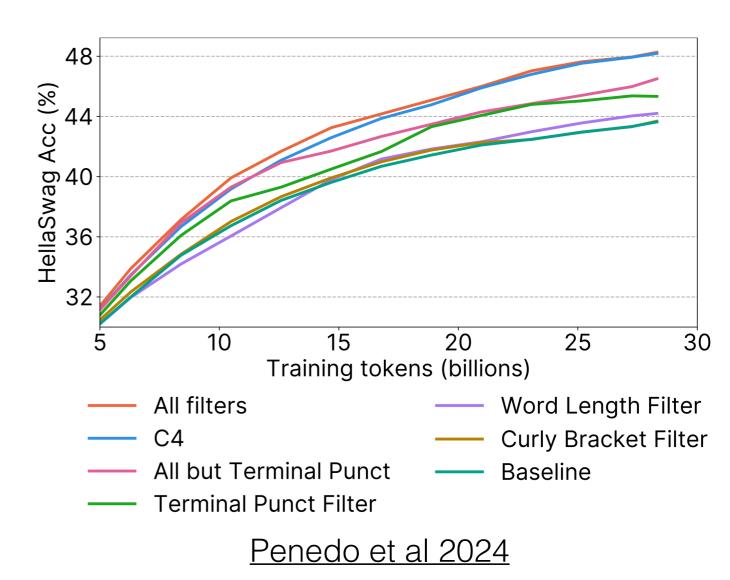
Special Tags

Paster et al 2023

Quality: Filtering

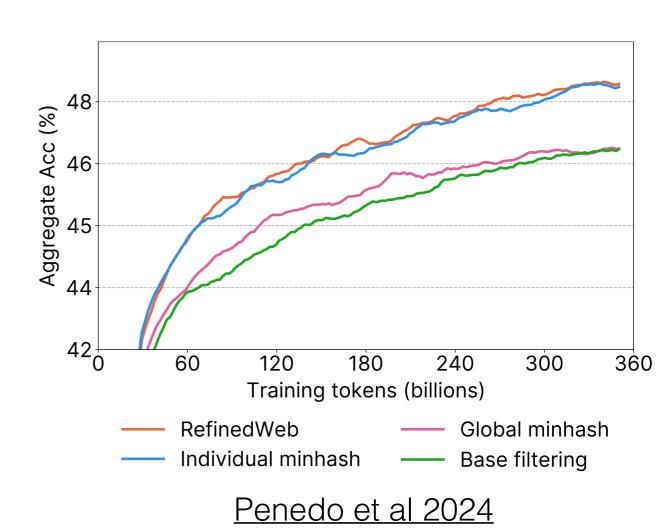
- Filter out unwanted text
 - Language filter
 - Repetitions
 - Too many short lines

•



Quality: Deduplication

- Remove duplicate content
 - Fuzzy strategy: minhash
 - Too much deduplication can be harmful
 - [Penedo et al 2024]:
 Deduplicate per-snapshot rather than globally



Example (Dolma)

```
added 2023-04-11T09:57:03.044571+00:00
attributes {'random_number_v1__random_number_v1__random': [[0, 9626, 0.11918]]}
created 2020-01-17T12:48:23Z
id <a href="http://250news.theexplorationplace.com/www.250news.com/65595.html">http://250news.theexplorationplace.com/www.250news.com/65595.html</a>
metadata {'bucket': 'head', 'cc_segment': 'crawl-data/CC-MAIN-2020-05/segments/1
source common-crawl
text Prince George, B.C.- Construction of the new RiverBend Seniors housing proj
The $33 million dollar project was first presented to Mayor and Council in 2013
Hall and key members of the City Staff, arranged to meet with Quinn in Kamloops
"This project comes at the perfect time for us" says Gwen Norheim. She and her h
Quinn says they did make an interesting discovery when they started construction
That's it, big smiles Shirley and Mike... there is an election coming.
This is an excellent and well needed project!
If the NDP was in power (god forbid) and it was NDP MLA's in the picture, you wo
Go ahead and deny it if you want, but we know better!
What we do know with the liberals is they are always raising fees and medical co
grow up galt.
```

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/ 06_pretraining/pretraining.ipynb

Data factors

- Quantity: How much data do I have?
- Quality: Is it beneficial for training?
- Coverage: Does the data cover the domain(s) I care about, and in the right proportions?

Coverage

- The data determines the data distribution
 - And hence the model, $p_{ heta}pprox p_{data}$
- Web data ≠ math data
- Web data ≠ educational data
- Web data ≠ code data

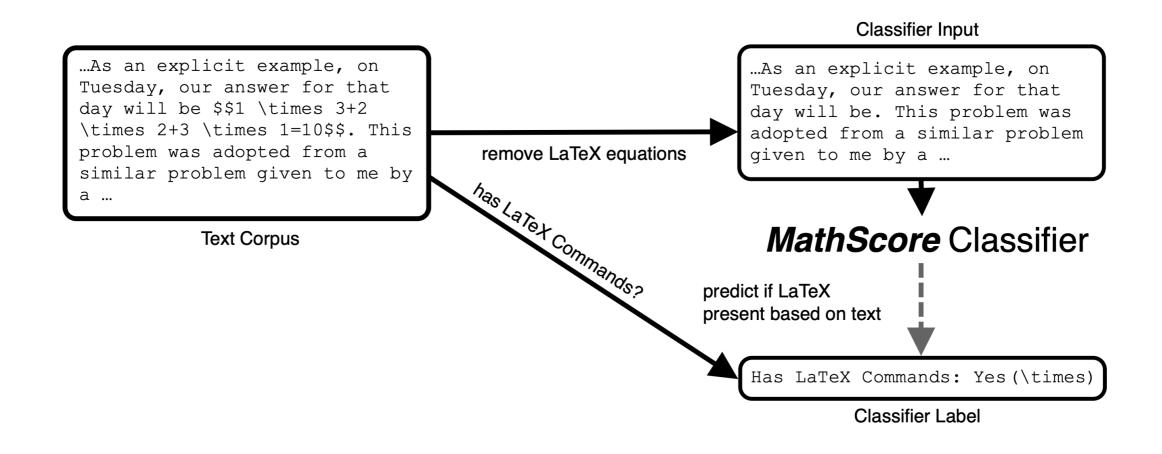
•

Approach: classifier filtering

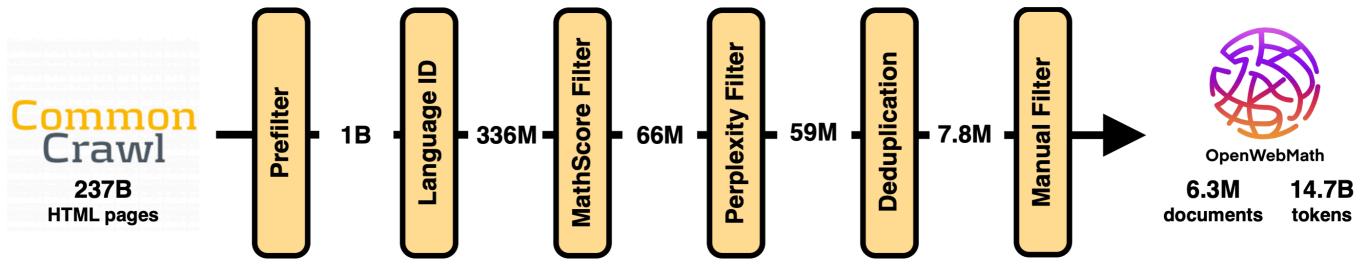
- Train a classifier to detect desired data
- Use it to filter out undesired data

Approach: classifier filtering

- Example: OpenWebMath [Paster et al 2023]
 - MathScore classifier detects math content



- Example: OpenWebMath [Paster et al 2023]
 - MathScore classifier detects math content

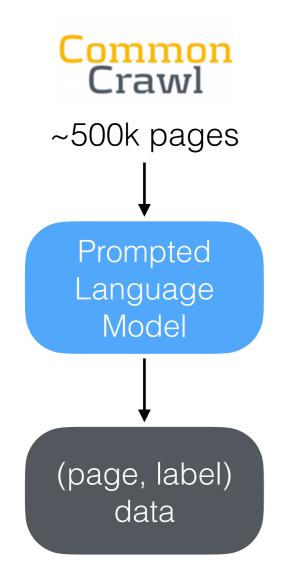


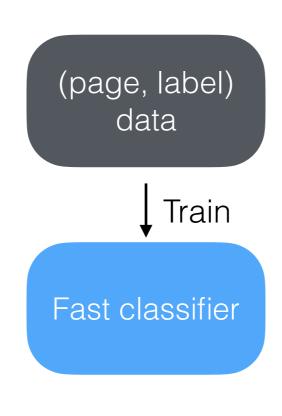
• Example: OpenWebMath [Paster et al 2023]

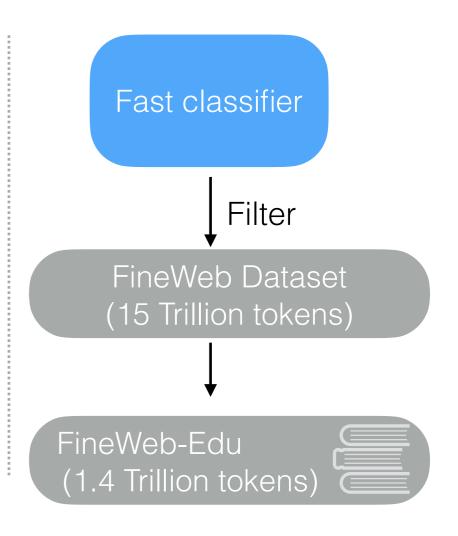
Domain	# Characters	% Characters
stackexchange.com	4,655,132,784	9.55%
nature.com	1,529,935,838	3.14%
wordpress.com	1,294,166,938	2.66%
physicsforums.com	1,160,137,919	2.38%
github.io	725,689,722	1.49%
zbmath.org	620,019,503	1.27%
wikipedia.org	618,024,754	1.27%
groundai.com	545,214,990	1.12%
blogspot.com	520,392,333	1.07%
mathoverflow.net	499,102,560	1.02%

https://huggingface.co/datasets/open-web-math/open-web-math

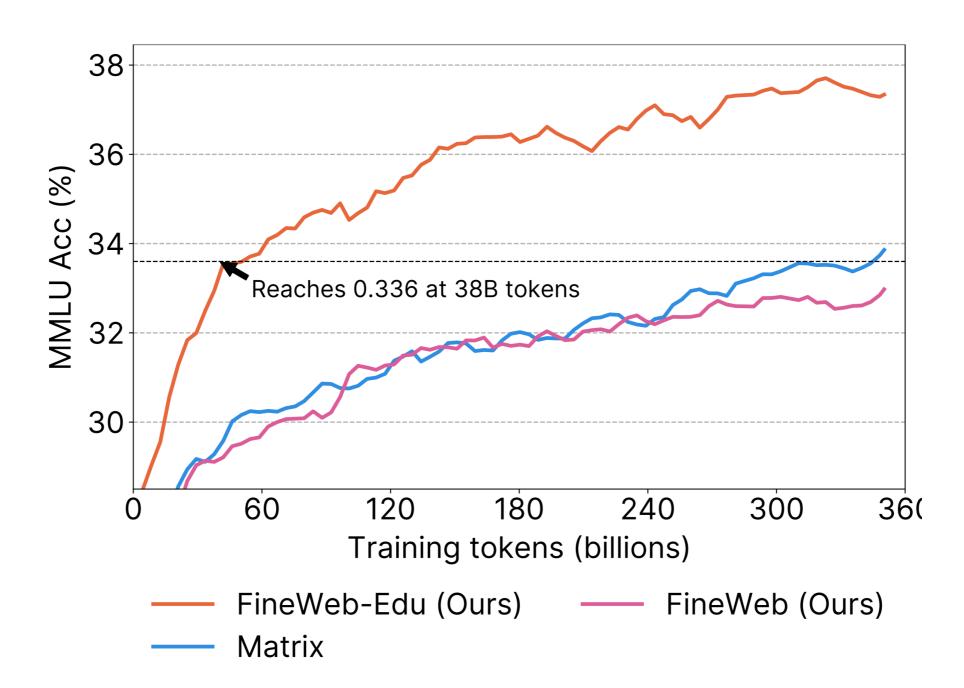
- Example: FineWeb-Edu [Penedo et al 2024]
 - Classifier to classify pages as "educational"







• Example: **FineWeb-Edu** [Penedo et al 2024]



Mixtures

 In practice, training data is a mixture of different sources

Source	Туре	Tokens
	Pretraining ◆ OLM	o 2 1124 Mix
DCLM-Baseline	Web pages	$3.71\mathrm{T}$
StarCoder filtered version from OLMoE Mix	Code	83.0B
peS2o from Dolma 1.7	Academic papers	58.6B
arXiv	STEM papers	20.8B
${\bf OpenWebMath}$	Math web pages	12.2B
Algebraic Stack	Math proofs code	11.8B
Wikipedia & Wikibooks from Dolma 1.7	Encyclopedic	3.7B
Total		3.90T

Recap

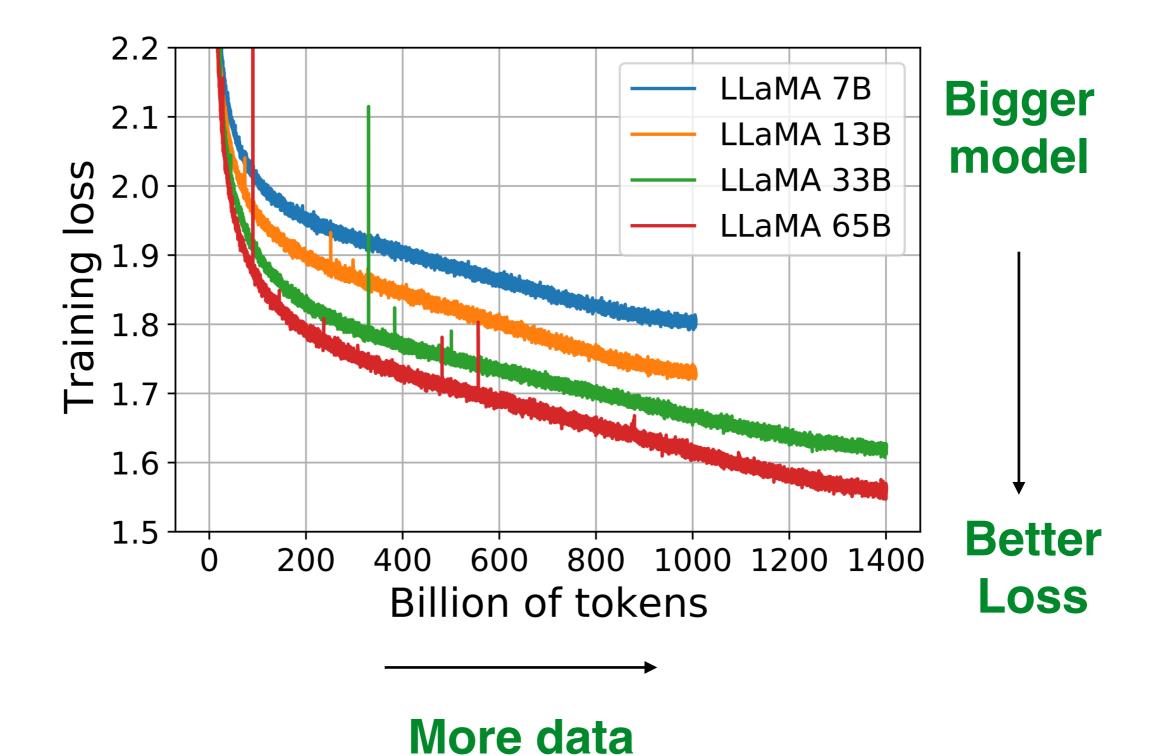
- Web data: large quantities of data
 - Extract, filter, deduplicate to improve quality
 - Filter to cover desired domain(s)
- Mix together web data and other sources to make a pre-training dataset

Recent examples

	Year	Domain	Tokens
FineWeb	2024	Web	15 trillion
RedPajama v2	2024	Web	30 trillion
Dolma	2024	Mix	3 trillion
OLMO2 Mix	2025	Mix	4 trillion
OpenWebMath	2023	Math web pages	15 billion
AlgebraicStack	2023	Math code	11 billion
FineWeb-Edu	2024	Educational (middle-school)	1.4 trillion

Today's lecture

- Tasks
- Data
- Thinking about pretraining
 - Tokens, model size, compute
 - Scaling laws



Pretraining and compute

- Goal: get a better pretrained model by "adding more compute"
 - "The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately the most effective, and by a large margin."
 - The Bitter Lesson, Richard Sutton 2019

What is compute?

- We spend compute by performing forward and backward passes on training sequences
- An approximation for transformer language models:

 $C \approx 6ND$

N: number of model parameters

D: number of tokens

C: compute; floating point operations (FLOPs)

What is compute?

- We spend compute by performing forward and backward passes on training sequences
- For example, Llama 2:

$$C \approx 6 \times 7$$
 billion $\times 2$ trillion

$$= 8.4 \times 10^{22}$$
FLOPs

N: number of model parameters

D: number of tokens

C: compute; floating point operations (FLOPs)

What is compute?

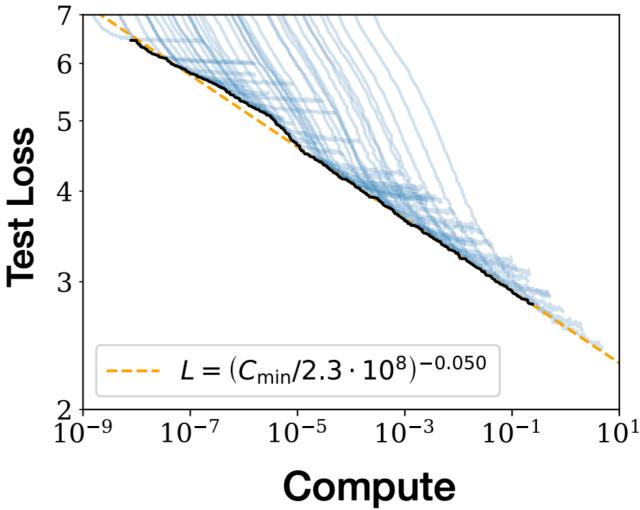
 We spend compute by performing forward and backward passes on training sequences

Increase compute:

- increase the **number of parameters** ($\uparrow N$)
- train on more tokens ($\uparrow D$)

Scaling laws

 Observed relationships between a variable (e.g., amount of compute) and loss



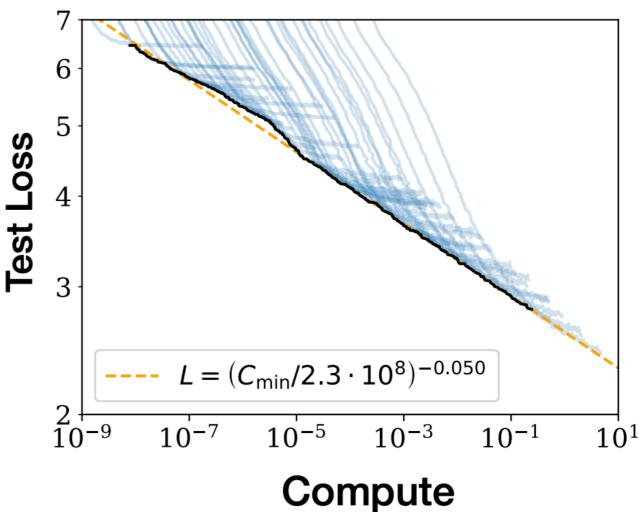
PF-days non-embedd

PF-days, non-embedding

Scaling laws

Basic idea:

- Train models of different sizes and numbers of tokens
- Plot loss at each step of training [light blue]
- Pick minimum loss at each amount of compute [black]
- Run linear regression on the resulting (loss, compute) pairs [orange]

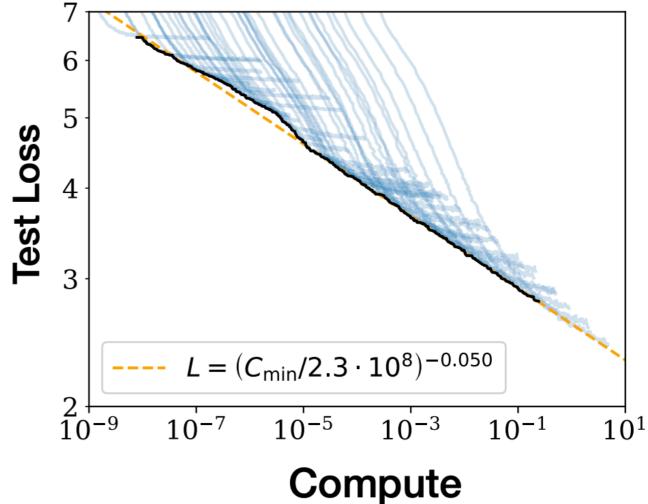


PF-days, non-embedding

Scaling laws

Terminology:

- Compute optimal: black
- Scaling law: orange
 - E.g. $L(C) \propto 1/C^{0.05}$



PF-days, non-embedding

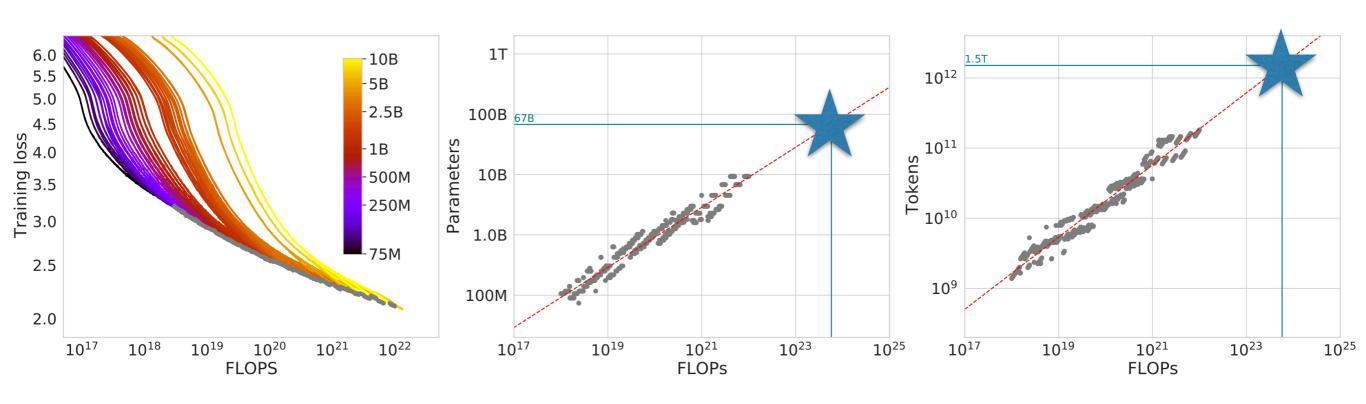
Recap

- We can think of pre-training in terms of *compute*, which is determined by *model size* and *number of tokens*
- Scaling laws are observed relationships between a variable (e.g., compute) and loss

Using scaling laws

- Scaling laws are also used to choose hyper parameters
- Basic idea:
 - Run many experiments at a small scale
 - Use a scaling law to estimate the best hyper parameter for a large-scale model / training run

Example: choose model size and # of tokens

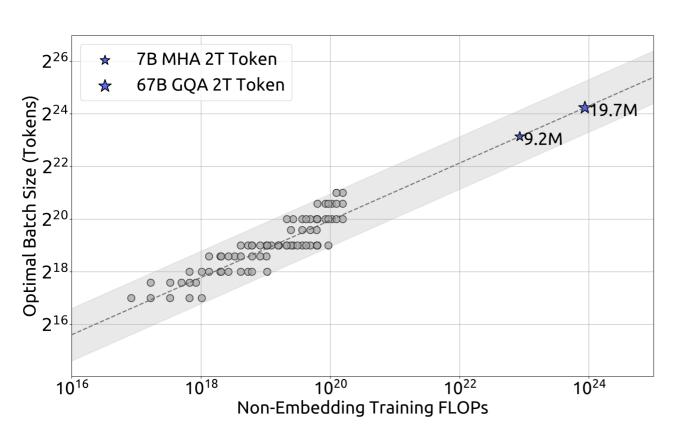


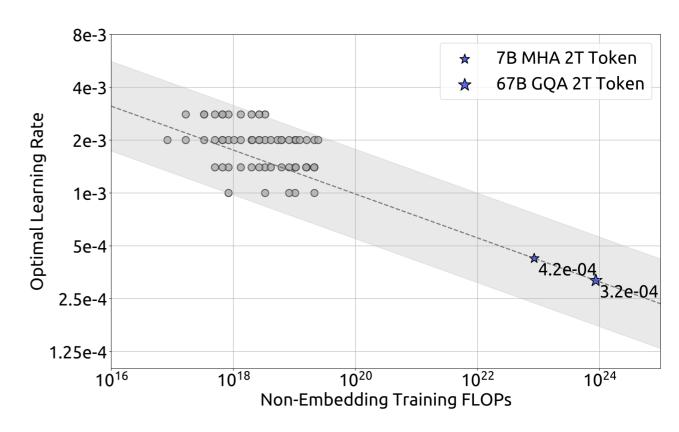
Run experiments

Fit a line and predict optimal model size

Fit a line and predict optimal # of tokens

Example: choose batch size, learning rate





Optimal batch size

Optimal learning rate

Today's lecture

- Pretraining tasks
 - Masked language modeling
 - Autoregressive language modeling
- Pretraining data: sources, quality, and quantity
- Thinking about pretraining
 - Tokens, model size, compute
 - Scaling laws

Thank you