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Recap: last lecture

• Last lecture: RL fundamentals with CartPole 

• Markov Decision Processes (MDPs) 

• Policy gradient methods (REINFORCE) 

• Improved methods: advantages, PPO loss 

• Today: RL for text generation with LLMs



RL for LLM Generation

Let’s think step by step. 2 + 3 = 23.

Reward

ModelWhat is 2+3?

Generate

Update
Let’s think step by step. 2 + 3 = 5.
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RL for LLM Generation

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

Model
Generate

Update

Key feature 1: 

• The task criteria is now directly optimized via the reward

How are you?



RL for LLM Generation

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

ModelHow are you?

Generate

Update

Key feature 2: 

• Data is generated by the model, and a reward tells us how 
to use the data for training



RL for LLM Generation

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

Model
Generate

Update

Key feature 3: 

• Model generations are now in the learning loop, so test-
time better resembles training time

How are you?



This lecture

• RL Framework for LLMs 

• Three examples 

• Reversing a string 

• Solving a math problem 

• Alignment with human preferences 

• Terminology: RLVR, RLHF, GRPO,…



Three basic ingredients

1. Generate outputs 

2. Evaluate reward  

3. Update the model 
parameters

Model

Generate

Update
Reward

Step 0: frame the problem as a MDP



MDP 1: One-step MDP
• State: prompt or prompt + response 
• Action: generate a full response 

•  

• Policy: language model 

•

• Environment transition:  
• Concatenate response to prompt 

• Reward: evaluate reward on the full 
sequence 

•

a : y

pθ(y |x)

r(x, y)

What is 2+3?

Let’s think step by step. 2 + 3 = 23.



MDP 2: Token-level MDP

• State: a prompt and tokens-generated-
so far 

•  

• Action: generate a token 

•  

• Policy: language model 

•

• Environment transition: append token 

•  

• Reward: 

•  for t < T 

•

st : (x, y<t)

at : yt

pθ(yt |y<t, x)

st+1 : (x, y<t ∘ yt)

rt = 0
rT = r(x, y)

Let’s

What is 2+3?

Let’s think

Let’s think step

Let’s think step by step. 2 + 3 = 23.

…

Key difference: we can assign different rewards to 
different tokens 



Putting it all together
Now we can use the algorithms from last lecture!  
Example (policy gradient): 
• Given: 

• Pre-trained or fine-tuned model,  

• Inputs  

• Reward function  

• Loop: 

• Generate outputs  with  

• Compute rewards 

•
Compute loss, , update 

pθ(y |x)
x

r

̂y pθ

LPG = ∑
t

r(st, at)∇θlog pθ(at |st) pθ



Key decisions

• Given: 
• Pre-trained or fine-tuned model, 

 

• Inputs  

• Reward function  

• Loop: 

• Generate outputs  with  

• Compute rewards,  

• Compute loss, 
, 

update 

pθ(y |x)
x

r

̂y pθ

At = r(st, at)

LPG = ∑
t

At ∇θlog pθ(at |st)

pθ

4. Policy optimization settings 
• Advantages  
• Loss  
• Other hyper-parameters

At
L

3. Reward function
2. Dataset of inputs 

1. Fine-tune first or not



Key decisions

• We’ll look at three examples that will illustrate 
concepts related to the key decisions: 
• Initialization/fine-tuning 
• Dataset of inputs 
• Reward function 
• Policy optimization settings



This lecture

• RL Framework for LLMs 

• Three examples 

• Reversing a string

• Solving a math problem 

• Alignment with human preferences 

• Terminology: RLVR, RLHF, PPO, GRPO, DrGRPO,…



Example: reversing a string

• Task: reverse input strings 

• hello->olleh   

• Initialization: Fine-tune on a dataset of (input, 
reversed input) examples



Fine-tuning before RL

• Given pre-trained model , it is often beneficial to do 
supervised fine-tuning prior to RL,  

• Pros 
• Teaches the model the task format 
• Leverages supervision from the dataset 
• => model may encounter more high-reward examples 

• Cons 

• Requires a dataset of  examples  

• May narrow/bias the model’s output distribution too much

pθ0
pθ0

→ pθSFT
→ pθRL

(x, y)



Code example

sft.py



Example: reversing a string

• Task: reverse input strings 

• hello->olleh   

• Fine-tune on a dataset of (input, reversed input) 
examples 

• Reward: 1 if the output is the reverse of the input, 
0 otherwise



Rule-based/“verifiable” rewards
• A verifiable/checkable property of the output 

• Example: string reversal 

•  = 1 if ’s answer is correct, 0 otherwiser(x, y) y

ollh
Reward

Reverse hello

olleh
Reward

answer = olleh?

answer = olleh?

0

1



Rule-based/“verifiable” rewards
• A verifiable/checkable property of the output 

• Example: solve a math problem 

•  = 1 if ’s answer is correct, 0 otherwiser(x, y) y

Let’s think step by step.  
2 + 3 = 23.

Reward

What is 2+3?

Let’s think step by step.  
2 + 3 = 5.

Reward

answer = 5?

answer = 5?

0

1



• A verifiable/checkable property of the output 

• Example: write a program that passes test cases 

•  = fraction of passed testsr(x, y)

Buggy program
Reward

Write code 
that …

Good program
Reward

Fraction of  
passed tests

Fraction of  
passed tests

2/10

10/10

Rule-based/“verifiable” rewards



Code example

reverse_ppo.py



Example: reversing a string
• Task: reverse input strings 

• hello->olleh   

• Fine-tune on a dataset of (input, reversed input) examples 

• Reward: 1 if the output is the reverse of the input, 0 
otherwise 

• One-step MDP: 

• State: “reverse hello” 

• Action: full output string



Example: reversing a string
• Task: reverse input strings 

• hello->olleh   

• Fine-tune on a dataset of (input, reversed input) 
examples 

• Reward: 1 if the output is the reverse of the input, 0 
otherwise 

• One-step MDP 

• Algorithm: group-based advantages + PPO loss



Group-based advantages
• For each input , generate 

 outputs 

•  

• Subtract the mean reward-per-
group, optionally normalize 

•  

• Z: standard deviation of group 
rewards

x(i)

K

{y(i,1), y(i,2), …, y(i,K)} ∼ pθ( ⋅ |x(i))

A(i,k) = (r(i,k) − mean(r(i,1), r(i,2), …, r(i,K)))
Z

ollh

Reverse 
hello

ollh ollh olleh

0 0 0 1r

-0.25 -0.25 -0.25 0.75

A (no normalization)



Group-based advantages
• Pros: 

• Does not require a learned value function 

• Cons: 

• Less clear how to assign advantages to non-
terminal states 

• Can be computationally expensive to generate 
multiple outputs



Code example

reverse_ppo.py



PPO Loss
Policy gradient (REINFORCE) 

 

=> gradient =  

 
Proximal policy optimization (PPO)

 

•

LPG = At log pθ(yt |y<t, x)

At ∇θlog pθ(yt |y<t, x)

LPPO = min ( pθ(yt |y<t, x)
pθold

(yt |y<t, x)
At, clip ( pθ(yt |y<t, x)

pθold
(yt |y<t, x)

(x, y),1 − ϵ,1 + ϵ) At)



Code example

reverse_ppo.py



Putting it all together

• Loop: 

• Generate K outputs for each input  in a batch of 
data 

• Evaluate the rewards and compute the 
advantages 

• Compute the PPO loss 

• Update parameters with backpropagation 

x



Code example - results

• 64.8% -> 92.6%



Example 1: recap
• Initializing with supervised fine-tuning 

• Recent terminology: “Cold start” 

• Verifiable rewards 

• Recent terminology: Reinforcement Learning with Verified 
Rewards (RLVR) 

• Group-based advantages 

• PPO loss 

• Recent terminology: GRPO: PPO-style loss + group-based 
advantages



This lecture

• RL Framework for LLMs 

• Three examples 

• Reversing a string 

• Solving a math problem

• Alignment with human preferences 

• Terminology



Example 2: solving math problems

• Task: solve math 
problems that end in a 
checkable answer 

• Case study: DeepSeek-
R1 [Nature 2025]



RL for math problem solving
• Task: solve math problems that end in a 

checkable answer 

• Input: problem statement  

• Output: chain of thought + answer

x



RL for math problem solving
• Model: pre-trained language model  

• MDP: 1-step MDP 

• Reward:  

• 0/1 answer check 

• Format reward 

• Algorithm:  

• PPO with group-based advantages  

• + KL penalty (covered later)



RL for math problem solving
• Data



RL for math problem solving



RL for math problem solving



This lecture

• RL Framework for LLMs 

• Three examples 

• Reversing a string 

• Solving a math problem 

• Alignment with human preferences

• Terminology



Alignment with human 
preferences

• Task: generate a chat completion that is good 
according to human users



Alignment with human 
preferences

• Task: generate a chat completion that is good 
according to human users 

• Key challenge: how to evaluate the reward? 

• Idea: learn a reward function



Direct assessment model
• Model  that scores (partial-)sequences 

• Example: classify whether an output is “helpful” 

• Example: classify whether an output is “safe”

r(x, y) → ℝ



Direct assessment model
• Example: model  predicts the 

probability of  given prompt and response
r(x, y) → [0,1]

safe

https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0 [content warning]

https://huggingface.co/s-nlp/roberta_toxicity_classifier  

https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0
https://huggingface.co/s-nlp/roberta_toxicity_classifier


Preference model
• Sometimes it’s easier to collect data on preferences



RL from Human Feedback (RLHF)
1. Supervised fine-tuning (SFT): Fine-tune a language model using a 

dataset . 

• Example:  is a prompt,  is a human-written response 

2. Reward modeling: Train a reward model  using preference data 
 

• Example:  is a prompt,  is a model-generated response 

3. Reinforcement learning (RL): Further fine-tune the language model from 
step 1 (call it ) using a reinforcement learning algorithm: 

 

• Example:  is a prompt, PPO is the RL algorithm

DSFT = {(x(n), y(n))}N
n=1

x y

rϕ(x, y)
DPref = {(x, y(n)

+ , y(n)
− )}N′￼

n=1

x y

p0

pθ = RL(p0, rϕ, {x(n)}N′￼′￼
n=1)

x



RL from Human Feedback (RLHF)

Ouyang et al 2022



Step 1: SFT
1. Supervised fine-tuning (SFT): 

Fine-tune a language model 
using a dataset 

. 

• Example data: 

• Alpaca [Taori et al 2023]: 
52,000 model-generated 
(prompt, response) examples 

• Any technique from the 
instruction-tuning lecture! 

DSFT = {(x(n), y(n))}N
n=1



Large-scale example (AI2 Tulu 3)
• 900k prompts: 

• 57%: open-source data 

• 43%: generate additional 
prompts for instruction 
following, math, and code. 
Generate responses using 
proprietary models 

• Skill-specific mixtures: keep the 
mixtures that led to the best 
performance on individual skills



Step 2: Reward modeling
2. Reward modeling: Train a reward model 

 using preference data 
 

• Prompts : re-use SFT dataset prompts and/
or introduce new ones 

• Example: AlpacaFarm [Dubois et al 2024]: 
reserved out 10k of the 52k Alpaca data 
for generating  

• Responses : generate with SFT model or 
other models

• Need: (i) preference ratings, (ii) method to 
train the reward model 

rϕ(x, y)
DPref = {(x, y(n)

+ , y(n)
− )}N′￼

n=1

x

Dpref

y



Gathering preference ratings
• Given , determine which response 

is better (or rank > 2 responses) 

• Approach 1: use human labelers 

• E.g. Open AI, Meta, hire them 

• Approach 2: use a strong language 
model 

• E.g. AlpacaFarm [Dubois et al 2024]: 
used a GPT model to rate responses 
generated by Llama

x, y1, y2



Large-scale example (AI2 Tulu 3)



Training the reward model
• Given a dataset  

• Train model to assign higher scores to : 

 

D = {(y(n)
+ , y(n)

− )}N
n=1

y+

ℒ = − ∑
y+,y−∈D

log σ (rθ(y+) − rθ(y−))

Where does this come from?



Reward model objective

• Bradley-Terry model (1952): A probability model 
for the outcome of pairwise comparisons 

• Given items , it estimates the probability that the 
pairwise comparison  is true as, 

i, j
i > j

Pr(i > j) =
pi

pi + pj



Reward model objective
• Define : 

 

                 

                 

                

pi = exp (rθ(yi))

p(yi ≻ yj) =
exp(rθ(yi))

exp(rθ(yi)) + exp(rθ(yj))

=
1

1 + (exp(rθ(yj))/exp(rθ(yi)))

=
1

1 + exp (−[rθ(yi) − rθ(yj)])
= σ (rθ(yi) − rθ(yj))

Sigmoid function 
σ(z) = 1

1 + exp(−z)

Divide by  
exp(rθ(yi))



Reward model objective
• Likelihood of observing all preferences in the dataset: 

 

• Maximize likelihood (minimize negative log-likelihood) 
via the loss: 

ℒ(θ) = ∏
(yi,yj)∈𝒟

σ(rθ(yi) − rθ(yj))

ℒNLL(θ) = − log ℒ(θ)

= − ∑
(yi,yj)∈𝒟

log σ (rθ(yi) − rθ(yj))



Step 3: Reinforcement learning
3. Reinforcement learning (RL): 

Further fine-tune the language 
model from step 1 (call it ) using 
a reinforcement learning algorithm: 

 

• Key issue: reward hacking 

• Mitigation: prevent the model  
from moving too far from the 
original model 

p0

pθ = RL(p0, rϕ, {x(n)}N′￼′￼

n=1)

pθ

p0



Reward hacking
• Models can overfit to patterns in the reward 

• Example:  measures how offensive an output is 

• Quiz: what is a policy that maximizes this reward? 
• A language model that always generates an 

empty response.

r(x, y)



Reward hacking



KL Divergence constraint
• Maximize expected reward subject to a KL divergence penalty: 

 

• Higher : more pressure to stay close to the original model 

• Lower : more freedom to maximize reward 

• Common approach: introduce through a modified reward: 

 

Requires keeping around a copy of the original model  (“reference policy”)!

arg max
θ

𝔼x,y [r(x, y)] − βDKL(pθ∥p0)

β

β

rKL = − β log
pθ(y |x)
p0(y |x)

p0



KL Divergence constraint

This reward approximates the KL divergence: 

 

                                         

                  

where , i.e. a single-sample Monte-Carlo approximation.  

DKL (pθ(y |x)∥p0(y |x)) = ∑
y

pθ(y |x)log
pθ(y |x)
p0(y |x)

= 𝔼y∼pθ
log

pθ(y |x)
p0(y |x)

≈ log
pθ( ̂y |x)
p0( ̂y |x)

̂y ∼ pθ( ⋅ |x)



KL Divergence constraint
In summary, we add a reward penalty so that we optimize: 

 

The policy that maximizes this objective is: 

 

See Korbak et al 2022 or Rafailov et al 2023 for the derivation

arg max
θ

𝔼x,y [r(x, y)] − βDKL(pθ∥p0)

pθ(y |x) =
1

Z(x)
p0(y |x)exp ( 1

β
r(x, y))



Algorithm

• Original algorithm: PPO with generalized advantage estimation 
(GAE) 

• Optimize reward (preference reward + KL penalty)



Recap: alignment with human 
preferences

• Model-based reward 

• Susceptible to reward hacking 

• KL-divergence constraint to mitigate reward hacking



Summary

Methods can be categorized by choices of: 

• Reward 

• Advantages 

• Loss function



Summary
Loss Reward Advantages

GRPO PPO loss +  
KL penalty loss Any

Group-based with 
group std 

normalization 

PPO PPO loss Any Any

PPO as typically 
applied to RLHF PPO loss

Model-based 
preference reward 

+ KL penalty

Typically 
generalized 
advantage 
estimation

Many variations of GRPO/PPO involve tweaking these



Practical tools: trl
• https://github.com/huggingface/trl 

https://github.com/huggingface/trl


Practical tools: trl
• https://github.com/huggingface/trl 

https://github.com/huggingface/trl


Practical tools: trl
• https://github.com/huggingface/trl 

https://github.com/huggingface/trl


Practical tools: verl
• https://github.com/volcengine/verl 

https://github.com/volcengine/verl


Thank you


