
CS11-711 Advanced NLP

Reinforcement Learning
for LLMs

Sean Welleck

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

Recap: last lecture

• Last lecture: RL fundamentals with CartPole

• Markov Decision Processes (MDPs)

• Policy gradient methods (REINFORCE)

• Improved methods: advantages, PPO loss

• Today: RL for text generation with LLMs

RL for LLM Generation

Let’s think step by step. 2 + 3 = 23.

Reward

ModelWhat is 2+3?

Generate

Update
Let’s think step by step. 2 + 3 = 5.

RL for LLM Generation

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

ModelHow are you?

Generate

Update

RL for LLM Generation

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

Model
Generate

Update

Key feature 1:

• The task criteria is now directly optimized via the reward

How are you?

RL for LLM Generation

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

ModelHow are you?

Generate

Update

Key feature 2:

• Data is generated by the model, and a reward tells us how
to use the data for training

RL for LLM Generation

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

Model
Generate

Update

Key feature 3:

• Model generations are now in the learning loop, so test-
time better resembles training time

How are you?

This lecture

• RL Framework for LLMs

• Three examples

• Reversing a string

• Solving a math problem

• Alignment with human preferences

• Terminology: RLVR, RLHF, GRPO,…

Three basic ingredients

1. Generate outputs

2. Evaluate reward

3. Update the model
parameters

Model

Generate

Update
Reward

Step 0: frame the problem as a MDP

MDP 1: One-step MDP
• State: prompt or prompt + response
• Action: generate a full response

•

• Policy: language model

•

• Environment transition:
• Concatenate response to prompt

• Reward: evaluate reward on the full
sequence

•

a : y

pθ(y |x)

r(x, y)

What is 2+3?

Let’s think step by step. 2 + 3 = 23.

MDP 2: Token-level MDP

• State: a prompt and tokens-generated-
so far

•

• Action: generate a token

•

• Policy: language model

•

• Environment transition: append token

•

• Reward:

• for t < T

•

st : (x, y<t)

at : yt

pθ(yt |y<t, x)

st+1 : (x, y<t ∘ yt)

rt = 0
rT = r(x, y)

Let’s

What is 2+3?

Let’s think

Let’s think step

Let’s think step by step. 2 + 3 = 23.

…

Key difference: we can assign different rewards to
different tokens

Putting it all together
Now we can use the algorithms from last lecture!
Example (policy gradient):
• Given:

• Pre-trained or fine-tuned model,

• Inputs

• Reward function

• Loop:

• Generate outputs with

• Compute rewards

•
Compute loss, , update

pθ(y |x)
x

r

̂y pθ

LPG = ∑
t

r(st, at)∇θlog pθ(at |st) pθ

Key decisions

• Given:
• Pre-trained or fine-tuned model,

• Inputs

• Reward function

• Loop:

• Generate outputs with

• Compute rewards,

• Compute loss,
,

update

pθ(y |x)
x

r

̂y pθ

At = r(st, at)

LPG = ∑
t

At ∇θlog pθ(at |st)

pθ

4. Policy optimization settings
• Advantages
• Loss
• Other hyper-parameters

At
L

3. Reward function
2. Dataset of inputs

1. Fine-tune first or not

Key decisions

• We’ll look at three examples that will illustrate
concepts related to the key decisions:
• Initialization/fine-tuning
• Dataset of inputs
• Reward function
• Policy optimization settings

This lecture

• RL Framework for LLMs

• Three examples

• Reversing a string

• Solving a math problem

• Alignment with human preferences

• Terminology: RLVR, RLHF, PPO, GRPO, DrGRPO,…

Example: reversing a string

• Task: reverse input strings

• hello->olleh

• Initialization: Fine-tune on a dataset of (input,
reversed input) examples

Fine-tuning before RL

• Given pre-trained model , it is often beneficial to do
supervised fine-tuning prior to RL,

• Pros
• Teaches the model the task format
• Leverages supervision from the dataset
• => model may encounter more high-reward examples

• Cons

• Requires a dataset of examples

• May narrow/bias the model’s output distribution too much

pθ0
pθ0

→ pθSFT
→ pθRL

(x, y)

Code example

sft.py

Example: reversing a string

• Task: reverse input strings

• hello->olleh

• Fine-tune on a dataset of (input, reversed input)
examples

• Reward: 1 if the output is the reverse of the input,
0 otherwise

Rule-based/“verifiable” rewards
• A verifiable/checkable property of the output

• Example: string reversal

• = 1 if ’s answer is correct, 0 otherwiser(x, y) y

ollh
Reward

Reverse hello

olleh
Reward

answer = olleh?

answer = olleh?

0

1

Rule-based/“verifiable” rewards
• A verifiable/checkable property of the output

• Example: solve a math problem

• = 1 if ’s answer is correct, 0 otherwiser(x, y) y

Let’s think step by step.
2 + 3 = 23.

Reward

What is 2+3?

Let’s think step by step.
2 + 3 = 5.

Reward

answer = 5?

answer = 5?

0

1

• A verifiable/checkable property of the output

• Example: write a program that passes test cases

• = fraction of passed testsr(x, y)

Buggy program
Reward

Write code
that …

Good program
Reward

Fraction of
passed tests

Fraction of
passed tests

2/10

10/10

Rule-based/“verifiable” rewards

Code example

reverse_ppo.py

Example: reversing a string
• Task: reverse input strings

• hello->olleh

• Fine-tune on a dataset of (input, reversed input) examples

• Reward: 1 if the output is the reverse of the input, 0
otherwise

• One-step MDP:

• State: “reverse hello”

• Action: full output string

Example: reversing a string
• Task: reverse input strings

• hello->olleh

• Fine-tune on a dataset of (input, reversed input)
examples

• Reward: 1 if the output is the reverse of the input, 0
otherwise

• One-step MDP

• Algorithm: group-based advantages + PPO loss

Group-based advantages
• For each input , generate

 outputs

•

• Subtract the mean reward-per-
group, optionally normalize

•

• Z: standard deviation of group
rewards

x(i)

K

{y(i,1), y(i,2), …, y(i,K)} ∼ pθ(⋅ |x(i))

A(i,k) = (r(i,k) − mean(r(i,1), r(i,2), …, r(i,K)))
Z

ollh

Reverse
hello

ollh ollh olleh

0 0 0 1r

-0.25 -0.25 -0.25 0.75

A (no normalization)

Group-based advantages
• Pros:

• Does not require a learned value function

• Cons:

• Less clear how to assign advantages to non-
terminal states

• Can be computationally expensive to generate
multiple outputs

Code example

reverse_ppo.py

PPO Loss
Policy gradient (REINFORCE)

=> gradient =

Proximal policy optimization (PPO)

•

LPG = At log pθ(yt |y<t, x)

At ∇θlog pθ(yt |y<t, x)

LPPO = min (pθ(yt |y<t, x)
pθold

(yt |y<t, x)
At, clip (pθ(yt |y<t, x)

pθold
(yt |y<t, x)

(x, y),1 − ϵ,1 + ϵ) At)

Code example

reverse_ppo.py

Putting it all together

• Loop:

• Generate K outputs for each input in a batch of
data

• Evaluate the rewards and compute the
advantages

• Compute the PPO loss

• Update parameters with backpropagation

x

Code example - results

• 64.8% -> 92.6%

Example 1: recap
• Initializing with supervised fine-tuning

• Recent terminology: “Cold start”

• Verifiable rewards

• Recent terminology: Reinforcement Learning with Verified
Rewards (RLVR)

• Group-based advantages

• PPO loss

• Recent terminology: GRPO: PPO-style loss + group-based
advantages

This lecture

• RL Framework for LLMs

• Three examples

• Reversing a string

• Solving a math problem

• Alignment with human preferences

• Terminology

Example 2: solving math problems

• Task: solve math
problems that end in a
checkable answer

• Case study: DeepSeek-
R1 [Nature 2025]

RL for math problem solving
• Task: solve math problems that end in a

checkable answer

• Input: problem statement

• Output: chain of thought + answer

x

RL for math problem solving
• Model: pre-trained language model

• MDP: 1-step MDP

• Reward:

• 0/1 answer check

• Format reward

• Algorithm:

• PPO with group-based advantages

• + KL penalty (covered later)

RL for math problem solving
• Data

RL for math problem solving

RL for math problem solving

This lecture

• RL Framework for LLMs

• Three examples

• Reversing a string

• Solving a math problem

• Alignment with human preferences

• Terminology

Alignment with human
preferences

• Task: generate a chat completion that is good
according to human users

Alignment with human
preferences

• Task: generate a chat completion that is good
according to human users

• Key challenge: how to evaluate the reward?

• Idea: learn a reward function

Direct assessment model
• Model that scores (partial-)sequences

• Example: classify whether an output is “helpful”

• Example: classify whether an output is “safe”

r(x, y) → ℝ

Direct assessment model
• Example: model predicts the

probability of given prompt and response
r(x, y) → [0,1]

safe

https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0 [content warning]

https://huggingface.co/s-nlp/roberta_toxicity_classifier

https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0
https://huggingface.co/s-nlp/roberta_toxicity_classifier

Preference model
• Sometimes it’s easier to collect data on preferences

RL from Human Feedback (RLHF)
1. Supervised fine-tuning (SFT): Fine-tune a language model using a

dataset .

• Example: is a prompt, is a human-written response

2. Reward modeling: Train a reward model using preference data

• Example: is a prompt, is a model-generated response

3. Reinforcement learning (RL): Further fine-tune the language model from
step 1 (call it) using a reinforcement learning algorithm:

• Example: is a prompt, PPO is the RL algorithm

DSFT = {(x(n), y(n))}N
n=1

x y

rϕ(x, y)
DPref = {(x, y(n)

+ , y(n)
−)}N′￼

n=1

x y

p0

pθ = RL(p0, rϕ, {x(n)}N′￼′￼
n=1)

x

RL from Human Feedback (RLHF)

Ouyang et al 2022

Step 1: SFT
1. Supervised fine-tuning (SFT):

Fine-tune a language model
using a dataset

.

• Example data:

• Alpaca [Taori et al 2023]:
52,000 model-generated
(prompt, response) examples

• Any technique from the
instruction-tuning lecture!

DSFT = {(x(n), y(n))}N
n=1

Large-scale example (AI2 Tulu 3)
• 900k prompts:

• 57%: open-source data

• 43%: generate additional
prompts for instruction
following, math, and code.
Generate responses using
proprietary models

• Skill-specific mixtures: keep the
mixtures that led to the best
performance on individual skills

Step 2: Reward modeling
2. Reward modeling: Train a reward model

 using preference data

• Prompts : re-use SFT dataset prompts and/
or introduce new ones

• Example: AlpacaFarm [Dubois et al 2024]:
reserved out 10k of the 52k Alpaca data
for generating

• Responses : generate with SFT model or
other models

• Need: (i) preference ratings, (ii) method to
train the reward model

rϕ(x, y)
DPref = {(x, y(n)

+ , y(n)
−)}N′￼

n=1

x

Dpref

y

Gathering preference ratings
• Given , determine which response

is better (or rank > 2 responses)

• Approach 1: use human labelers

• E.g. Open AI, Meta, hire them

• Approach 2: use a strong language
model

• E.g. AlpacaFarm [Dubois et al 2024]:
used a GPT model to rate responses
generated by Llama

x, y1, y2

Large-scale example (AI2 Tulu 3)

Training the reward model
• Given a dataset

• Train model to assign higher scores to :

D = {(y(n)
+ , y(n)

−)}N
n=1

y+

ℒ = − ∑
y+,y−∈D

log σ (rθ(y+) − rθ(y−))

Where does this come from?

Reward model objective

• Bradley-Terry model (1952): A probability model
for the outcome of pairwise comparisons

• Given items , it estimates the probability that the
pairwise comparison is true as,

i, j
i > j

Pr(i > j) =
pi

pi + pj

Reward model objective
• Define :

pi = exp (rθ(yi))

p(yi ≻ yj) =
exp(rθ(yi))

exp(rθ(yi)) + exp(rθ(yj))

=
1

1 + (exp(rθ(yj))/exp(rθ(yi)))

=
1

1 + exp (−[rθ(yi) − rθ(yj)])
= σ (rθ(yi) − rθ(yj))

Sigmoid function
σ(z) = 1

1 + exp(−z)

Divide by
exp(rθ(yi))

Reward model objective
• Likelihood of observing all preferences in the dataset:

• Maximize likelihood (minimize negative log-likelihood)
via the loss:

ℒ(θ) = ∏
(yi,yj)∈𝒟

σ(rθ(yi) − rθ(yj))

ℒNLL(θ) = − log ℒ(θ)

= − ∑
(yi,yj)∈𝒟

log σ (rθ(yi) − rθ(yj))

Step 3: Reinforcement learning
3. Reinforcement learning (RL):

Further fine-tune the language
model from step 1 (call it) using
a reinforcement learning algorithm:

• Key issue: reward hacking

• Mitigation: prevent the model
from moving too far from the
original model

p0

pθ = RL(p0, rϕ, {x(n)}N′￼′￼

n=1)

pθ

p0

Reward hacking
• Models can overfit to patterns in the reward

• Example: measures how offensive an output is

• Quiz: what is a policy that maximizes this reward?
• A language model that always generates an

empty response.

r(x, y)

Reward hacking

KL Divergence constraint
• Maximize expected reward subject to a KL divergence penalty:

• Higher : more pressure to stay close to the original model

• Lower : more freedom to maximize reward

• Common approach: introduce through a modified reward:

Requires keeping around a copy of the original model (“reference policy”)!

arg max
θ

𝔼x,y [r(x, y)] − βDKL(pθ∥p0)

β

β

rKL = − β log
pθ(y |x)
p0(y |x)

p0

KL Divergence constraint

This reward approximates the KL divergence:

where , i.e. a single-sample Monte-Carlo approximation.

DKL (pθ(y |x)∥p0(y |x)) = ∑
y

pθ(y |x)log
pθ(y |x)
p0(y |x)

= 𝔼y∼pθ
log

pθ(y |x)
p0(y |x)

≈ log
pθ(̂y |x)
p0(̂y |x)

̂y ∼ pθ(⋅ |x)

KL Divergence constraint
In summary, we add a reward penalty so that we optimize:

The policy that maximizes this objective is:

See Korbak et al 2022 or Rafailov et al 2023 for the derivation

arg max
θ

𝔼x,y [r(x, y)] − βDKL(pθ∥p0)

pθ(y |x) =
1

Z(x)
p0(y |x)exp (1

β
r(x, y))

Algorithm

• Original algorithm: PPO with generalized advantage estimation
(GAE)

• Optimize reward (preference reward + KL penalty)

Recap: alignment with human
preferences

• Model-based reward

• Susceptible to reward hacking

• KL-divergence constraint to mitigate reward hacking

Summary

Methods can be categorized by choices of:

• Reward

• Advantages

• Loss function

Summary
Loss Reward Advantages

GRPO PPO loss +
KL penalty loss Any

Group-based with
group std

normalization

PPO PPO loss Any Any

PPO as typically
applied to RLHF PPO loss

Model-based
preference reward

+ KL penalty

Typically
generalized
advantage
estimation

Many variations of GRPO/PPO involve tweaking these

Practical tools: trl
• https://github.com/huggingface/trl

https://github.com/huggingface/trl

Practical tools: trl
• https://github.com/huggingface/trl

https://github.com/huggingface/trl

Practical tools: trl
• https://github.com/huggingface/trl

https://github.com/huggingface/trl

Practical tools: verl
• https://github.com/volcengine/verl

https://github.com/volcengine/verl

Thank you

