CS11-711 Advanced NLP Decoding Algorithms Sean Welleck https://cmu-l3.github.io/anlp-fall2025/ https://github.com/cmu-l3/anlp-fall2025-code Slides adapted from: Matthew Finlayson (NeurIPS 2024 Tutorial) and Amanda Bertsch (Spring 2025 Guest Lecture) #### Recap #### Modeling/parameterization - Classification or generation? - Autoregressive? - Which architecture? #### Learning - Maximum likelihood or other? - Pre-train first? - What data or supervision can I leverage? #### Today: Inference Using a model after learning # Today: generating outputs with a language model # Today's lecture - Basic setup - Decoding objectives and algorithms - Speeding up decoding #### Basic setup With an autoregressive language model, we have: $$p_{\theta}(y_{1:T}|x) = \prod_{t=1}^{T} p_{\theta}(y_t|y_{< t}, x)$$ • Note: we'll use y to refer to a full sequence $y_{1:T}$. #### Basic setup • Each term $p_{\theta}(y_t | y_{< t}, x)$ gives us a probability distribution over next-tokens #### Basic setup - Each term $p_{\theta}(y_t | y_{< t}, x)$ gives us a probability distribution over next-tokens - We can choose a next token, add it to the context, and get a new distribution over next-tokens - **Decoding**: choose next tokens so that we end up with an output $y_{1:T}$. Taylor Alison Swift (born December 13, 1989) is an #### Decoding • Each time-step of decoding requires a choice What is the *objective*? How do we make *local choices* that achieve the objective? # Today's lecture - Basic setup - Decoding objectives and algorithms - Optimization - Sampling # Decoding as optimization • Goal: find a single most likely output $$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p_{\theta}(y \mid x)$$ #### Decoding as optimization Goal: find a single most likely output $$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p_{\theta}(y \mid x)$$ - Referred to as: - Mode-seeking: finds a mode of the distribution - Maximum a-posteriori (MAP): given a prior θ and evidence x, find a mode of the posterior $p_{\theta}(y \mid x)$ #### Decoding as optimization • Goal: find a single most likely output $$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} p_{\theta}(y \mid x)$$ Key challenge: output space is very large # Approach 1: greedy decoding Choose the most likely token at each step: For $$t = 1...End$$: $$\hat{y}_t = \operatorname{argmax}_{y_t \in V} p_{\theta}(y_t | \hat{y}_{< t}, x)$$ • • • # Approach 1: greedy decoding Does not guarantee the most-likely sequence: # Approach 1: greedy decoding Does not guarantee the most-likely sequence: | | Prefix | Continua | ation | | Prob. | |-------------|-------------------|----------|------------|------|--------| | Greedy | Taylor Swift is a | former | contestant | on | | | Token prob. | | 0.023 | 0.022 | 0.80 | 0.0004 | | Non-greedy | Taylor Swift is a | singer | , | song | | | Token prob. | | 0.012 | 0.26 | 0.21 | 0.0007 | - Beam search is a width-limited breadth-first search - Key idea: maintain several likely paths - Beam search is a width-limited breadth-first search - B = 1: greedy decoding - B = $|V|^{T_{max}}$: exact MAP - Example: 50000^{128} = very big - In practice, we use B = smaller number, e.g. 16, treated as a hyper-parameter #### Huggingface interface #### Greedy decoding ``` model.generate(do_sample=False, num_beams = 1) ``` #### Beam search ``` • b=16 model.generate(do sample=False, num beams = b) ``` #### MAP decoding Traditionally widely used in closed-ended tasks like translation or summarization [Freitag and Al-Onaizan, 2017] | Madal | Detect | Madaila | | | |-----------|-----------|---------|--------|-------| | Model | Dataset | Metric | Greedy | BS | | Llama2-7B | HumanEval | Pass@1 | 12.80 | 15.24 | | | MBPP | | 17.80 | 19.40 | | | GSM8K | Acc | 13.87 | 17.21 | | | XSUM | R-L | 27.21 | 21.88 | | | CNN/DM | | 23.43 | 20.69 | | | De⇒En | B-4 | 28.80 | 30.14 | | | En⇒De | | 22.63 | 23.99 | | | Zh⇒En | | 19.44 | 20.11 | | | En⇒Zh | | 15.15 | 14.50 | | | CQA | Acc | 62.90 | 64.37 | | | SQA | | 60.76 | 62.25 | [Shi et al., 2024] #### Pitfalls of MAP decoding - 1. Degeneracy: repetition traps, short sequences - 2. Is the highest probability the "best"? # Degeneracy: repetition traps MAP decoding (greedy search) with SmolLM2-135M: ``` The weather today is very cold and windy. The weather is very cold and windy. ``` - Models tend to assign high probability to repetitive loops - Mitigations: repetition penalty, modify the loss function #### Degeneracy: short sequences • [Stahlberg and Byrne, 2019]: the highest-probability sequence might be the *empty sequence!* **Pr**[Taylor Swift is <eos>] > **Pr**[Taylor Swift is an American singer-...] Remedy: length normalization # Degeneracy: atypicality - Biased coin Pr[H] = 0.6, Pr[T] = 0.4 - What is the most likely outcome of 100 flips? - This outcome is atypical - Similarly, the most likely generation may also be atypical - Remedy: sampling #### Is the highest-probability output best? Outputs with low probability tend to be worse than those with high probability | Probability | Output | |-------------|---------------------| | 0.3 | The cat sat down. | | 0.001 | The cat grew wings. | But when you're just comparing the top outputs, it's less clear | Probability | Output | | |-------------|-------------------|--| | 0.3 | The cat sat down. | | | 0.25 | The cat ran away. | | #### Is the highest-probability output best? When there are multiple ways to say the same thing, probability is spread across the multiple ways | Total 0.6 | Probability | Output | | |-----------|-------------|---------------------------|--| | | 0.3 | The cat sat down. | | | | 0.25 | The cat ran away. | | | | 0.2 | The cat sprinted off. | | | | 0.149 | The cat got out of there. | | | | 0.1 | The cat is very small. | | | | 0.001 | The cat grew wings. | | #### Pitfalls of MAP decoding As a result, we often want outputs that are "likely" but not "maximally likely" # Today's lecture - Basic setup - Objectives - Optimization - Sampling # Sampling Modern LLM APIs offer settings for sampling Together.ai playground. Simply sample from the model's next-token distribution at each step For t = 1...End: Simply sample from the model's next-token distribution at each step For t = 1...End: $$\hat{y}_{t} \sim p_{\theta}(y_{t} | \hat{y}_{< t}, x) \qquad p_{\theta}(y_{2} | x, y_{1})$$ $$x \qquad y_{1} \qquad \text{American actress}$$ $$\text{English actor award}$$ Simply sample from the model's next-token distribution at each step For t = 1...End: $$\hat{y}_{t} \sim p_{\theta}(y_{t} | \hat{y}_{< t}, x)$$ $$x$$ $$y_{1}$$ American actress English actor award Simply sample from the model's next-token distribution at each step For t = 1...End: $$\hat{\mathbf{y}}_t \sim p_{\theta}(\mathbf{y}_t | \hat{\mathbf{y}}_{< t}, \mathbf{x})$$ • Equivalent to sequence sampling, $y_{1:T} \sim p_{\theta}(y_{1:T} | x)$ ### Aside: categorical sampling - Each next-token distribution is a categorical distribution over V (vocab size) items - Easy/fast to sample from - Categorical sampling is implemented in common libraries such as PyTorch ``` import torch # Sample 100 times using PyTorch torch_probs = torch.tensor(probs) categorical = torch.distributions.Categorical(probs=torch_probs) categorical.sample((100,)) 0.0s tensor([3, 4, 1, 1, 3, 2, 0, 0, 1, 0, 1, 4, 3, 3, 3, 4, 3, 3, 1, 4, 1, 3, 4, 3, 3, 0, 2, 4, 4, 4, 3, 1, 1, 3, 4, 0, 1, 2, 3, 4, 4, 4, 1, 2, 1, 3, 3, 0, 2, 4, 1, 0, 3, 3, 3, 0, 3, 2, 3, 3, 0, 0, 3, 3, 1, 4, 0, 4, 4, 3, 0, 1, 1, 4, 3, 3, 4, 1, 0, 1, 4, 3, 1, 0, 4, 2, 3, 1, 4, 1, 3, 4, 0, 3, 3, 3, 1, 2, 3, 3]) ``` ## What is wrong with ancestral sampling? • Often leads to incoherence #### Greedy: The weather today is very cold and windy. The weather is very cold and windy. The weather is very cold and windy. The weather is ### Temperature=1.0: The weather today is very cold outside as it got cold the night before. 14. The teacher is going to give a card tomorrow. ### What is wrong with ancestral sampling? - Often leads to incoherence - Heavy tail: there are many choices for the nexttoken (e.g., 50,000). Even if each 'bad' token has a small probability, the sum of bad tokens has a nontrivial probability ## What is wrong with ancestral sampling? - Compounding error: Suppose the total probability of sampling a bad token is ϵ . - Then for a length-T sequence, the probability of sampling no bad tokens is $(1-\epsilon)^T$ - $\epsilon = 0.01$, T = 128: p(no bad tokens): 0.276 - $\epsilon = 0.05$, T = 128: p(no bad tokens): 0.0014 - $\epsilon = 0.01$, T = 1024: p(no bad tokens): 0.000033 Top-k sampling: sample only from the k mostprobable tokens at each step $$\hat{y}_t \sim \begin{cases} p_{\theta}(y_t | y_{< t}, x) / Z_t \text{ if yt in top k} \\ 0 \text{ otherwise} \end{cases}$$ Top-p sampling: sample only from the top p probability mass #### Temperature=1.0: The weather today is very cold outside as it got cold the night before. 14. The teacher is going to give a card tomorrow. #### Top-k=20: The weather today is very cold with low temperature of 30 C, but there is still some rain #### Top-p=0.9: The weather today is clear and I know it is going to rain soon. I'm not in a hurry so I'm heading # Huggingface interface - Ancestral sampling - model.generate(do sample=True) - Top-k sampling - k=20 model.generate(do_sample=True, top_k=k) - Top-p sampling - p=0.9 model.generate(do sample=True, top p=p) • Several strategies have been developed, e.g.: | Method | Threshold strategy | | | |------------|---|--|--| | Top-k | Sample from <i>k</i> -most-probable | | | | Top-p | Cumulative probability at most p | | | | ϵ | Probability at least ϵ | | | | η | Min prob. proportional to entropy | | | | Min-p | Prob. at least p_{\min} scaled by max token prob. | | | ## Temperature sampling Instead of truncation, make distribution more "peaked" $$\operatorname{softmax}(x,\tau) = \frac{\exp(x/\tau)}{\sum_{i} (x_i/\tau)}$$ | Temperature | Parameter | Pro | Con | |-------------|------------------------|-----|--------------------------| | High
Low | $ au \geq 1$ $ au < 1$ | | Incoherent
Repetitive | ## Temperature sampling ## Temperature sampling #### Temperature 0.5: The weather today is very cold. The wind is blowing from the north. The weather is not very cold, but there is a lot of ice on the ground The driver has to stop and take the car into the #### Temperature 1.0: The weather today is very nice, some water and snow. It's only 2ft. high at the real level Ιt #### Temperature 1.5: The weather today is: Low in the Treasure Nevada at Mosquittle Examinerare] Emergence Outreach # Today's lecture - Decoding as optimization - Sampling - Speeding up decoding # Speeding up decoding - We will have a more comprehensive discussion in a later lecture (Advanced Inference) - Today: key-value caching ## Key value cache - During decoding, each new token at time t attends to positions $\leq t$ - The attention for step *t* needs the keys and values for *all past tokens* 1: *t* - If we recomputed those keys and values for every step, we would redo $O(T^2)$ computations: - k_1, v_1 - $\bullet \quad k_1, v_1, k_2, v_2$ - $k_1, v_1, k_2, v_2, k_3, v_3$ - ... - KV caching: store the previously computed keys/values - · Due to masking future tokens, caching is equivalent to recomputing! ## Key value cache Consider 1 transformer layer with 1 attention head. At step t of decoding: • $$q_t = h_t W_q \in \mathbb{R}^{1 \times d_k}$$ • $$k_t = h_t W_K \in \mathbb{R}^{1 \times d_k}$$ • $$v_t = h_t W_V \in \mathbb{R}^{1 \times d_v}$$ We have the previous keys and values cached: • $$K_{1:t-1} \in \mathbb{R}^{(t-1) \times d_k}$$ • $$V_{1:t-1} \in \mathbb{R}^{(t-1) \times d_v}$$ • We append k_t to $K_{1:t-1}$ and v_t to $V_{1:t-1}$ and compute attention: $$z_t = \operatorname{softmax}\left(\frac{q_t K_{1:t}^T}{\sqrt{d_k}}\right) V_{1:t}$$ Without caching, we recompute: $$K_{1:t} = [h_1; h_2; ...; h_t] W_k$$ $V_{1:t} = [h_1; h_2; ...; h_t] W_k$ # Key value cache ## Code example ``` if use_cache and self.cache_k is not None: # Only compute K, V for the new token(s) K_new = self.k_proj(x_norm) V_new = self.v_proj(x_norm) # Append to cache K = torch.cat([self.cache_k, K_new], dim=1) V = torch.cat([self.cache_v, V_new], dim=1) # Update cache self.cache_k = K self.cache_v = V ``` ## Recap - Decoding as optimization - Sampling - Speeding up decoding # Thank you