
CS11-711 Advanced NLP

Reinforcement Learning

Sean Welleck

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

References: John Schulman’s 2016 tutorial, David Silver’s 2015 Lectures on RL

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code
http://joschu.net/docs/2016-bayareadlschool.pdf
https://davidstarsilver.wordpress.com/teaching/

Recap: supervised fine-tuning

Base
Model

Task
Data

Instruction following

Fine-tuned
Model

Example:
(Instruction + input, output)

+

Recap: maximum likelihood
• Given dataset

• Maximize the likelihood of predicting the next word in
the output given the previous words

• Intuitively, learn to “imitate” behaviors in the provided
dataset (and in doing so, generalize to new inputs)

D = {(x(i), y(i))}N
i=1

ℒ(y1:T |x) = − ∑
t

log pθ(yt |y<t, x)

Problem 1: task mismatch

• We typically want a model to perform well at tasks

Language model Task criterion
p(probable response |prompt) Helpful response

Non-offensive response
≈

p(probable solution |problem) Correct solution
Code that passes test cases

≈

Problem 2: data mismatch

• Data often contains outputs we don’t want
• Toxic / offensive comments from Reddit
• Buggy code

• We don’t have much task-specific data
• Chains of thought while solving problems
• Helpful responses to all prompts

Problem 3: exposure bias

• The model is not exposed to mistakes during
training, and cannot deal with them at test-time
• E.g., make a mistake while solving a problem
• E.g., click the wrong page while buying

something online

Problem 3: exposure bias

• The model is not exposed to mistakes during
training, and cannot deal with them at test-time
• E.g., make a mistake while solving a problem
• E.g., click the wrong page while buying

something online

Today: reinforcement learning

Let’s think step by step. 2 + 3 = 23.

Reward

ModelWhat is 2+3?

Generate

Update
Let’s think step by step. 2 + 3 = 5.

Today: reinforcement learning

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

ModelHow are you?

Generate

Update

Today: reinforcement learning

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

Model
Generate

Update

Key difference 1:

• The task criteria is now directly optimized via the reward

How are you?

Today: reinforcement learning

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

ModelHow are you?

Generate

Update

Key difference 2:

• Data is generated by the model, and a reward tells us how
to use the data for training

Today: reinforcement learning

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

Model
Generate

Update

Key difference 3:

• Models can learn from any trajectory, so long as we can
evaluate the trajectory’s reward.

How are you?

Today’s lecture

• What is reinforcement learning?

• Policy gradient methods

• Next lecture:

• Applications in NLP/LLMs

• Next next lecture:

• Agents

What is reinforcement learning (RL)?
• A branch of machine

learning concerned with
learning from interaction.

• An agent interacts with an
environment.

• The agent learns what to
do in order to maximize a
reward signal.

• RL: A problem, a class of
solutions, and a field that
studies the problem/
solutions.

Agent

Environment

Observation
Reward

Action

What is reinforcement learning (RL)?
• At each step the agent:

• Receives observation

• Receives scalar reward

• Executes action

• The environment:

• Receives action

• Emits observation

• Emits reward

• Agent tries to maximize reward

Agent

Environment

Observation
Reward

Action

Example: playing Atari games

• Agent: plays the game

• Observation: screen

• Actions: press buttons

• Rewards: score at the end of a game

Example: motor control and robotics

• Agent: the robot

• Observations: camera images, joint angles

• Actions: joint torques

• Rewards: stay balanced, move something to a target location, …

Example: text generation

• Agent: the language model

• Observations: sequence generated so far

• Actions: generate next token

• Rewards: is the final answer correct

Language
Model

Formalism: MDPs and Policies
• Formalize the RL setting as a Markov Decision Process (MDP) :

• : state space

• E.g. image of a screen

• : action space

• E.g. Atari controller buttons

• : environment transitions

• E.g. Move to next screen after pressing a button

• : reward function

• E.g. Return the game score at each time step

• The agent takes actions using a policy :

•

(S, A, E, R)
S

A

E(st+1 |st, at)

R(st, at) → ℝ

π
π(at |st)

Formalism: MDPs and Policies
• The agent interacts with the environment until a terminal state is reached:

•

•

•

•

•

• …

•

• Let be the distribution of trajectories obtained by using policy to interact with the
environment

•
Goal: find a policy that maximizes expected return,

• Return: sum of future rewards

s0 ∼ E
a0 ∼ π(a0 |s0)
s1 ∼ E(s1 |s0, a0)

r1 = R(s0, a0)
a1 ∼ π(a1 |s1)

sT, rT

dτπ
π

𝔼dτπ [
T

∑
t=1

rt]

The sequence

is called an episode or a
trajectory.

τ0:T = (s0, a0, r1, s1, …, rT, sT)

Example: Pong

Example: Pong

• Play out a trajectory,

• Reward:

• for

• if is “win”, if is “lose”

(s0, a0), (s1, a1), …, sT

0 t < T
+1 sT −1 sT

s0

a0
Policy “down” Environment

s1

Policy …

…

States and Observations

sE
t

• Environment state

• The environment’s private
representation

• Observation

• The information visible to the
agent.

• Agent state

• Whatever information
the agent uses to pick
the next action

• Example: just use the
current observation

sE
t

ot

st

ot

st = f(o0, a0, r1, …, at, ot)

Example 2: math problem solving
• State: a prompt and tokens-generated-

so far

•

• Action: generate a token

•

• Policy: language model

•

• Environment: append token

•

• Reward: is the final answer correct

• = 1 if and the answer
in is correct; 0 otherwise.

st : (x, y<t)

at : yt

pθ(yt |y<t, x)

st+1 : (x, y<t ∘ yt)

r(x, y1:t) t = T
y1:T

Let’s

What is 2+3?

Let’s think

Let’s think step

Let’s think step by step. 2 + 3 = 23.

…

Types of RL algorithms
• The agent typically includes at least one of the following:

• Policy: agent’s behavior function, e.g.:

• Value function: how good is each state (and/or action), e.g.:

• Model: agent’s representation of the environment, e.g.:

• Policy-based methods: learn a policy

• Value-based methods: involves learning a value function

• Model-based methods: involves learning a model

π(at |st)

vπ(st) = 𝔼 [
T

∑
t′￼=t+1

rt′￼]
e(rt+1, st+1 |st, at)

πθ

vϕ

eψ

We will focus on policy
gradient methods. Some
of them will learn a value

function to stabilize
training.

Summary: setup

• We have a Markov decision process

• Goal: learn a policy that maximizes expected return

(S, A, E, R)

Today’s lecture

• What is reinforcement learning?

• Next: Policy gradient methods

Policy gradient
• Learn a policy that maximizes expected reward

• Let’s use gradient descent?

• Compute , then use SGD, Adam, etc…

• More tricky than expected, for instance what is ?

• Solution: estimate the gradient using sampled trajectories

arg max
θ

𝔼τ∼πθ [R(τ)]

∇θJ(θ)

∇θR(τ)

J(θ)

Score function gradient estimator
(“REINFORCE” [Williams 1992])

• For a distribution and a function :

 where

• In summary,

x ∼ p f(x)

∇θ𝔼x∼pθ(x)[f(x)] = ∇θ ∑
x

pθ(x)f(x)

= ∑
x

pθ(x)
pθ(x)

∇θ pθ(x)f(x)

= ∑
x

pθ(x)∇θlog pθ(x)f(x)

= 𝔼x∼pθ(x) ∇θlog pθ(x)f(x)

≈ ∇θlog pθ(̂x)f(̂x) ̂x ∼ pθ

̂gREINFORCE = f(̂x)∇θlog pθ(̂x)

∇θlog pθ(x) =
∇θ pθ(x)

pθ(x)

Policy gradient/REINFORCE
• Let’s apply it to RL! We get:

where is the return and is a trajectory

sampled with

• When is high, push up the probability

• When is low, push down the probability

∇θ𝔼τ∼πθ
[R(τ)] ≈

T

∑
t=1

Rt ∇θlog πθ(̂at | ̂st)

Rt =
T

∑
t′￼=t

rt ̂a1, ̂s1, ̂r1, …

πθ

Rt πθ(at |st)

Rt πθ(at |st)
Note: this skips

a derivation; see Appendix slides

Putting it all together (Vanilla Policy Gradient / REINFORCE)

1. Collect trajectories

•

2. Compute returns

•

3. Policy gradient loss

•

4. Update the policy with back-propagation and SGD/Adam

(s0, a0, r1), (s1, a1, r2), …, (sT−1, aT−1, rT)

Rt =
T

∑
t′￼=t+1

rt′￼

ℒPG = − ∑
t

Rt log πθ(at |st)

For iteration 1, 2, … do:

The gradient of this loss equals the
policy gradient

∇θℒPG = − ∑
t

Rt ∇θlog πθ(at |st)

Example (CartPole)

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl

Example (CartPole)

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl

Example (CartPole)

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl

Today’s lecture

• What is reinforcement learning?

• Policy gradient methods

• Next: Stabilizing learning

Stabilizing learning

• “Vanilla” policy gradient:

•

• Can we do better?

• Re-weight the gradients

• Control step size

̂gt = Rt ∇θlog πθ(at |st)

Discounting
• There are delays between taking actions and receiving reward

• Discounted return: sum of future rewards, discounted by
how far it is in the future

• Example: suppose we only receive +1 at the end. We
discount using a factor of :

Rt =
T

∑
t′￼=t+1

γt′￼−t−1rt′￼

γ = 0.9

a1 a2 a3 a4 a5 a6
+110.90.810.730.660.59

Strategy 1: weight the
gradients better

Baselines
• Estimate of the expected reward for a given state.

Reward
0.8
0.3

0.75
Baseline

0.75

B - R
0.05
-0.45

“Summarize this paper: …”
“Summarize this paper: …”

• Subtracted from the actual reward to determine how good
a particular action was relative to what was expected

“Prove this theorem: …” 0.3 0.10 0.20

Strategy 1: weight the
gradients better

Baselines

• A good choice is the expected return:

•

• Intuition: increase log-prob of action based on how
much better the action is than expected

̂gt = (Rt − b(st))∇θlog πθ(at |st)

b(st) ≈ 𝔼 [
T

∑
t′￼=t+1

γ f(t′￼)rt′￼]
Quiz: we saw this function
earlier; what is it called?

Strategy 1: weight the
gradients better

Advantages

• Baseline

•

• Temporal difference (TD) residual [Sutton & Barto 1998]

•

• Generalized advantage estimation [Schulman et al 2015]

•

• Baselines and TD residual are special cases
• Other techniques covered in the next lecture

̂gt = At ∇θlog πθ(at |st)

̂At = (Rt − v(st))

̂At = δt = rt + γv(st+1) − v(st)

̂At = ∑
l

(γα)lδv
t+l

Strategy 1: weight the
gradients better

Large updates

• Updates are noisy, so a large update can derail things
• Mitigation: don’t move the policy too much at once

• Example: Proximal policy optimization (PPO) [Schulman et al 2017]

•

ratio(x, y) =
pθ(y |x)

pθold
(y |x)

LPPO = min (ratio(x, y)A(x, y), clip(ratio(x, y),1 − ϵ,1 + ϵ)A(x, y))

Strategy 2: control the
step-size better

Putting it all together

1. Collect trajectories

•

2. Compute advantages

• May involve a baseline, a value function , discounting, etc.

3. Compute loss

• Policy gradient loss, PPO loss

4. Update the policy with back-propagation and SGD/Adam

(s0, a0, r1), (s1, a1, r2), …, (sT−1, aT−1, rT)

v(st)

For iteration 1, 2, … do:

Code example
Baseline: a learned value function vϕ(st)

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/15_rl/
pg_vf.ipynb

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/15_rl/pg_vf.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/15_rl/pg_vf.ipynb

Next lecture: RL from human
feedback (RLHF)

• Basic MDP, preference reward, PPO
• Policy: given prompt , generate response x y1:T

Ziegler et al 2019, Stiennon et al 2020

• Basic MDP, preference reward, PPO
• Policy: given prompt , generate response x y1:T

Ouyang et al 2022

Next lecture: RL from human
feedback (RLHF)

Next lecture: RL with verifiable
rewards (RLVR)

• 1-step MDP, 0/1 rule-based reward, PPO with output-
average baseline (“GRPO”)

• Policy: given problem , generate chain of thought + answerx

Thank you

Policy gradient derivation: I

Recall that the score function estimator is:

• Apply it to the distribution , defined on the

next slide, and the function :

•

∇θ𝔼x∼pθ(x)[f(x)] = 𝔼x∼pθ(x) ∇θlog pθ(x)f(x)

p(τ |θ)

R(τ) =
T

∑
t=1

rt

∇θ𝔼τ∼p(τ|θ)[R(τ)] = 𝔼τ [∇θlog p(τ |θ)R(τ)]
From: http://joschu.net/docs/2016-bayareadlschool.pdf

http://joschu.net/docs/2016-bayareadlschool.pdf

Policy gradient derivation: II
 (*)

•

•

• Take the log, the terms are 0 after taking the gradient

• Plugging this into (*) and moving the gradient inside the sum:

•

∇θ𝔼τ∼p(τ|θ)[R(τ)] = 𝔼τ [∇θlog p(τ |θ)R(τ)]

p(τ |θ) = E(s0)
T

∏
t=1

[πθ(at |st)E(st+1 |st, at)]

∇log p(τ |θ) = ∇θ[
T

∑
t=1

log πθ(at |st)]
E

∇θ𝔼τ[R(τ)] = 𝔼τ [R(τ)
T

∑
t=1

∇θlog πθ(at |st)]
From: http://joschu.net/docs/2016-bayareadlschool.pdf

http://joschu.net/docs/2016-bayareadlschool.pdf

Policy gradient derivation: III

•
Now we want to write this using , i.e. per-step returns

• Use a similar argument to get a term for each step:

•

• Sum over t and rearrange:

•

∇θ𝔼τ[R(τ)] = 𝔼τ [R(τ)
T

∑
t=1

∇θlog πθ(at |st)]
Rt =

T

∑
t′￼=t

rt

∇θ𝔼[rt] = 𝔼[rt

t

∑
t′￼=1

log πθ(at′￼|st′￼)]

∇θ𝔼τ[R(τ)] =
T

∑
t=1

∇θlog πθ(at |st)Rt

From: http://joschu.net/docs/2016-bayareadlschool.pdf

http://joschu.net/docs/2016-bayareadlschool.pdf

