
CS11-711 Advanced NLP

Pretraining
Sean Welleck

https://cmu-l3.github.io/anlp-fall2025/

Slides adapted from Graham Neubig’s Fall 2024 course

https://github.com/cmu-l3/anlp-fall2025-code

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

Recap
• Classification, language modeling, sequence

architectures

• So far:

• Train from scratch

• 1 model, 1 task

• Today:

• Pretrain a single model, adapt it to many tasks

Basic idea

Data Pre-train Base
Model

Adapt
Sentiment analysis

Translation

Dialogue

Instruction following

Problem solving

…

Adaptation: prompting

Base
Model

TranslationPrompt

Example:
“Translate this sentence into English:

この映画が嫌い”

+

Prompt

Prompt

Prompt

Sentiment analysis

Instruction following

Problem solving

…

[Lecture 7]

Adaptation: fine-tune

Base
Model

Task
Data

Fine-tune
Translation

Fine-tuned
Model

Instruction following

Fine-tuned
Model

…
Example:

(Japanese, English)
paired sentences

+

[Lecture 8]

Why pre-train?
• Transfer learning: take “knowledge” from one task

and apply it to another task

• Less task data: use less data to reach a given
level of performance

• Better task performance: reach higher
performance than training from scratch

• One model, multiple tasks: convenient,
amortizes cost, a starting point for many uses, …

Major factors

• Pre-trained models have names like BERT, GPT-3,
Llama, Deepseek-v3, …

• Each model is influenced by 4 major factors:
• Architecture: neural network architecture
• Task: what the model predicts (e.g. next-token)
• Data: the data used to train the model
• Hyper-parameters: e.g. learning rate, batch size

Today’s lecture
• Tasks

• Masked language modeling objective

• Autoregressive language modeling objective

• Data: sources, quality, and quantity

• Thinking about pretraining

• Tokens, model size, compute

• Scaling laws

Masked Language Modeling
• Predict masked tokens given visible tokens

• View as denoising: corrupt reconstruct

• Maximizes pseudo-likelihood

xM x¬M

ℒMLM(θ; D) = −
1

|D | ∑
x∈D

𝔼M∼corrupt(x) ∑
t∈M

log pθ(xt |x¬M)

x → x

The cat [M] on [M] mat sat the

Example: BERT
(Devlin et al. 2018)

• Model: Transformer

• Data: BooksCorpus + English Wikipedia
• Task: Masked language modeling

Example: BERT
(Devlin et al. 2018)

Predict a masked token

• 80%: substitute input token with [MASK]

• 10%: substitute input token with random token

• 10%: no change

MASK MASK

Adapting a masked language model

• Add an output layer that maps a
hidden vector to scores

• Fine-tune the weights (either just W,
or all weights). Example:

• Data: (movie review, {positive,
neutral, negative})

• Initialize the model with BERT

• Minimize cross-entropy loss with
gradient-based optimization

softmax

W

Today’s lecture

• Tasks

• Masked language modeling

• Autoregressive language modeling

Autoregressive language modeling
• Predict next token given previous tokens

• Maximizes likelihood

• Fits a data distribution

• Learns to compress data generated by

xt x<t

ℒMLE(θ; D) = −
1

|D | ∑
x∈D

|x|

∑
t=1

log pθ(xt |x<t)

p*

p*

The cat sat

min
θ

DKL(p* | |pθ) = min
θ

− ∑
x∈𝒳

p*(x)log
pθ(x)
p*(x)

≡ min
θ

− ∑
x∈𝒳

p*(x)log pθ(x) + const

= min
θ

− 𝔼x∼p*
log pθ(x)

≈ min
θ

−
1

|D | ∑
x∈D

log pθ(x)

≡ max
θ ∑

x∈D

log pθ(x)

Maximum likelihood: fits a data distribution

• Makes match the data distribution (for brevity)pθ pdata p*

Dataset:
samples from p*

Maximum
likelihood!

Maximum likelihood: learns to compress
• Goal: compress data from a distribution into a binary code,

• Arithmetic coding turns a distribution into a code

• Minimum expected code length is the entropy
[Shannon 1948]:

• When we use a model , the expected code length is the cross-entropy:

To achieve the minimum expected code length , minimize KL divergence via MLE

p* c(x1:n) → {0,1}*

p c(⋅)

H(p*) = 𝔼x∼p*
[−

N

∑
i=1

log2 p*(xi |x<i)]

pθ

H(p*, pθ) = 𝔼x∼p[−
N

∑
i=1

log2 pθ(xi |x<i)]

H(p*, pθ) = H(p*) + KL(p*∥pθ)

H(p*)

Figure: [Deletang et al 2024]

Key factors

• Things we can change:

• : model architecture and size

• : training data

• Optimization hyper-parameters, e.g. learning rate, batch size

θ

D

ℒMLE(θ; D) = − 𝔼x∼D

|x|

∑
t=1

log pθ(xt |x<t)

Example: GPT-2

• Model: Transformer (1.5B)

• Data: WebText (millions of web pages)

Example: Llama
• Model: Transformer, {6.7B, 13B, 32B, 65B}

• Data: 1.4 trillion tokens, sources:

Llama: training loss

Evaluating a model
• Loss (training, validation, test)

• Diagnose training trajectory, compare models in
the same family

• Few-shot prompting

• Fine-tuning

Llama: few-shot performance trajectory

Practical tools: HuggingFace

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/
06_pretraining/pretraining.ipynb

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/06_pretraining/pretraining.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/06_pretraining/pretraining.ipynb

Today’s lecture

• Tasks

• Data: sources, quality, and quantity

More data

Better  
Loss

Data factors

• Quantity: How much data do I have?

• Quality: Is it beneficial for training?

• Coverage: Does the data cover the domain(s) I
care about, and in the right proportions?

Data quantities
Tokens of training data

Llama 1 1.4 trillion

Llama 2 1.8 trillion

Llama 3 15 trillion

Deepseek 3 15 trillion

Wikipedia: < 10 billion

Web data: common crawl
• Large snapshots of web pages.

• Extraction: HTML to text

• Filtering: filter out unwanted pages

• Deduplication: many duplicate web pages

Extraction Filtering Dedup
Data

Quality: Extraction
• Extraction: HTML to text

• Remove boilerplate

• Retain Latex, code, etc.

Paster et al 2023

Custom
Extraction

CommonCrawl
Default

Penedo et al 2024

https://arxiv.org/pdf/2310.06786
https://arxiv.org/pdf/2406.17557

Quality: Filtering
• Filter out unwanted text

• Language filter

• Repetitions

• Too many short lines

• …
Penedo et al 2024

https://arxiv.org/pdf/2406.17557

Quality: Deduplication
• Remove duplicate content

• Fuzzy strategy: minhash

• Too much deduplication
can be harmful

• [Penedo et al 2024]:
Deduplicate per-snapshot
rather than globally

Penedo et al 2024

https://arxiv.org/pdf/2406.17557

Example (Dolma)

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/
06_pretraining/pretraining.ipynb

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/06_pretraining/pretraining.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/06_pretraining/pretraining.ipynb

Data factors

• Quantity: How much data do I have?

• Quality: Is it beneficial for training?

• Coverage: Does the data cover the domain(s) I
care about, and in the right proportions?

Coverage
• The data determines the data distribution

• And hence the model,

• Web data math data

• Web data educational data

• Web data code data

• …

pθ ≈ pdata

≠

≠

≠

Approach: classifier filtering
• Train a classifier to detect desired data

• Use it to filter out undesired data

Classifier

Approach: classifier filtering
• Example: OpenWebMath [Paster et al 2023]

• MathScore classifier detects math content

Approach: classifier filtering
• Example: OpenWebMath [Paster et al 2023]

• MathScore classifier detects math content

https://huggingface.co/datasets/open-web-math/open-web-math

https://huggingface.co/datasets/open-web-math/open-web-math

Approach: classifier filtering
• Example: OpenWebMath [Paster et al 2023]

https://huggingface.co/datasets/open-web-math/open-web-math

https://huggingface.co/datasets/open-web-math/open-web-math

Approach: classifier filtering
• Example: FineWeb-Edu [Penedo et al 2024]

• Classifier to classify pages as “educational”

(page, label)
data

Fast classifier

TrainPrompted
Language

Model

~500k pages

(page, label)
data

FineWeb-Edu
(1.4 Trillion tokens)

Fast classifier

Filter

FineWeb Dataset
(15 Trillion tokens)

Approach: classifier filtering
• Example: FineWeb-Edu [Penedo et al 2024]

Mixtures
• In practice, training data is a mixture of

different sources

Recap
• Web data: large quantities of data

• Extract, filter, deduplicate to improve quality

• Filter to cover desired domain(s)

• Mix together web data and other sources to
make a pre-training dataset

Recent examples
Year Domain Tokens

FineWeb 2024 Web 15 trillion

RedPajama v2 2024 Web 30 trillion

Dolma 2024 Mix 3 trillion

OLMO2 Mix 2025 Mix 4 trillion

OpenWebMath 2023 Math web pages 15 billion

AlgebraicStack 2023 Math code 11 billion

FineWeb-Edu 2024 Educational
(middle-school)

1.4 trillion

Today’s lecture

• Tasks

• Data

• Thinking about pretraining

• Tokens, model size, compute

• Scaling laws

More data

Better  
Loss

Bigger
model

Pretraining and compute
• Goal: get a better pretrained model by “adding

more compute”

• “The biggest lesson that can be read from 70
years of AI research is that general methods that
leverage computation are ultimately the most
effective, and by a large margin.”

- The Bitter Lesson, Richard Sutton 2019

What is compute?
• We spend compute by performing forward and

backward passes on training sequences

• An approximation for transformer language models:

: number of model parameters
: number of tokens
: compute; floating point operations (FLOPs)

C ≈ 6ND

N
D
C

Approximation from [Kaplan et al 2020]

What is compute?
• We spend compute by performing forward and

backward passes on training sequences

• For example, Llama 2:

: number of model parameters
: number of tokens
: compute; floating point operations (FLOPs)

C ≈ 6 × 7 billion × 2 trillion

= 8.4 × 1022FLOPs

N
D
C

What is compute?
• We spend compute by performing forward and

backward passes on training sequences

• Increase compute:

• increase the number of parameters ()

• train on more tokens

↑ N

(↑ D)

Scaling laws

• Observed relationships
between a variable
(e.g., amount of
compute) and loss

Scaling Laws for Neural Language Models

https://arxiv.org/abs/2001.08361

Scaling laws

• Basic idea:

• Train models of different
sizes and numbers of
tokens

• Plot loss at each step of
training [light blue]

• Pick minimum loss at each
amount of compute [black]

• Run linear regression on the
resulting (loss, compute)
pairs [orange]

Scaling laws

Terminology:

• Compute optimal: black

• Scaling law: orange

• E.g. L(C) ∝ 1/C0.05

Recap

• We can think of pre-training in terms of compute, which is
determined by model size and number of tokens

• Scaling laws are observed relationships between a variable
(e.g., compute) and loss

Using scaling laws

• Scaling laws are also used to choose hyper parameters

• Basic idea:

• Run many experiments at a small scale

• Use a scaling law to estimate the best hyper parameter for a
large-scale model / training run

Example: choose model size and # of tokens

Run experiments Fit a line and
predict optimal

model size

Fit a line and
predict optimal

of tokens

Training Compute-Optimal Large Language Models

https://arxiv.org/abs/2203.15556

Example: choose batch size, learning rate

Optimal batch size Optimal learning rate

DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

https://arxiv.org/abs/2401.02954

Today’s lecture
• Pretraining tasks

• Masked language modeling

• Autoregressive language modeling

• Pretraining data: sources, quality, and quantity

• Thinking about pretraining

• Tokens, model size, compute

• Scaling laws

Thank you

