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Recap
• Classification, language modeling, sequence 

architectures 

• So far: 

• Train from scratch 

• 1 model, 1 task 

• Today: 

• Pretrain a single model, adapt it to many tasks



Basic idea

Data Pre-train Base 
Model

Adapt
Sentiment analysis

Translation

Dialogue

Instruction following

Problem solving

…



Adaptation: prompting

Base 
Model

TranslationPrompt

Example: 
“Translate this sentence into English:  

この映画が嫌い”

+

Prompt

Prompt

Prompt

Sentiment analysis

Instruction following

Problem solving

…

[Lecture 7]



Adaptation: fine-tune

Base 
Model

Task 
Data

Fine-tune
Translation

Fine-tuned 
Model

Instruction following

Fine-tuned 
Model

…
Example:  

(Japanese, English)  
paired sentences

+

[Lecture 8]



Why pre-train?
• Transfer learning: take “knowledge” from one task 

and apply it to another task 

• Less task data: use less data to reach a given 
level of performance 

• Better task performance: reach higher 
performance than training from scratch 

• One model, multiple tasks: convenient, 
amortizes cost, a starting point for many uses, …



Major factors

• Pre-trained models have names like BERT, GPT-3, 
Llama, Deepseek-v3, … 

• Each model is influenced by 4 major factors: 
• Architecture: neural network architecture 
• Task: what the model predicts (e.g. next-token) 
• Data: the data used to train the model 
• Hyper-parameters: e.g. learning rate, batch size



Today’s lecture
• Tasks 

• Masked language modeling objective 

• Autoregressive language modeling objective 

• Data: sources, quality, and quantity 

• Thinking about pretraining 

• Tokens, model size, compute 

• Scaling laws



Masked Language Modeling
• Predict masked tokens  given visible tokens  

 

• View as denoising: corrupt   reconstruct  

• Maximizes pseudo-likelihood

xM x¬M

ℒMLM(θ; D) = −
1

|D | ∑
x∈D

𝔼M∼corrupt(x) ∑
t∈M

log pθ(xt |x¬M)

x → x

The cat [M] on [M] mat sat the



Example: BERT 
(Devlin et al. 2018)

• Model: Transformer 
 
 
 
 
 
 

• Data: BooksCorpus + English Wikipedia 
• Task: Masked language modeling



Example: BERT 
(Devlin et al. 2018)

Predict a masked token 

• 80%: substitute input token with [MASK] 

• 10%: substitute input token with random token 

• 10%: no change

MASK MASK



Adapting a masked language model

• Add an output layer that maps a 
hidden vector to scores 

• Fine-tune the weights (either just W, 
or all weights). Example: 

• Data: (movie review, {positive, 
neutral, negative}) 

• Initialize the model with BERT 

• Minimize cross-entropy loss with 
gradient-based optimization

softmax

W



Today’s lecture

• Tasks 

• Masked language modeling 

• Autoregressive language modeling



Autoregressive language modeling
• Predict next token  given previous tokens  

 

 

• Maximizes likelihood 

• Fits a data distribution  

• Learns to compress data generated by 

xt x<t

ℒMLE(θ; D) = −
1

|D | ∑
x∈D

|x|

∑
t=1

log pθ(xt |x<t)

p*

p*

The cat sat



min
θ

DKL(p* | |pθ) = min
θ

− ∑
x∈𝒳

p*(x)log
pθ(x)
p*(x)

≡ min
θ

− ∑
x∈𝒳

p*(x)log pθ(x) + const

= min
θ

− 𝔼x∼p*
log pθ(x)

≈ min
θ

−
1

|D | ∑
x∈D

log pθ(x)

≡ max
θ ∑

x∈D

log pθ(x)

Maximum likelihood: fits a data distribution

• Makes  match the data distribution  (  for brevity)pθ pdata p*

Dataset: 
samples from p*

Maximum 
likelihood!



Maximum likelihood: learns to compress
• Goal: compress data from a distribution  into a binary code,  

• Arithmetic coding turns a distribution  into a code  

• Minimum expected code length is the entropy  
[Shannon 1948]:  

               

• When we use a model , the expected code length is the cross-entropy: 

           

           

To achieve the minimum expected code length , minimize KL divergence via MLE

p* c(x1:n) → {0,1}*

p c( ⋅ )

H(p*) = 𝔼x∼p*
[ −

N

∑
i=1

log2 p*(xi |x<i)]

pθ

H(p*, pθ) = 𝔼x∼p[ −
N

∑
i=1

log2 pθ(xi |x<i)]

H(p*, pθ) = H(p*) + KL(p*∥pθ)

H(p*)

Figure:  [Deletang et al  2024]



Key factors

• Things we can change: 

• : model architecture and size 

• : training data 

• Optimization hyper-parameters, e.g. learning rate, batch size

θ

D

ℒMLE(θ; D) = − 𝔼x∼D

|x|

∑
t=1

log pθ(xt |x<t)



Example: GPT-2

• Model: Transformer (1.5B) 

• Data: WebText (millions of web pages)



Example: Llama
• Model: Transformer, {6.7B, 13B, 32B, 65B} 

• Data: 1.4 trillion tokens, sources:



Llama: training loss



Evaluating a model
• Loss (training, validation, test) 

• Diagnose training trajectory, compare models in 
the same family 

• Few-shot prompting 

• Fine-tuning



Llama: few-shot performance trajectory



Practical tools: HuggingFace

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/
06_pretraining/pretraining.ipynb 

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/06_pretraining/pretraining.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/06_pretraining/pretraining.ipynb


Today’s lecture

• Tasks 

• Data: sources, quality, and quantity



More data

Better  
Loss



Data factors

• Quantity: How much data do I have? 

• Quality: Is it beneficial for training? 

• Coverage: Does the data cover the domain(s) I 
care about, and in the right proportions?



Data quantities
Tokens of training data

Llama 1 1.4 trillion

Llama 2 1.8 trillion

Llama 3 15 trillion

Deepseek 3 15 trillion

Wikipedia: < 10 billion



Web data: common crawl
• Large snapshots of web pages. 

• Extraction: HTML to text 

• Filtering: filter out unwanted pages 

• Deduplication: many duplicate web pages

Extraction Filtering Dedup
Data



Quality: Extraction
• Extraction: HTML to text 

• Remove boilerplate 

• Retain Latex, code, etc.

Paster et al 2023

Custom 
Extraction

CommonCrawl  
Default

Penedo et al 2024

https://arxiv.org/pdf/2310.06786
https://arxiv.org/pdf/2406.17557


Quality: Filtering
• Filter out unwanted text 

• Language filter 

• Repetitions 

• Too many short lines 

• …
Penedo et al 2024

https://arxiv.org/pdf/2406.17557


Quality: Deduplication
• Remove duplicate content 

• Fuzzy strategy: minhash 

• Too much deduplication 
can be harmful 

• [Penedo et al 2024]: 
Deduplicate per-snapshot 
rather than globally

Penedo et al 2024

https://arxiv.org/pdf/2406.17557


Example (Dolma)

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/
06_pretraining/pretraining.ipynb 

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/06_pretraining/pretraining.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/06_pretraining/pretraining.ipynb


Data factors

• Quantity: How much data do I have? 

• Quality: Is it beneficial for training? 

• Coverage: Does the data cover the domain(s) I 
care about, and in the right proportions?



Coverage
• The data determines the data distribution 

• And hence the model,  

• Web data  math data 

• Web data  educational data 

• Web data  code data 

• …

pθ ≈ pdata

≠

≠

≠



Approach: classifier filtering
• Train a classifier to detect desired data 

• Use it to filter out undesired data

Classifier



Approach: classifier filtering
• Example: OpenWebMath [Paster et al 2023] 

• MathScore classifier detects math content



Approach: classifier filtering
• Example: OpenWebMath [Paster et al 2023] 

• MathScore classifier detects math content

https://huggingface.co/datasets/open-web-math/open-web-math 

https://huggingface.co/datasets/open-web-math/open-web-math


Approach: classifier filtering
• Example: OpenWebMath [Paster et al 2023]

https://huggingface.co/datasets/open-web-math/open-web-math 

https://huggingface.co/datasets/open-web-math/open-web-math


Approach: classifier filtering
• Example: FineWeb-Edu [Penedo et al 2024] 

• Classifier to classify pages as “educational”

(page, label) 
data

Fast classifier

TrainPrompted 
Language 

Model

~500k pages

(page, label) 
data

FineWeb-Edu  
(1.4 Trillion tokens)

Fast classifier

Filter

FineWeb Dataset 
(15 Trillion tokens)



Approach: classifier filtering
• Example: FineWeb-Edu [Penedo et al 2024]



Mixtures
• In practice, training data is a mixture of 

different sources



Recap
• Web data: large quantities of data 

• Extract, filter, deduplicate to improve quality 

• Filter to cover desired domain(s) 

• Mix together web data and other sources to 
make a pre-training dataset



Recent examples
Year Domain Tokens

FineWeb 2024 Web 15 trillion

RedPajama v2 2024 Web 30 trillion

Dolma 2024 Mix 3 trillion

OLMO2 Mix 2025 Mix 4 trillion

OpenWebMath 2023 Math web pages 15 billion

AlgebraicStack 2023 Math code 11 billion

FineWeb-Edu 2024 Educational 
(middle-school)

1.4 trillion



Today’s lecture

• Tasks 

• Data 

• Thinking about pretraining

• Tokens, model size, compute 

• Scaling laws



More data

Better  
Loss

Bigger 
model



Pretraining and compute
• Goal: get a better pretrained model by “adding 

more compute” 

• “The biggest lesson that can be read from 70 
years of AI research is that general methods that 
leverage computation are ultimately the most 
effective, and by a large margin.” 
 
- The Bitter Lesson, Richard Sutton 2019



What is compute?
• We spend compute by performing forward and 

backward passes on training sequences 

• An approximation for transformer language models: 

 
 

: number of model parameters 
: number of tokens 
: compute; floating point operations (FLOPs)

C ≈ 6ND

N
D
C

Approximation from [Kaplan et al 2020]



What is compute?
• We spend compute by performing forward and 

backward passes on training sequences 

• For example, Llama 2: 

 

 
 

: number of model parameters 
: number of tokens 
: compute; floating point operations (FLOPs)

C ≈ 6 × 7 billion × 2 trillion

= 8.4 × 1022FLOPs

N
D
C



What is compute?
• We spend compute by performing forward and 

backward passes on training sequences 

• Increase compute:

• increase the number of parameters ( )  

• train on more tokens 

↑ N

( ↑ D)



Scaling laws

• Observed relationships 
between a variable 
(e.g., amount of 
compute) and loss

Scaling Laws for Neural Language Models

https://arxiv.org/abs/2001.08361


Scaling laws

• Basic idea: 

• Train models of different 
sizes and numbers of 
tokens 

• Plot loss at each step of 
training [light blue] 

• Pick minimum loss at each 
amount of compute [black] 

• Run linear regression on the 
resulting (loss, compute) 
pairs [orange]



Scaling laws

Terminology:

• Compute optimal: black

• Scaling law: orange

• E.g. L(C) ∝ 1/C0.05



Recap

• We can think of pre-training in terms of compute, which is 
determined by model size and number of tokens 

• Scaling laws are observed relationships between a variable 
(e.g., compute) and loss



Using scaling laws

• Scaling laws are also used to choose hyper parameters 

• Basic idea: 

• Run many experiments at a small scale 

• Use a scaling law to estimate the best hyper parameter for a 
large-scale model / training run



Example: choose model size and # of tokens

Run experiments Fit a line and 
predict optimal  

model size

Fit a line and 
predict optimal  

# of tokens

Training Compute-Optimal Large Language Models

https://arxiv.org/abs/2203.15556


Example: choose batch size, learning rate

Optimal batch size Optimal learning rate

DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

https://arxiv.org/abs/2401.02954


Today’s lecture
• Pretraining tasks 

• Masked language modeling 

• Autoregressive language modeling 

• Pretraining data: sources, quality, and quantity 

• Thinking about pretraining 

• Tokens, model size, compute 

• Scaling laws



Thank you


