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Recap: supervised fine-tuning

Base 
Model

Task 
Data

Instruction following

Fine-tuned 
Model

Example:  
(Instruction + input, output) 

+



Recap: maximum likelihood
• Given dataset   

• Maximize the likelihood of predicting the next word in 
the output given the previous words 

 

• Intuitively, learn to “imitate” behaviors in the provided 
dataset (and in doing so, generalize to new inputs)

D = {(x(i), y(i))}N
i=1

ℒ(y1:T |x) = − ∑
t

log pθ(yt |y<t, x)



Problem 1: task mismatch

• We typically want a model to perform well at tasks

Language model Task criterion
p(probable response |prompt) Helpful response

Non-offensive response
≈

p(probable solution |problem) Correct solution
Code that passes test cases

≈



Problem 2: data mismatch

• Data often contains outputs we don’t want 
• Toxic / offensive comments from Reddit 
• Buggy code 

• We don’t have much task-specific data 
• Chains of thought while solving problems 
• Helpful responses to all prompts



Problem 3: exposure bias

• The model is not exposed to mistakes during 
training, and cannot deal with them at test-time 
• E.g., make a mistake while solving a problem 
• E.g., click the wrong page while buying 

something online



Problem 3: exposure bias

• The model is not exposed to mistakes during 
training, and cannot deal with them at test-time 
• E.g., make a mistake while solving a problem 
• E.g., click the wrong page while buying 

something online



Today: reinforcement learning

Let’s think step by step. 2 + 3 = 23.

Reward

ModelWhat is 2+3?

Generate

Update
Let’s think step by step. 2 + 3 = 5.
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Today: reinforcement learning

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

Model
Generate

Update

Key difference 1: 

• The task criteria is now directly optimized via the reward

How are you?



Today: reinforcement learning

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

ModelHow are you?

Generate

Update

Key difference 2: 

• Data is generated by the model, and a reward tells us how 
to use the data for training



Today: reinforcement learning

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

Model
Generate

Update

Key difference 3: 

• Models can learn from any trajectory, so long as we can 
evaluate the trajectory’s reward.

How are you?



Today’s lecture

• What is reinforcement learning? 

• Policy gradient methods 

• Next lecture: 

• Applications in NLP/LLMs 

• Next next lecture: 

• Agents



What is reinforcement learning (RL)?
• A branch of machine 

learning concerned with 
learning from interaction. 

• An agent interacts with an 
environment. 

• The agent learns what to 
do in order to maximize a 
reward signal. 

• RL: A problem, a class of 
solutions, and a field that 
studies the problem/
solutions.

Agent

Environment

Observation 
Reward

Action



What is reinforcement learning (RL)?
• At each step the agent: 

• Receives observation  

• Receives scalar reward  

• Executes action 

• The environment: 

• Receives action 

• Emits observation  

• Emits reward  

• Agent tries to maximize reward

Agent

Environment

Observation 
Reward

Action



Example: playing Atari games

• Agent: plays the game 

• Observation: screen 

• Actions: press buttons 

• Rewards: score at the end of a game



Example: motor control and robotics

• Agent: the robot 

• Observations: camera images, joint angles 

• Actions: joint torques 

• Rewards: stay balanced, move something to a target location, …



Example: text generation

• Agent: the language model 

• Observations: sequence generated so far 

• Actions: generate next token 

• Rewards: is the final answer correct

Language 
Model



Formalism: MDPs and Policies
• Formalize the RL setting as a Markov Decision Process (MDP) : 

• : state space 

• E.g. image of a screen 

• : action space 

• E.g. Atari controller buttons 

• : environment transitions 

• E.g. Move to next screen after pressing a button 

• : reward function 

• E.g. Return the game score at each time step 

• The agent takes actions using a policy : 

•

(S, A, E, R)
S

A

E(st+1 |st, at)

R(st, at) → ℝ

π
π(at |st)



Formalism: MDPs and Policies
• The agent interacts with the environment until a terminal state is reached: 

•  

•  

•  

•  

•  

• … 

•  

• Let  be the distribution of trajectories obtained by using policy  to interact with the 
environment 

•
Goal: find a policy that maximizes expected return,  

• Return: sum of future rewards

s0 ∼ E
a0 ∼ π(a0 |s0)
s1 ∼ E(s1 |s0, a0)

r1 = R(s0, a0)
a1 ∼ π(a1 |s1)

sT, rT

dτπ
π

𝔼dτπ [
T

∑
t=1

rt]

The sequence 
 

is called an episode or a 
trajectory.

τ0:T = (s0, a0, r1, s1, …, rT, sT)



Example: Pong



Example: Pong

• Play out a trajectory,  

• Reward:  

•  for  

•  if  is “win”,  if  is “lose”

(s0, a0), (s1, a1), …, sT

0 t < T
+1 sT −1 sT

s0

a0
Policy “down” Environment

s1

Policy …

…



States and Observations

sE
t

• Environment state  

• The environment’s private 
representation 

• Observation  

• The information visible to the 
agent. 

• Agent state  

• Whatever information  
the agent uses to pick 
the next action 

• Example: just use the 
current observation

sE
t

ot

st

ot

st = f(o0, a0, r1, …, at, ot)



Example 2: math problem solving
• State: a prompt and tokens-generated-

so far 

•  

• Action: generate a token 

•  

• Policy: language model 

•

• Environment: append token 

•  

• Reward: is the final answer correct 

•  = 1 if  and the answer 
in  is correct; 0 otherwise.

st : (x, y<t)

at : yt

pθ(yt |y<t, x)

st+1 : (x, y<t ∘ yt)

r(x, y1:t) t = T
y1:T

Let’s

What is 2+3?

Let’s think

Let’s think step

Let’s think step by step. 2 + 3 = 23.

…



Types of RL algorithms
• The agent typically includes at least one of the following: 

• Policy: agent’s behavior function, e.g.: 

 

• Value function: how good is each state (and/or action), e.g.: 

 

• Model: agent’s representation of the environment, e.g.:  

 

• Policy-based methods: learn a policy  

• Value-based methods: involves learning a value function  

• Model-based methods: involves learning a model 

π(at |st)

vπ(st) = 𝔼 [
T

∑
t′￼=t+1

rt′￼]
e(rt+1, st+1 |st, at)

πθ

vϕ

eψ

We will focus on policy 
gradient methods. Some 
of them will learn a value 

function to stabilize 
training.



Summary: setup

• We have a Markov decision process  

• Goal: learn a policy that maximizes expected return

(S, A, E, R)



Today’s lecture

• What is reinforcement learning? 

• Next: Policy gradient methods



Policy gradient
• Learn a policy that maximizes expected reward 

 

• Let’s use gradient descent? 

• Compute , then use SGD, Adam, etc… 

• More tricky than expected, for instance what is ? 

• Solution: estimate the gradient using sampled trajectories

arg max
θ

𝔼τ∼πθ [R(τ)]

∇θJ(θ)

∇θR(τ)

J(θ)



Score function gradient estimator 
(“REINFORCE” [Williams 1992])

• For a distribution  and a function : 

 

                   

                   

                   

                   where  

• In summary, 

x ∼ p f(x)

∇θ𝔼x∼pθ(x)[ f(x)] = ∇θ ∑
x

pθ(x)f(x)

= ∑
x

pθ(x)
pθ(x)

∇θ pθ(x)f(x)

= ∑
x

pθ(x)∇θlog pθ(x)f(x)

= 𝔼x∼pθ(x) ∇θlog pθ(x)f(x)

≈ ∇θlog pθ( ̂x)f( ̂x) ̂x ∼ pθ

̂gREINFORCE = f( ̂x)∇θlog pθ( ̂x)

∇θlog pθ(x) =
∇θ pθ(x)

pθ(x)



Policy gradient/REINFORCE
• Let’s apply it to RL! We get: 

 

 

where  is the return and  is a trajectory 

sampled with  

• When  is high, push up the probability  

• When  is low, push down the probability 

∇θ𝔼τ∼πθ
[R(τ)] ≈

T

∑
t=1

Rt ∇θlog πθ( ̂at | ̂st)

Rt =
T

∑
t′￼=t

rt ̂a1, ̂s1, ̂r1, …

πθ

Rt πθ(at |st)

Rt πθ(at |st)
Note: this skips 

a derivation; see Appendix slides



Putting it all together (Vanilla Policy Gradient / REINFORCE)

1. Collect trajectories 

•  

2. Compute returns 

•  

3. Policy gradient loss 

•  

4. Update the policy with back-propagation and SGD/Adam

(s0, a0, r1), (s1, a1, r2), …, (sT−1, aT−1, rT)

Rt =
T

∑
t′￼=t+1

rt′￼

ℒPG = − ∑
t

Rt log πθ(at |st)

For iteration 1, 2, … do:

The gradient of this loss equals the 
policy gradient 

∇θℒPG = − ∑
t

Rt ∇θlog πθ(at |st)



Example (CartPole)

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl 

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl


Example (CartPole)

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl 

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl


Example (CartPole)

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl 

https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl


Today’s lecture

• What is reinforcement learning? 

• Policy gradient methods 

• Next: Stabilizing learning



Stabilizing learning

• “Vanilla” policy gradient: 

•  

• Can we do better? 

• Re-weight the gradients 

• Control step size

̂gt = Rt ∇θlog πθ(at |st)



Discounting
• There are delays between taking actions and receiving reward 

• Discounted return: sum of future rewards, discounted by 
how far it is in the future 

 

• Example: suppose we only receive +1 at the end. We 
discount using a factor of :  

Rt =
T

∑
t′￼=t+1

γt′￼−t−1rt′￼

γ = 0.9

a1 a2 a3 a4 a5 a6
+110.90.810.730.660.59

Strategy 1: weight the 
gradients better



Baselines
• Estimate of the expected reward for a given state. 

Reward
0.8
0.3

0.75
Baseline

0.75

B - R
0.05
-0.45

“Summarize this paper: …”
“Summarize this paper: …”

• Subtracted from the actual reward to determine how good 
a particular action was relative to what was expected

“Prove this theorem: …” 0.3 0.10 0.20

Strategy 1: weight the 
gradients better



Baselines
 

• A good choice is the expected return: 

•
 

• Intuition: increase log-prob of action based on how 
much better the action is than expected 

̂gt = (Rt − b(st))∇θlog πθ(at |st)

b(st) ≈ 𝔼 [
T

∑
t′￼=t+1

γ f(t′￼)rt′￼]
Quiz: we saw this function 
earlier; what is it called?

Strategy 1: weight the 
gradients better



Advantages
 

• Baseline 

•  

• Temporal difference (TD) residual [Sutton & Barto 1998] 

•  

• Generalized advantage estimation [Schulman et al 2015] 

•
 

• Baselines and TD residual are special cases  
• Other techniques covered in the next lecture 

̂gt = At ∇θlog πθ(at |st)

̂At = (Rt − v(st))

̂At = δt = rt + γv(st+1) − v(st)

̂At = ∑
l

(γα)lδv
t+l

Strategy 1: weight the 
gradients better



Large updates

• Updates are noisy, so a large update can derail things 
• Mitigation: don’t move the policy too much at once 

• Example: Proximal policy optimization (PPO) [Schulman et al 2017] 

•
 

 

ratio(x, y) =
pθ(y |x)

pθold
(y |x)

LPPO = min (ratio(x, y)A(x, y), clip(ratio(x, y),1 − ϵ,1 + ϵ)A(x, y))

Strategy 2: control the 
step-size better



Putting it all together

1. Collect trajectories 

•  

2. Compute advantages

• May involve a baseline, a value function , discounting, etc. 

3. Compute loss

• Policy gradient loss, PPO loss 

4. Update the policy with back-propagation and SGD/Adam

(s0, a0, r1), (s1, a1, r2), …, (sT−1, aT−1, rT)

v(st)

For iteration 1, 2, … do:



Code example
Baseline: a learned value function vϕ(st)

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/15_rl/
pg_vf.ipynb 

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/15_rl/pg_vf.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/15_rl/pg_vf.ipynb


Next lecture: RL from human 
feedback (RLHF)

• Basic MDP, preference reward, PPO
• Policy: given prompt , generate response x y1:T

Ziegler et al 2019, Stiennon et al 2020



• Basic MDP, preference reward, PPO
• Policy: given prompt , generate response x y1:T

Ouyang et al 2022

Next lecture: RL from human 
feedback (RLHF)



Next lecture: RL with verifiable 
rewards (RLVR)

• 1-step MDP, 0/1 rule-based reward, PPO with output-
average baseline (“GRPO”)

• Policy: given problem , generate chain of thought + answerx



Thank you



Policy gradient derivation: I

Recall that the score function estimator is: 

 

• Apply it to the distribution , defined on the 

next slide, and the function : 

•

∇θ𝔼x∼pθ(x)[ f(x)] = 𝔼x∼pθ(x) ∇θlog pθ(x)f(x)

p(τ |θ)

R(τ) =
T

∑
t=1

rt

∇θ𝔼τ∼p(τ|θ)[R(τ)] = 𝔼τ [∇θlog p(τ |θ)R(τ)]
From: http://joschu.net/docs/2016-bayareadlschool.pdf

http://joschu.net/docs/2016-bayareadlschool.pdf


Policy gradient derivation: II
 (*) 

•
 

•
 

• Take the log, the  terms are 0 after taking the gradient 

• Plugging this into (*) and moving the gradient inside the sum: 

•

∇θ𝔼τ∼p(τ|θ)[R(τ)] = 𝔼τ [∇θlog p(τ |θ)R(τ)]

p(τ |θ) = E(s0)
T

∏
t=1

[πθ(at |st)E(st+1 |st, at)]

∇log p(τ |θ) = ∇θ[
T

∑
t=1

log πθ(at |st)]
E

∇θ𝔼τ[R(τ)] = 𝔼τ [R(τ)
T

∑
t=1

∇θlog πθ(at |st)]
From: http://joschu.net/docs/2016-bayareadlschool.pdf

http://joschu.net/docs/2016-bayareadlschool.pdf


Policy gradient derivation: III
 

•
Now we want to write this using , i.e. per-step returns 

• Use a similar argument to get a term for each step: 

•
 

• Sum over t and rearrange: 

•

∇θ𝔼τ[R(τ)] = 𝔼τ [R(τ)
T

∑
t=1

∇θlog πθ(at |st)]
Rt =

T

∑
t′￼=t

rt

∇θ𝔼[rt] = 𝔼[rt

t

∑
t′￼=1

log πθ(at′￼|st′￼)]

∇θ𝔼τ[R(τ)] =
T

∑
t=1

∇θlog πθ(at |st)Rt

From: http://joschu.net/docs/2016-bayareadlschool.pdf

http://joschu.net/docs/2016-bayareadlschool.pdf

