CS11-711 Advanced NLP Decoding Algorithms

Sean Welleck

https://cmu-l3.github.io/anlp-fall2025/ https://github.com/cmu-l3/anlp-fall2025-code

Slides adapted from:

Matthew Finlayson (NeurIPS 2024 Tutorial) and Amanda Bertsch (Spring 2025 Guest Lecture)

Recap

Modeling/parameterization

- Classification or generation?
- Autoregressive?
- Which architecture?

Learning

- Maximum likelihood or other?
- Pre-train first?
- What data or supervision can I leverage?

Today: Inference

Using a model after learning

Today: generating outputs with a language model

Today's lecture

- Basic setup
- Decoding objectives and algorithms
- Speeding up decoding

Basic setup

With an autoregressive language model, we have:

$$p_{\theta}(y_{1:T}|x) = \prod_{t=1}^{T} p_{\theta}(y_t|y_{< t}, x)$$

• Note: we'll use y to refer to a full sequence $y_{1:T}$.

Basic setup

• Each term $p_{\theta}(y_t | y_{< t}, x)$ gives us a probability distribution over next-tokens

Basic setup

- Each term $p_{\theta}(y_t | y_{< t}, x)$ gives us a probability distribution over next-tokens
- We can choose a next token, add it to the context, and get a new distribution over next-tokens
- **Decoding**: choose next tokens so that we end up with an output $y_{1:T}$.

Taylor Alison Swift (born December 13, 1989) is an

Decoding

• Each time-step of decoding requires a choice

 What is the *objective*? How do we make *local choices* that achieve the objective?

Today's lecture

- Basic setup
- Decoding objectives and algorithms
 - Optimization
 - Sampling

Decoding as optimization

• Goal: find a single most likely output

$$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p_{\theta}(y \mid x)$$

Decoding as optimization

Goal: find a single most likely output

$$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p_{\theta}(y \mid x)$$

- Referred to as:
 - Mode-seeking: finds a mode of the distribution
 - Maximum a-posteriori (MAP): given a prior θ and evidence x, find a mode of the posterior $p_{\theta}(y \mid x)$

Decoding as optimization

• Goal: find a single most likely output

$$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p_{\theta}(y \mid x)$$

Key challenge: output space

is very large

Approach 1: greedy decoding

Choose the most likely token at each step:

For
$$t = 1...End$$
:

$$\hat{y}_t = \operatorname{argmax}_{y_t \in V} p_{\theta}(y_t | \hat{y}_{< t}, x)$$

• • •

Approach 1: greedy decoding

Does not guarantee the most-likely sequence:

Approach 1: greedy decoding

Does not guarantee the most-likely sequence:

	Prefix	Continua	ation		Prob.
Greedy	Taylor Swift is a	former	contestant	on	
Token prob.		0.023	0.022	0.80	0.0004
Non-greedy	Taylor Swift is a	singer	,	song	
Token prob.		0.012	0.26	0.21	0.0007

- Beam search is a width-limited breadth-first search
 - Key idea: maintain several likely paths

- Beam search is a width-limited breadth-first search
 - B = 1: greedy decoding
 - B = $|V|^{T_{max}}$: exact MAP
 - Example: 50000^{128} = very big
- In practice, we use B = smaller number, e.g. 16, treated as a hyper-parameter

Huggingface interface

Greedy decoding

```
    model.generate(do_sample=False, num_beams = 1)
```

Beam search

```
• b=16
model.generate(do sample=False, num beams = b)
```

MAP decoding

 Traditionally widely used in closed-ended tasks like translation or summarization

[Freitag and Al-Onaizan, 2017]

Madal	Detect	Madaila		
Model	Dataset	Metric	Greedy	BS
Llama2-7B	HumanEval	Pass@1	12.80	15.24
	MBPP		17.80	19.40
	GSM8K	Acc	13.87	17.21
	XSUM	R-L	27.21	21.88
	CNN/DM		23.43	20.69
	De⇒En	B-4	28.80	30.14
	En⇒De		22.63	23.99
	Zh⇒En		19.44	20.11
	En⇒Zh		15.15	14.50
	CQA	Acc	62.90	64.37
	SQA		60.76	62.25

[Shi et al., 2024]

Pitfalls of MAP decoding

- 1. Degeneracy: repetition traps, short sequences
- 2. Is the highest probability the "best"?

Degeneracy: repetition traps

MAP decoding (greedy search) with SmolLM2-135M:

```
The weather today is very cold and windy.

The weather is very cold and windy.
```

- Models tend to assign high probability to repetitive loops
 - Mitigations: repetition penalty, modify the loss function

Degeneracy: short sequences

• [Stahlberg and Byrne, 2019]: the highest-probability sequence might be the *empty sequence!*

Pr[Taylor Swift is <eos>] > **Pr**[Taylor Swift is an American singer-...]

Remedy: length normalization

Degeneracy: atypicality

- Biased coin Pr[H] = 0.6, Pr[T] = 0.4
- What is the most likely outcome of 100 flips?

 - This outcome is atypical
 - Similarly, the most likely generation may also be atypical
- Remedy: sampling

Is the highest-probability output best?

 Outputs with low probability tend to be worse than those with high probability

Probability	Output
0.3	The cat sat down.
0.001	The cat grew wings.

 But when you're just comparing the top outputs, it's less clear

Probability	Output	
0.3	The cat sat down.	
0.25	The cat ran away.	

Is the highest-probability output best?

 When there are multiple ways to say the same thing, probability is spread across the multiple ways

Total 0.6	Probability	Output	
	0.3	The cat sat down.	
	0.25	The cat ran away.	
	0.2	The cat sprinted off.	
	0.149	The cat got out of there.	
	0.1	The cat is very small.	
	0.001	The cat grew wings.	

Pitfalls of MAP decoding

 As a result, we often want outputs that are "likely" but not "maximally likely"

Today's lecture

- Basic setup
- Objectives
 - Optimization
 - Sampling

Sampling

 Modern LLM APIs offer settings for sampling

Together.ai playground.

 Simply sample from the model's next-token distribution at each step

For t = 1...End:

 Simply sample from the model's next-token distribution at each step

For t = 1...End:

$$\hat{y}_{t} \sim p_{\theta}(y_{t} | \hat{y}_{< t}, x) \qquad p_{\theta}(y_{2} | x, y_{1})$$

$$x \qquad y_{1} \qquad \text{American actress}$$

$$\text{English actor award}$$

 Simply sample from the model's next-token distribution at each step

For t = 1...End:

$$\hat{y}_{t} \sim p_{\theta}(y_{t} | \hat{y}_{< t}, x)$$

$$x$$

$$y_{1}$$
American actress
English actor award

 Simply sample from the model's next-token distribution at each step

For t = 1...End:

$$\hat{\mathbf{y}}_t \sim p_{\theta}(\mathbf{y}_t | \hat{\mathbf{y}}_{< t}, \mathbf{x})$$

• Equivalent to sequence sampling, $y_{1:T} \sim p_{\theta}(y_{1:T} | x)$

Aside: categorical sampling

- Each next-token distribution is a categorical distribution over V (vocab size) items
 - Easy/fast to sample from
 - Categorical sampling is implemented in common libraries such as PyTorch

```
import torch

# Sample 100 times using PyTorch
torch_probs = torch.tensor(probs)
categorical = torch.distributions.Categorical(probs=torch_probs)
categorical.sample((100,))

0.0s

tensor([3, 4, 1, 1, 3, 2, 0, 0, 1, 0, 1, 4, 3, 3, 3, 4, 3, 3, 1, 4, 1, 3, 4, 3,
3, 0, 2, 4, 4, 4, 3, 1, 1, 3, 4, 0, 1, 2, 3, 4, 4, 4, 1, 2, 1, 3, 3, 0,
2, 4, 1, 0, 3, 3, 3, 0, 3, 2, 3, 3, 0, 0, 3, 3, 1, 4, 0, 4, 4, 3, 0, 1,
1, 4, 3, 3, 4, 1, 0, 1, 4, 3, 1, 0, 4, 2, 3, 1, 4, 1, 3, 4, 0, 3, 3, 3,
1, 2, 3, 3])
```

What is wrong with ancestral sampling?

• Often leads to incoherence

Greedy:

The weather today is very cold and windy.

The weather is very cold and windy.

The weather is very cold and windy.

The weather is

Temperature=1.0:

The weather today is very cold outside as it got cold the night before.

14. The teacher is going to give a card tomorrow.

What is wrong with ancestral sampling?

- Often leads to incoherence
- Heavy tail: there are many choices for the nexttoken (e.g., 50,000). Even if each 'bad' token has a small probability, the sum of bad tokens has a nontrivial probability

What is wrong with ancestral sampling?

- Compounding error: Suppose the total probability of sampling a bad token is ϵ .
 - Then for a length-T sequence, the probability of sampling no bad tokens is $(1-\epsilon)^T$
 - $\epsilon = 0.01$, T = 128: p(no bad tokens): 0.276
 - $\epsilon = 0.05$, T = 128: p(no bad tokens): 0.0014
 - $\epsilon = 0.01$, T = 1024: p(no bad tokens): 0.000033

 Top-k sampling: sample only from the k mostprobable tokens at each step

$$\hat{y}_t \sim \begin{cases} p_{\theta}(y_t | y_{< t}, x) / Z_t \text{ if yt in top k} \\ 0 \text{ otherwise} \end{cases}$$

Top-p sampling: sample only from the top p probability mass

Temperature=1.0:

The weather today is very cold outside as it got cold the night before.

14. The teacher is going to give a card tomorrow.

Top-k=20:

The weather today is very cold with low temperature of 30 C, but there is still some rain

Top-p=0.9:

The weather today is clear and I know it is going to rain soon. I'm not in a hurry so I'm heading

Huggingface interface

- Ancestral sampling
 - model.generate(do sample=True)
- Top-k sampling
 - k=20
 model.generate(do_sample=True, top_k=k)
- Top-p sampling
 - p=0.9
 model.generate(do sample=True, top p=p)

• Several strategies have been developed, e.g.:

Method	Threshold strategy		
Top-k	Sample from <i>k</i> -most-probable		
Top-p	Cumulative probability at most p		
ϵ	Probability at least ϵ		
η	Min prob. proportional to entropy		
Min-p	Prob. at least p_{\min} scaled by max token prob.		

Temperature sampling

Instead of truncation, make distribution more "peaked"

$$\operatorname{softmax}(x,\tau) = \frac{\exp(x/\tau)}{\sum_{i} (x_i/\tau)}$$

Temperature	Parameter	Pro	Con
High Low	$ au \geq 1$ $ au < 1$		Incoherent Repetitive

Temperature sampling

Temperature sampling

Temperature 0.5:

The weather today is very cold. The wind is blowing from the north.

The weather is not very cold, but there is a lot of ice on the ground

The driver has to stop and take the car into the

Temperature 1.0:

The weather today is very nice, some water and snow. It's only 2ft. high at the real level

Ιt

Temperature 1.5:

The weather today is: Low in the Treasure Nevada at Mosquittle Examinerare] Emergence Outreach

Today's lecture

- Decoding as optimization
- Sampling
- Speeding up decoding

Speeding up decoding

- We will have a more comprehensive discussion in a later lecture (Advanced Inference)
- Today: key-value caching

Key value cache

- During decoding, each new token at time t attends to positions $\leq t$
- The attention for step *t* needs the keys and values for *all past tokens* 1: *t*
 - If we recomputed those keys and values for every step, we would redo $O(T^2)$ computations:
 - k_1, v_1
 - $\bullet \quad k_1, v_1, k_2, v_2$
 - $k_1, v_1, k_2, v_2, k_3, v_3$
 - ...
- KV caching: store the previously computed keys/values
 - · Due to masking future tokens, caching is equivalent to recomputing!

Key value cache

Consider 1 transformer layer with 1 attention head. At step t of decoding:

•
$$q_t = h_t W_q \in \mathbb{R}^{1 \times d_k}$$

•
$$k_t = h_t W_K \in \mathbb{R}^{1 \times d_k}$$

•
$$v_t = h_t W_V \in \mathbb{R}^{1 \times d_v}$$

We have the previous keys and values cached:

•
$$K_{1:t-1} \in \mathbb{R}^{(t-1) \times d_k}$$

•
$$V_{1:t-1} \in \mathbb{R}^{(t-1) \times d_v}$$

• We append k_t to $K_{1:t-1}$ and v_t to $V_{1:t-1}$ and compute attention:

$$z_t = \operatorname{softmax}\left(\frac{q_t K_{1:t}^T}{\sqrt{d_k}}\right) V_{1:t}$$

Without caching,
we recompute:

$$K_{1:t} = [h_1; h_2; ...; h_t] W_k$$

 $V_{1:t} = [h_1; h_2; ...; h_t] W_k$

Key value cache

Code example

```
if use_cache and self.cache_k is not None:
    # Only compute K, V for the new token(s)
    K_new = self.k_proj(x_norm)
    V_new = self.v_proj(x_norm)

# Append to cache
    K = torch.cat([self.cache_k, K_new], dim=1)
    V = torch.cat([self.cache_v, V_new], dim=1)

# Update cache
    self.cache_k = K
    self.cache_v = V
```


Recap

- Decoding as optimization
- Sampling
- Speeding up decoding

Thank you