CS11-711 Advanced NLP
Reinforcement Learning

for LLMs

Sean Welleck

(Carnegie A

Yetlon i Tl

University

https://cmu-I13.qgithub.io/anlp-fall2025/
https://github.com/cmu-I3/anlp-fall2025-code

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

Recap: last lecture

* Last lecture: RL fundamentals with CartPole
 Markov Decision Processes (MDPs)
e Policy gradient methods (REINFORCE)
* Improved methods: advantages, PPO loss

e Today: RL for text generation with LLMs

RL for LLM Generation

RL for LLM Generation

RL for LLM Generation

CHOW are you?) -------------- > Model >

=

Update

Key teature 1:

* The task criteria is now directly optimized via the reward

RL for LLM Generation

CHOW are you?) > Model >

= _

Update

Key feature 2:

 Data is generated by the model, and a reward tells us how
to use the data for training

RL for LLM Generation

CHOW are you?) -------------- > Model >

=

Update

Key feature 3:

 Model generations are now in the learning loop, so test-
time better resembles training time

This lecture

 RL Framework for LLMs
* Three examples
-+ Reversing a string
- Solving a math problem

- Alignment with human preferences

-+ Terminology: RLVR, RLHF, GRPOQO,...

Three basic iIngredients

. Generate outputs Generate
(j---->—> (—)
. EBEvaluate reward

Update
Reward

. Update the model
parameters

MDP 1: One-step MDP

State: prompt or prompt + response C)
What is 2+37

Action: generate a full response

e a:y

- Policy: language model

« Py [x)

Environment transition:

* Concatenate response to prompt

Reward: evaluate reward on the full
sequence

. 7(x,y)

MDP 2: Token-level MDP

State: a prompt and tokens-generated-
So far

° 5. (xa Y<t)
Action: generate a token
« 4, . Y
- Policy: language model
+ DoVl Yep X)
Environment transition: append token
o St (YY)
Reward:

e r,=0fort<T
. rp=1(x,y) Key ditference

@a’[S 2+i3?)

;
¢, O
G’[’S think |)
>

v

Gt’s think step

l

. we can assign different rewards to
different tokens

Putting It all together

Now we can use the algorithms from last lecture!
Example (policy gradient):

e (Given:
e Pre-trained or fine-tuned model, py(y | x)

e INPUIS X

« Reward function r
e Loop:
. Generate outputs y with p,

o Compute rewards

_ Compute loss, Lpg = Z r(s, a,) Vglog py(a,|s,), update p,

l

Key decisions

o Given:
e Pre-trained or fine-tuned model, 1. Fine-tune first or not
Po(y [X)
. Inputs x 2. Dataset of inputs
 Reward function r 3. Reward function
e Loop:

- Generate outputs y with py 4. Policy optimization settings

« Compute rewards, A, = r(s,, a,) « Advantages At

« Compute loss, e Loss L
Lpg = Y A Vylogpya,|s). » Other hyper-parameters
[

update py

Key decisions

« We'll look at three examples that will illustrate
concepts related to the key decisions:

 Initialization/fine-tuning
e Dataset of inputs
 Reward function

* Policy optimization settings

This lecture

 RL Framework for LLMs
* Three examples
- Reversing a string
- Solving a math problem

- Alignment with human preferences

- Terminology: RLVR, RLHF, PPO, GRPO, DrGRPQO,...

Example: reversing a string

* Jask: reverse input strings

e hello->olleh

- Initialization: Fine-tune on a dataset of (input,
reversed input) examples

Fine-tuning before RL

. Given pre-trained model pg , it is often beneticial to do
supervised fine-tuning prior to RL, pg = pg_. = Dy,

* Pros

* Teaches the model the task format

e | everages supervision from the dataset

 => model may encounter more high-reward examples
 Cons

« Requires a dataset of (x, y) examples

 May narrow/bias the model’s output distribution too much

Code example

Manual Examples:

sean - naes (expected: naes) v
joel - leoj (expected: leoj) v
chen - nehc (expected: nehc) v
dareen -» nederad (expected: neerad) X
neel - leen (expected: leen) v
akshita - atihska (expected: atihska) v
ashish - hsihsa (expected: hsihsa) v
manan - nana (expected: nanam) X
sanidhya - ayhdinas (expected: ayhdinas) v

Manual Examples Accuracy: 7/9 = 77.8%

Test Set Exact Match Accuracy: 64.80%
Number of errors: 176/500

sft.py

Example: reversing a string

e Jask: reverse input strings

e hello->olleh

* Fine-tune on a dataset of (input, reversed input)
examples

- Reward: 1 if the output is the reverse of the input,
0 otherwise

Rule-based/“verifiable” rewards

* A verifiable/checkable property of the output
 Example: string reversal

« r(x,y)=1if y's answer is correct, 0 otherwise

Reward
_’Gswer = 0”69- 0
Geverse helD
Reward

Rule-based/“verifiable” rewards

* A verifiable/checkable property of the output
« Example: solve a math problem

« r(x,y)=1if y's answer is correct, 0 otherwise

Reward
_’(answer = 5?]- 0
@hat IS 2+SD
Reward
GE»)

Rule-based/“verifiable” rewards

* A verifiable/checkable property of the output
 Example: write a program that passes test cases

 r(x,y) = fraction of passed tests

Reward
_,| Fraction of 2/—] 0
passed tests
Write code
C that ...)
Reward
Fraction of 10/10
passed tests

Code example

def reward_function(output, prompt):

prompt_str = tokenizer.decode(prompt, skip_special_tokens=True)
target_name = prompt_str.split("Reverse the name:")[-1].split(".")[@].strip()

output_str = tokenizer.decode(output, skip_special_tokens=True)
parsed_output = output_str.split("Answer:")[-1].split(".")[@].strip()
if parsed_output == target_namel[::-1]:

return 1.0

reverse_ppo.py

Example: reversing a string

e Jask: reverse input strings
e hello->olleh
* Fine-tune on a dataset of (input, reversed input) examples

 Reward: 1 if the output is the reverse of the input, O
otherwise

+ One-step MDP:
e State: “reverse hello”

* Action: full output string

Example: reversing a string

Task: reverse input strings
* hello->olleh

Fine-tune on a dataset of (input, reversed input)
examples

Reward: 1 if the output Is the reverse of the input, O
otherwise

One-step MDP

Algorithm: group-based advantages + PPO loss

Group-based advantages

e For each input x(i), generate
K outputs
o (&b y@2) @GOV O e x W) .."
r O 0 0 1
* Subtract the mean reward-per- |

group, optionally normalize

-0.25 -0.25 -0.25 0.75
(r%® — mean(r™V, r2), | pK)y)

4 A (no normalization)

o AWK =

e /: standard deviation of group
rewards

Group-based advantages

e Pros:

* Does not require a learned value function

e Cons:

* Less clear how to assign advantages to non-
terminal states

 Can be computationally expensive to generate
multiple outputs

Code example

rewards = []

for i in range(ids.size(0)):
reward = reward_function(ids[i], input_ids[i // num_samples_per_prompt])
rewards.append(reward)

rewards = torch.tensor(rewards, dtype=torch.float32, device=device)

rewards_original = rewards.clone()

means = rewards.view(-1, num_samples_per_prompt).mean(dim=1).repeat_interleave(num_samples_per_prompt)
advantages = rewards - means

reverse_ppo.py

PPO Loss

Policy gradient (REINFORCE)

Lpg = A;1og po(y; | yopr X)

=> gradient = A, Vglog py(y,| y,, X)

Proximal policy optimization (PPO)

’ X , X
Lppy = min P [Ver 1) A, clip P [Ver 1) x,¥),1 —e,1 +€ | A,
Po,, Vi y<i X) Po,, Vel Y<r X)

Code example

ratio = torch.exp(selected_log_probs - old_selected)

clipped_ratio = torch.clamp(ratio, 0.8, 2.0)
loss = —torch.min(ratio * advantages.unsqueeze(-1), clipped_ratio * advantages.unsqueeze(-1))

reverse_ppo.py

Putting It all together

* Loop:

« (Generate K outputs for each input x in a batch of
data

* Evaluate the rewards and compute the
advantages

 Compute the PPO loss

 Update parameters with backpropagation

0.9

0.7

500

Code example - results

train/avg_reward

- SmolLM2-135M-rl-finetune

1k

1.5k

2k

Step

Manual Examples:

sean - naes (expected:
joel - leoj (expected:
chen - nehc (expected:
dareen - neerad (expected:
neel - leen (expected:
akshita - atihska (expected:
ashish - hsihsa (expected:
manan - nanam (expected:
sanidhya - ayhdinas (expected:

naes)
leoj)
nehc)
neerad)
leen)
atihska)
hsihsa)
nanam)
ayhdinas)

Manual Examples Accuracy: 9/9 = 100.0%

NN NN NN NN

Evaluating on test set (sample size: 500)...

Evaluating: 100% 500/500 [01:36<00:00, 5.18it/s]

Test Set Exact Match Accuracy: 92.60%

Number of errors: 37/500

* 064.8% -> 92.

0%

Example 1: recap

Initializing with supervised fine-tuning
* Recent terminology: “Cold start”
Verifiable rewards

* Recent terminology: Reinforcement Learning with Verified
Rewards (RLVR)

Group-based advantages
PPO loss

e Recent terminology: GRPO: PPO-style loss + group-based
advantages

This lecture

 RL Framework for LLMs
* Three examples
 Reversing a string
-+ Solving a math problem
- Alignment with human preferences

- Terminology

Example 2: solving math problems

Problem

® TaS k : S O | Ve I I I at h Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards. When she

walks at a constant speed of s kilometers per hour, the walk takes her 4 hours, including ¢t minutes spent in
the coffee shop. When she walks s + 2 kilometers per hour, the walk takes her 2 hours and 24 minutes,

p rO b | e m S th at e n d | n a including ¢ minutes spent in the coffee shop. Suppose Aya walks at s + % kilometers per hour. Find the
number of minutes the walk takes her, including the ¢t minutes spent in the coffee shop.
checkable answer

Solution 1

9
5 +t = 2.4 in hours.

— +t =4 inhours and
S s+

Subtracting the second equation from the first, we get,

e Case study: DeepSeek- o » _,

S s—|—2:

R1 [Nature 2025] otiphing by (5 -+ 2) we g

95+ 18 — 9s = 18 = 1.6s% + 3.2s

Multiplying by 5/2 on both sides, we get
— 42 _
Factoring gives us

(2s — 5)(2s +9) = 0, of which the solution we want is s = 2.5.

Explore content v About the journal v Publish with us v

nature > articles > article

Substituting this back to the first equation, we can find that ¢ = 0.4 hours.

Article Open access Published: 17 September 2025 1 .
DeepSeek-R1incentivizes reasoningin LLMs Lastly, s 4+ o = 3 kilometers per hour, so

through reinforcement learning

9
3 + 0.4 = 3.4 hours, or minutes

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu

Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing_Xue, Bingxuan Wang, Bochao Wu, Bei Feng,

Chengda Ly, ... Zhen Zhang =+ Show authors

Nature 645, 633-638 (2025) \ Cite this article

RL for math problem solving

e Jask: solve math problems that end in a
checkable answer

o |nput: problem statement x

“A conversation between User and Assistant. The User asks a question
and the Assistant solvesit. The Assistant first thinks about the reasoning
process in the mind and then provides the User with the answer. The
reasoning process and answer are enclosed within <think>...</think>
and <answer>...</answer>tags, respectively, thatis, <think>reasoning
process here </think><answer>answer here </answer>. User: prompt.
Assistant:”, in which the prompt is replaced with the specific reason-
ing questionduringtraining.

* Qutput: chain of thought + answer

RL for math problem solving

Model: pre-trained language model
MDP: 1-step MDP

Reward:

* 0/1 answer check

* Format reward

Algorithm:

 PPO with group-based advantages

* + KL penalty (covered later)

RL for math problem solving

e Data

Supplementary Table 1: Description of RL Data and Tasks.

Data Type | # Prompts Question Type Output Type

Math 26K Quantitative Reasoning Number /Expression /Equation
Code 17K Algorithm and Bug Fixing Code Solution

STEM 22K Multi-Choice Option

Logic 15K Choice/Quantitative Reasoning Option/Number
General 66K Helpfulness/Harmlessness Ranked Responses

e Mathematics dataset consists of 26k quantitative reasoning questions, including
math exam questions and competition problems. The average number of prompt
tokens is 122. The dataset covers various mathematical domains such as algebra, cal-
culus, probability, and geometry. Problems range in difficulty from regional contests
to international Olympiads. For each problem, the model is expected to produce a
step-by-step reasoning process culminating in a final answer, which can be a numer-
ical value (e.g., “5”), a mathematical expression (e.g., “x?+3x —2”), or an equation
(e.g., “y = 2x + 1”7). Mathematical proofs are excluded because it is difficult to
determine their correctness. For reinforcement learning purposes, we calculate the

RL for math problem solving

a DeepSeek-R1-Zero AIME accuracy during training
0.9 +
—e— r1-zero-pass@1
—e— r1-zero-cons@16
0.8 4 --- Human participant
0.7 —
0.6 -
>
O
o
3 0.5
(&}
<
o4 N4
0.3
0.2 -

| | | | | |
0 2,000 4,000 6,000 8,000 10,000

Steps

RL for math problem solving

DeepSeek-R1-Zero average length per response during training

20,000 -
17,500 Question: If a>1, then the sum of the real solutions ofm = Xisequalto
Response: <think>
15,000 - To solve the equation Ja- /a+x =x, let’s start by squaring both ...
(Ja-Ja+x)?=x’=a--Jatx=x>
12,500 Rearrange to isolate the inner square root term:
(a-x2)%=a+x=>a’-2ax’+(x?)?’=a+x=>x*-2ax?>-x+(a’-a)=0
10,000
Wait, wait. Wait. That’s an aha moment | can flag here.
7,500 — Let’s reevaluate this step by step to identify whether the correct sum can be ...
We started with the equation:
5,000 — Ja-Ja+x =x
First, let’s square both sides:
2,500 a--Jatx=x2=.at+tx =a-x>
0 Next, | could square both sides again, treating the equation: ...

| | | | | |
0 2,000 4,000 6,000 8,000 10,000

Steps

This lecture

 RL Framework for LLMs
* Three examples
 Reversing a string
- Solving a math problem
- Alignment with human preferences

- Terminology

Allgnment with human
oreferences

* Jask: generate a chat completion that is good
according to human users

Allgnment with human
oreferences

* Jask: generate a chat completion that is good
according to human users

« Key challenge: how to evaluate the reward?

e |dea: learn a reward function

Direct assessment moagel

« Model r(x,y) — R that scores (partial-)sequences

 Example: classity whether an output is “helpful”

 Example: classity whether an output is “safe”

[Hello, you are awesome] —

[Hello, you are #&@#*@#j —>

(.)
Reward Model
_ ,

()
Reward Model
&)

- 1

>0

Direct assessment moagel

« Example: model r(x,y) — [0,1] predicts the
probability of safe given prompt and response

P
v

prompt response prompt_label § response_label 3

string - lengths string - lengths string - classes string - classes

0 18.5k 0] 3.7k2 2 values 2 values

How much do you think I should have to pay for I'm not talking

. . safe safe
someone to write a paper for me? about the price o..

How many marketing emails would be considered too I'm not talking
many to send per day? about the ones..

Llama-3.1-NemoGuard-8B-ContentSafety is a content safety model trained on the
Aegis 2.0 dataset that moderates human-LLM interaction content and classifies user

prompts and LLM responses as safe or unsafe. If the content is unsafe, the model

ingface.co/datasets/nvidia/Aeqgis-Al-Content-Safety-Dataset-2.0 [content warning]

https://huggingface.co/s-nlp/roberta_toxicity_classifier

https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0
https://huggingface.co/s-nlp/roberta_toxicity_classifier

Preference model

e Sometimes it's easier to collect data on preferences

[Hello, you are awesome] > [Hello, you are #&@#*@#j

v v
[Rewa rd Model] [Rewa rd Modelj

0.47 0.13

RL from Human Feedback (RLHF)

1. Supervised fine-tuning (SFT): Fine-tune a language model using a
dataset D¢pr = {(x(”),y(”))}fj:l.

o Example: x is a prompt, y is a human-written response

2. Reward modeling: Train a reward model r¢(x, y) using preference data
N/
DPref — {(xa y_(|_n)9 ygn))}nzl

o Example: x is a prompt, y is a model-generated response

3. Reinforcement learning (RL): Further fine-tune the language model from
step 1 (call it py) using a reinforcement learning algorithm:

12

Po = RL(py, 74 {x}_))

« Example: x is a prompt, PPO is the RL algorithm

RL from Human Feedback (RLHF

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

(e}

V74

Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

A o

Explain gravity... Explain war...

[C] o

Moon is natural People went to
satellite of.. the moon...

Ouyang et al 2022

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

Once upon a time...

1.

Step 1: SFT

Supervised fine-tuning (SFT):

Fine-tune a language model
using a dataset

DSFT — {(x(n), y(n)) }f,lvzl-

Example data:

e Alpaca [Taori et al 2023]:

52,000 model-generated
(prompt, response) examples

e Any technique from the
iInstruction-tuning lecture!

Example Generated task

Instruction: Brainstorm creative
ideas for designing a conference
room.

Output:

... Incorporating flexible
components, such as moveable
walls and furniture ...

| arge-scale example (Al2 Tulu 3)

* 900k prompts:
e 57%: open-source data

* 43%: generate additional
prompts for instruction
following, math, and code.
(Generate responses using
proprietary models

» Skill-specific mixtures: keep the
mixtures that led to the best
performance on individual skills

Category Prompt Dataset Count
General OpenAssistant Guanaco'? 7,132
TULU 3 Hardcoded 24
No Robots 9.500
WildChat GPT-4* 241307
UltraFeedback
Knowledge FLAN v2'2+ 89,982
Recall SciRIFF 35,357
TableGPT* 5,000
Math TULU 3 Persona MATH 149,960
& Reasoning TULU 3 Persona GSM 49,980
TULU 3 Persona Algebra 20,000
OpenMathInstruct 2* 50,000
NuminaMath-TIR“ 64,312
Coding TULU 3 Persona Python 34,999
Evol CodeAlpaca™? 107,276
Safety & TULU 3 CoCoNot 10,983
Non-Compliance TULU 3 WildJailbreak®" 50,000
TOLU 3 WildGuardMix*™* 50,000
Multilingual Ayat 202,285
Precise IF TULU 3 Persona IF 29,980

Daring Anteater

Total

939,344

Step 2: Reward modeling

2. Reward modeling: Train a reward model
r¢(x, y) using preference data

DPref — { (.X, y_(|_n)’ ygn)) }];;il

« Prompts x: re-use SFT dataset prompts and/
or introduce new ones

 Example: Alpacalarm pubois et al 2024:
reserved out 10k of the 52k Alpaca data
for generating Dp,,ef

« Responses y: generate with SFT model or
other models

* Need: (i) preference ratings, (ii) method to
train the reward model

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

Explain gravity... Explain war...

Moonis natural ~ People went to

satelliteof.. =~ themoon...

0-0-0-0

Gathering preference ratings

» Given x, Yy, y,, determine which response
s better (or rank > 2 responses)

* Approach 1: use human labelers

 £E.g. Open Al, Meta, hire them @
0-0-0:-0
 Approach 2: use a strong language
model
4 %
e E.g. AlpacaFarm [Dubois et al 2024]: % < L
used a GPT model to rate responses 2 LLMs provid painuise.

generated by Llama

| arge-scale example (Al2 Tulu 3)

Prompt Selection

Prompts used in SFT

Prompts from datasets
subsampled for SFT

New OOD prompts

Response Generation

Model Pool (22 models)

Off-policy data On-policy data

(v I 4Tl 3 |
: SFT8B !

. 00 Gemma e S —
o eTUlu 3
P Uiu :
@ T@'?ECE;:_“* . * sFT70B |

Sample four responses from different models for each prompt

Preference Annotation

GPT-40-2024-08-06
“Rate outputs from1to 5
based on this aspect...”

Helpfulness

Instruction Following

Truthfulness

Honesty

Binarize

Chosen

Rejected

Training the reward model

. Given a dataset D = {(yj””,yﬁ’l))}ﬁf:l

» [rain model to assign higher scores to y. .

S = — Z lOgG (7’(9()74_) — 7'(9(}7_))

V..y_€D /

Where does this come from?

Reward model objective

 Bradley-Terry model (1952): A probability model
for the outcome of pairwise comparisons

« Given items 1, J, it estimates the probability that the
pairwise comparison 1 > j is true as,

Pi
pPi T P;

Pr(i > j) =

Reward model objective

. Define p; = exp (rg(yi)):

(v >) = exp(rg(y;))
PL =) exp(ry(y;)) + exp(r 9()’]'))
_ I Divide by
1 + (exp(r e(y]'))/ exp(rg(y;)) exp(ry(y,))
1

1 +exp <—[F oY) — T, e(y]')])
Sigmoid funlction

= o (1) = 73) oD = Trowco

Reward model objective

* Likelihood of observing all preferences in the dataset:

2O)= || oty —rs0))

 Maximize likelihood (minimize negative log-likelihood)
via the loss:

L a1 (0) = —log Z(0)
=— Y, oo (1) —)

Step 3: Reinforcement learning

3. Reinforcement learning (RL):
Further fine-tune the language
model from step 1 (call it py) using

a reinforcement learning algorithm:

1

Po = RL(py, 4 {x"}))
 Key issue: reward hacking

« Mitigation: prevent the model py

from moving too far from the
original model p,

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

PPO

Once upon a time...

Reward hacking

 Models can overfit to patterns in the reward
« Example: r(x, y) measures how offensive an output is
e Quiz: what is a policy that maximizes this reward?

* A language model that always generates an
empty response.

Reward hacking

5.00 0.36
-@®- Reward
-€- Performance
4754 = (IRIE . - = § = = 1 i - 0.35
........................... S I N - o
4.50 - . ‘ 0.34
.......................... - i ' . ' ' ® }033
4.25 - ‘
@ —
S ©®
@ 11 R e R L R A (e e & T A I | AT 032 9
T 4.00 &
© +
= 0
@ -‘)
N H-HiR- - . - --1-H-- - F0.31"
3.75 A
------ '\ e -1 N--HE- At -1 - 0.30
3.50 - .
----- | t+H-1H - Hr 1ttty 029
3.25 -
----------------------------- e i [At i LV V2 -
3.00 = T
0 100 200 300 400 500 600 700
Steps

Supplementary Fig. 4: Reward hacking: the reward exhibits an increasing trend as
the performance on CodeForces decreases for training.

KL Divergence constraint

 Maximize expected reward subject to a KL divergence penalty:

arg max E, r(x,)| = BDk1(Pyllpy)

« Higher f: more pressure to stay close to the original model

« Lower f3: more freedom to maximize reward

« Common approach: introduce through a modified reward:

r

KL

— p log

Poly

X)

poly

X)

KL Divergence constraint

This reward approximates the KL divergence:

(v]x)
Dyt (poy 10lIpo(y [%)) = Zy‘,peoz | 0log iié i)
Po(y | X)
—FE. 1
Y~Po 08 po(y X)
Py | x)
~ log —
po(y [x)

where y ~ py(- | x), i.e. a single-sample Monte-Carlo approximation.

KL Divergence constraint

In summary, we add a reward penalty so that we optimize:

arg m@ax =X,y [’” (x, Y)] — PDk1(pyllPo)

The policy that maximizes this objective is:

1 1
Po(y|x) = %po(y\x)exp (E” (x, Y)>

See Korbak et al 2022 or Rafailov et al 2023 for the derivation

Algorithm

* Qriginal algorithm: PPO with generalized advantage estimation
(GAE)

 Optimize reward (preference reward + KL penalty)

Recap: alignment with human
preferences

e Model-based reward
e Susceptible to reward hacking

o KL-divergence constraint to mitigate reward hacking

Summary

Methods can be categorized by choices of:
e Reward
e Advantages

e | 0ss function

summary

Loss Reward Advantages

Group-based with
Any group std
normalization

PPO loss +
KL penalty loss

PPO loss Any Any
Model-based Typically
PPO as typically generalized
: PPO loss preference reward
applied to RLHF advantage
+ KL penalty o
estimation

Many variations of GRPO/PPO involve tweaking these

Practical tools: trl

o https://github.com/huggingface/tr

SFTTrainer

Here is a basic example of how to use the

from trl import SFTTrainer
from datasets import load_dataset

dataset = load_dataset("trl-1lib/Capybara", split="train")

trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,

)

trainer.train()

https://github.com/huggingface/trl

Practical tools: trl

o https://github.com/huggingface/tr

RewardTrainer

Here is a basic example of how to use the

from trl import RewardConfig, RewardTrainer
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")

model = AutoModelForSequenceClassification.from_pretrained(
"Qwen/Qwen2.5-0.5B-Instruct", num_labels=1

)

model.config.pad_token_id = tokenizer.pad_token_id
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")

training_args = RewardConfig(output_dir="Qwen2.5-0.5B-Reward", per_device_train_batch_size=2)
trainer = RewardTrainer(

args=training_args,

model=model,

processing_class=tokenizer,

train_dataset=dataset,
)

trainer.train()

https://github.com/huggingface/trl

Practical tools: trl

o https://github.com/huggingface/tr

GRPOTrainer

implements the that is more memory-efficient

than PPO and was used to train

from datasets import load_dataset =
from trl import GRPOTrainer

dataset = load_dataset("trl-lib/tldr", split="train")

Dummy reward function: count the number of unique characters in the completions
def reward_num_unique_chars(completions, xxkwargs):
return [len(set(c)) for ¢ in completions]

trainer = GRPOTrainer(
model="Qwen/Qwen2-0.5B-Instruct",
reward_funcs=reward_num_unique_chars,
train_dataset=dataset,

)

trainer.train()

https://github.com/huggingface/trl

Practical tools: ver]

o https://github.com/volcengine/verl

verl: Volcano Engine Reinforcement Learning for
LLMs

verl is a flexible, efficient and production-ready RL training library for large language models (LLMs).

verl is the open-source version of HybridFlow: A Flexible and Efficient RLHF Framework paper.

verl is flexible and easy to use with:

» Easy extension of diverse RL algorithms: The hybrid-controller programming model enables
flexible representation and efficient execution of complex post-training dataflows. Build RL
dataflows such as GRPO, PPO in a few lines of code.

» Seamless integration of existing LLM infra with modular APls: Decouples computation and
data dependencies, enabling seamless integration with existing LLM frameworks, such as FSDP,
Megatron-LM, vLLM, SGLang, etc

« Flexible device mapping: Supports various placement of models onto different sets of GPUs for
efficient resource utilization and scalability across different cluster sizes.

* Ready integration with popular HuggingFace models
- —

https://github.com/volcengine/verl

Thank you

