CS11-711 Advanced NLP Fine-Tuning

Sean Welleck

https://cmu-l3.github.io/anlp-fall2025/

https://github.com/cmu-l3/anlp-fall2025-code

Recap: Pre-training

Recap: prompting

Lecture 7

"Translate this sentence into English:

この映画が嫌い"

Base + Model

Prompt

Translation

Prompt

Sentiment analysis

Prompt

Instruction following

Prompt

Problem solving

Today: fine-tuning

Today's lecture

- Fine-tuning basics
- Instruction tuning
- Knowledge distillation

Fine-tuning

- Fine-tuning: continued gradient-based training of a pre-trained model
- Given pre-trained parameters θ_0 and data $D = \{(x, y)_n\}_{n=1}^N$, solve:

$$\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{(x,y) \sim D} \left[\mathcal{L}(f_{\theta}(x), y) \right]$$

+ techniques to prevent overfitting (e.g., regularization, dropout)

Example: classification

- Given: A sequence model $f_{\theta_0}(x_1,...,x_T) \rightarrow h_1,...,h_T$
 - θ_0 : pre-trained weights
- Data $D = \{(x, y)_n\}_{n=1}^N$
 - x: input text
 - $y \in \{1, 2, ..., K\}$ class label
- Add output head to last hidden state
 - $p_{\theta}(y \mid x) = \operatorname{softmax}(Wh + b)$
 - $W \in \mathbb{R}^{K \times d}, h \in \mathbb{R}^d, b \in \mathbb{R}^K$
- Loss: cross-entropy loss $(-\log p_{\theta}(y \mid x))$
- By default, update all parameters $\theta = (\theta_0, W, b)$

Code example

This notebook shows fine-tuning a language model with a classification head.

Task: Given a name, predict how many vowels (a, e, i, o, u) it contains.

```
data = open
print(f"Tot
data[1000:1
```

```
class LMClassifier(nn.Module):
    def __init__(self, base_model, num_classes=11):
        super().__init__()
        self.base_model = base_model
        self.num_classes = num_classes
        self.hidden_size = base_model.config.hidden_size
        self.classifier = nn.Linear(self.hidden_size, num_classes)
    def _last_token_hidden(self, hidden_states, attention_mask):
        # Find the position of the last non-padding token
        if attention mask is not None:
            seq_lengths = attention_mask.sum(dim=1) - 1
            batch_size = hidden_states.size(0)
            last_hidden = hidden_states[torch.arange(batch_size), seq_lengths]
        else:
            last_hidden = hidden_states[:, -1, :] # Last token
        return last hidden
   def forward(self, input_ids, attention_mask=None):
        outputs = self.base_model(
            input_ids,
            attention_mask=attention_mask,
            output_hidden_states=True
        hs = outputs.hidden_states[-1] # (batch_size, seq_len, hidden_size)
        h_last = self._last_token_hidden(hs, attention_mask)
        logits = self.classifier(h_last)
        return logits
```

Language model fine-tuning

- Given: A language model $p_{\theta_0}(y \mid x)$
- Data $D = \{(x, y)_n\}_{n=1}^N$
 - x: input text
 - y: output text
- Loss: cross-entropy loss

$$\mathcal{L}_{MLE} = -\sum_{t=1}^{I} \log p_{\theta}(y_t | x, y_{< t})$$

Code example

```
This notebook demonstrates fine-tuning a language model for a generation task.

Task: Given a name, generate its reverse (e.g., emma → amme)

data = open('names.txt').read().splitlines()
print(f"Total names: {len(data)}")
data[1000:1010]

✓ 0.0s

Total names: 32033
```


Reverse the name: emma. Answer: 0.4812529443310765.

Reverse the name: noah. Answer: it is only a person of that name

000B. Boole, 1

Reverse the name: olivia. Answer: a. The person is named Olivia.

```
After fine-tuning:
                       (expected: amme
emma
          → amme
noah
          → haon
                       (expected: haon
olivia
          → aivilo
                      (expected: aivilo
liam
          → mail
                       (expected: mail
sophia
          → aihpos
                      (expected: aihpos
                      (expected: nosam
mason
          → nosam
                                           ) /
isabella → allebasi (expected: allebasi ) ✓
william
          → luottiw
                       (expected: mailliw
                                           ) x
mia
                       (expected: aim
          → aim
                                           ) /
                       (expected: semaj
james
          → semaj
                                           ) /
```

Library code example

```
for epoch in range(starting_epoch, args.num_train_epochs):
615
                model.train()
616
                if args.with_tracking:
617
                    total loss = 0
618
                if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
                    # We skip the first `n` batches in the dataloader when resuming from a checkpoint
620
                    active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
621
                else:
622
                    active_dataloader = train_dataloader
623
                for step, batch in enumerate(active_dataloader):
624
                    with accelerator.accumulate(model):
625
                        outputs = model(**batch)
626
                        loss = outputs.loss
627
                        # We keep track of the loss at each epoch
628
                        if args.with tracking:
629
                            total_loss += loss.detach().float()
630
                        accelerator.backward(loss)
                        optimizer.step()
631
                        lr_scheduler.step()
                        optimizer.zero grad()
635
                    # Checks if the accelerator has performed an optimization step behind the scenes
636
                    if accelerator.sync gradients:
                        progress_bar.update(1)
638
                        completed steps += 1
639
640
                    if isinstance(checkpointing_steps, int):
641
                        if completed_steps % checkpointing_steps == 0 and accelerator.sync_gradients:
642
                            output_dir = f"step_{completed_steps}"
643
                            if args.output_dir is not None:
                                output_dir = os.path.join(args.output_dir, output_dir)
645
                            accelerator.save_state(output_dir)
646
                    if completed_steps >= args.max_train_steps:
647
                        break
```

Should I fine-tune all parameters?

- Option 1: Update only the output head (W, b)
 - Cheap: only $K \times d + K$ parameters
 - Assumes that the pre-trained representations are good, e.g. linearly separate the labels
- Option 2: Update all parameters
 - Expensive: $|\theta|$ parameters (e.g., 1M, 1B, 100B, ...)
 - Changes the representations
 - May lead to overfitting
- Option 3: Update a small number of parameters inside the model
 - Cheaper: $<<|\theta|$ parameters
 - Can change the representations
 - "Parameter-efficient fine-tuning (PEFT)" methods

Example: Low-Rank Adaptation (LoRA) [Hu et al 2021]

• Given weights $W_0 \in \mathbb{R}^{d \times d'}$, introduce new weights A, B:

$$W_0 + \underline{BA}$$
 ΔW

where $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times d'}$, $r \ll \min(d, k)$

- Only update B and A during fine-tuning.
- After fine-tuning, simply use the weight matrix $W = W_0 + \Delta W$
- Scale ΔW by $\frac{\alpha}{r}$
- Apply to W_q and W_v in the attention layers

Effects of fine-tuning

Starting from a pre-trained model is data-efficient

Howard & Ruder 2018

Effects of fine-tuning

- "Narrows" the distribution
 - Pre-training: minimize $D_{\mathit{KL}}(p_{\mathit{data}},p_{\theta})$
 - Fine-tuning: minimize $D_{\mathit{KL}}(p_{\mathit{data\ finetune}},p_{\theta};p_0)$
- Typically the pretraining data will cover a wider distribution than the fine-tuning data

Effects of fine-tuning

- Example symptoms:
 - Summarization model doesn't work well on translation
 - Model trained with specific formatting requires the formatting
 - Model can't few-shot learn well after fine-tuning ...

Example data

X Y
Article (paper) Abstract

```
"abstract": "\" we have studied the leptonic decay @xmath0 , via
"article": "\"the leptonic decays of a charged pseudoscalar meso
"section_names": "[sec:introduction]introduction\n[sec:detector]]
}
```

Training set: 300,000+ examples

Example data

X

Article (paper) Problem

Abstract Solution

```
{'problem': 'A board game spinner is divided into three parts labele
'level': 'Level 1',
  'type': 'Counting & Probability',
  'solution': 'The spinner is guaranteed to land on exactly one of the
```

Training set: 7,500 examples

Example data

Υ

Article (paper)
Problem
Prompt

Abstract Solution Response

Training set: 2,910,000 examples

https://huggingface.co/datasets/Open-Orca/OpenOrca

Today's lecture

- Fine-tuning basics
- Instruction tuning
 - Chat tuning

Basic idea

- Fine-tune a model to perform multiple tasks
- Insight: use (instruction + input, output) data

. . .

. . .

Variations

- Instructions: template, human, model-generated
- Input: dataset, human, model-generated
- Output: dataset, human, model-generated
- Domain: general, code, math, chat, ...

Example: FLAN [Wei et al 2021]

- 62 NLP datasets
- Instructions: templates
- Input: from dataset
- Output: from dataset

Input (Translation) Input (Commonsense Reasoning) Translate this sentence to Here is a goal: Get a cool sleep on Spanish: summer days. How would you accomplish this goal? The new office building was built in less than three **OPTIONS:** months. -Keep stack of pillow cases in fridge. -Keep stack of pillow cases in oven. **Target Target** El nuevo edificio de oficinas keep stack of pillow cases in fridge se construyó en tres meses. Sentiment analysis tasks Coreference resolution tasks

Template 1

<options>

Template 2

Can we infer the following?

<hypothesis>

<options>

Template 3

Read the following and determine if the hypothesis can be inferred from the premise:

Premise:

Hypothesis: <hypothesis>

<options>

Template 4, ...

Example: FLAN [Wei et al 2021]

Key finding: model can generalize to unseen tasks

Example: SuperNaturalInstructions

[Mishra et al 2021, Wang & Mishra et al 2022]

- 1,600 tasks
- Instructions: crowdsourced
- Input: crowdsourced
- Output: crowdsourced

Example: Self-Instruct

[Mishra et al 2021, Wang & Mishra et al 2022]

- 50,000+ instructions
- Instructions: model
- Input: model
- Output: model

Example: Self-Instruct

[Mishra et al 2021, Wang & Mishra et al 2022]

- 50,000+ instructions
- Instructions: model
- Input: model
- Output: model

Instruction:	Given an address and city, come up
with the zip	code.
Input: Address: 123 Output: 9410	Main Street, City: San Francisco

```
Instruction: I am looking for a job and I need to
fill out an application form. Can you please help
me complete it?
Input:
Application Form:
Name: ____ Age: ___ Sex: ___
Phone Number: ___ Email Address: ___
Education: ____ ...
Output:
Name: John Doe Age: 25 Sex: Male
Phone Number: ...
```

```
Instruction: How to write a code for converting
degrees fahrenheit to celsius.
Input: Null
Output:
def convert_fahrenheit_to_celsius(fahr):
    celsius = (fahr - 32) * 5 / 9
    return celsius
```

Recap: instruction tuning

- Finetune on (instruction, input, output) examples
 - Get data from humans or model generations
- Resulting model can perform many tasks
- Lots of followup work on instruction-tuning data for certain domains: general, code, math, chat, ...

Chat tuning

- Ultimately, format a chat as a sequence of tokens
 - System prompt
 - [user, assistant, user, assistant, ...]
- "Instruction+input" are implicitly in the conversation

Chat tuning | system prompts

Example: OpenOrca

System Instruction: You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.

User Instruction: Use the given data to calculate the median.

Input: [7, 3, 8, 2, 10]

System Instruction: You are an AI assistant. Provide a detailed answer so user don't need to search outside to understand the answer.

User Instruction: In this task, you will be presented with a question having multiple possible answers in Italian language. And you should choose a most suitable option out of "A", "B", "C", "D", and "E" based on your commonsense knowledge.

Input: Solve this question: Dove non riusciresti a vedere la luce? Options: A scrivania B frigorifero C sole D universo E attico

Output: To calculate the median, I will follow these steps:

Step 1: Arrange the data in ascending order [2, 3, 7, 8, 10]

Step 2: Determine if the data set has an odd or even number of values

The data set has 5 values, which is an odd number.

Step 3: Find the middle value

Since the data set has an odd number of values, the median is the middle value in the ordered list. The middle value in the list [2, 3, 7, 8, 10] is 7.

Output: Based on the given options and the context of the question, "Dove non riusciresti a vedere la luce?" (Where would you not be able to see light?), the most suitable answer would be: B frigorifero (refrigerator).

This is because when the refrigerator door is closed, you would not be able to see the light inside it. In the other options, light is generally visible or present:

A scrivania (desk) - Light is usually present around a desk.

C sole (sun) - The sun is the primary source of light in our solar system. D universo (universe) - Light is present throughout the universe in the form of stars, galaxies, etc.

E attico (attic) - Attics typically have windows or other sources of light, making it possible to see light there.

System messages: 16 hand-written

Outputs: from GPT-4

Chat tuning | multi-turn

Example: LMSys-1M

```
conversation
                                                      turn
list · lengths
                                                      int64
2↔45
             99.8%
                                                      1↔22
                                                                   99.8%
[ { "content": "Beside OFAC's selective sanction
that target the listed individuals and entities,
please elaborate on the other types of US's
sanctions, for example, comprehensive and sectoral
sanctions. Please be detailed as much as
possible", "role": "user" }, { "content": "The
United States has a number of different types of
sanctions that it can use to achieve its foreign
policy goals, including both selective and
comprehensive sanctions.\n\nSelective sanctions
are targeted at specific individuals or entities
that are believed to be engaged in activities that
are contrary to US interests. These sanctions can
take a variety of forms, including asset freezes,
travel bans, and restrictions on financial
transactions. The Office of Foreign Assets Control
```

Data source: online LLM service hosted by Berkeley/Stanford

Today's lecture

- Fine-tuning basics
- Instruction tuning
- Knowledge distillation

Knowledge distillation

- Several methods we discussed use a good model (e.g., GPT-4) to generate data for another model
- Instance of knowledge distillation [Hinton et al 2015]

(e.g., large language model)

Distill ——

Student

(e.g., a small language model)

Token-level knowledge distillation [Hinton et al 2015]

 Train student to mimic teacher's token distributions Distillation loss (cross entropy)

Token-level knowledge distillation [Hinton et al 2015]

Minimizes KL between teacher and student:

$$\min_{\theta} KL \left(q(y \mid x) || p_{\theta}(y \mid x) \right)$$

$$\equiv \min_{\theta} \mathbb{E}_{y \sim q(y|x)} \left[\sum_{t} \sum_{y_t \in V} -\frac{q(y_t|y_{< t}, x)}{\text{Soft labels"}} \log p_{\theta}(y_t|y_{< t}, x) \right]$$

Sequence-level knowledge distillation [Kim & Rush 2016]

Generate with a teacher model

Student model fine-tunes on the generated data

Example: DeepSeek-R1-Distill-Qwen-7B

Sequence-level knowledge distillation [Kim & Rush 2016]

Also minimizes KL between teacher and student:

$$\min_{\theta} KL \left(q(y \mid x) || p_{\theta}(y \mid x) \right)$$

$$\equiv \min_{\theta} \mathbb{E}_{y \sim q(y|x)} \left[-\log p_{\theta}(y|x) \right]$$

Teacher generations

Sequence-level knowledge distillation

 [West et al 2022]: the teacher can be an "augmented" language model, e.g.

$$q \propto p_{LLM}(y \mid x) \cdot A(x, y)$$

E.g. a classifier, verifier

• In principle, if the augmented teacher is better than p_{LLM} , then the student can become better than p_{LLM} through distillation

Recap

- Fine-tuning basics
 - Adjust a model's parameters using data
 - PEFT: only update a small number of parameters
- Instruction tuning
 - Format data so that a model learns to do multiple tasks
- Knowledge distillation
 - Data can come from various teachers (human, model)

Thank you