CS11-711 Advanced NLP Reinforcement Learning

Sean Welleck

https://cmu-l3.github.io/anlp-fall2025/ https://github.com/cmu-l3/anlp-fall2025-code

References: John Schulman's 2016 tutorial, David Silver's 2015 Lectures on RL

Recap: supervised fine-tuning

Example: (Instruction + input, output)

Recap: maximum likelihood

- Given dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
- Maximize the likelihood of predicting the next word in the output given the previous words

$$\mathcal{L}(y_{1:T}|x) = -\sum_{t} \log p_{\theta}(y_t|y_{< t}, x)$$

 Intuitively, learn to "imitate" behaviors in the provided dataset (and in doing so, generalize to new inputs)

Problem 1: task mismatch

We typically want a model to perform well at tasks

Language model

Task criterion

 $p(\text{probable response} | \text{prompt}) \approx$

Helpful response
Non-offensive response

p(probable solution | problem)

 \approx

Correct solution

Code that passes test cases

Problem 2: data mismatch

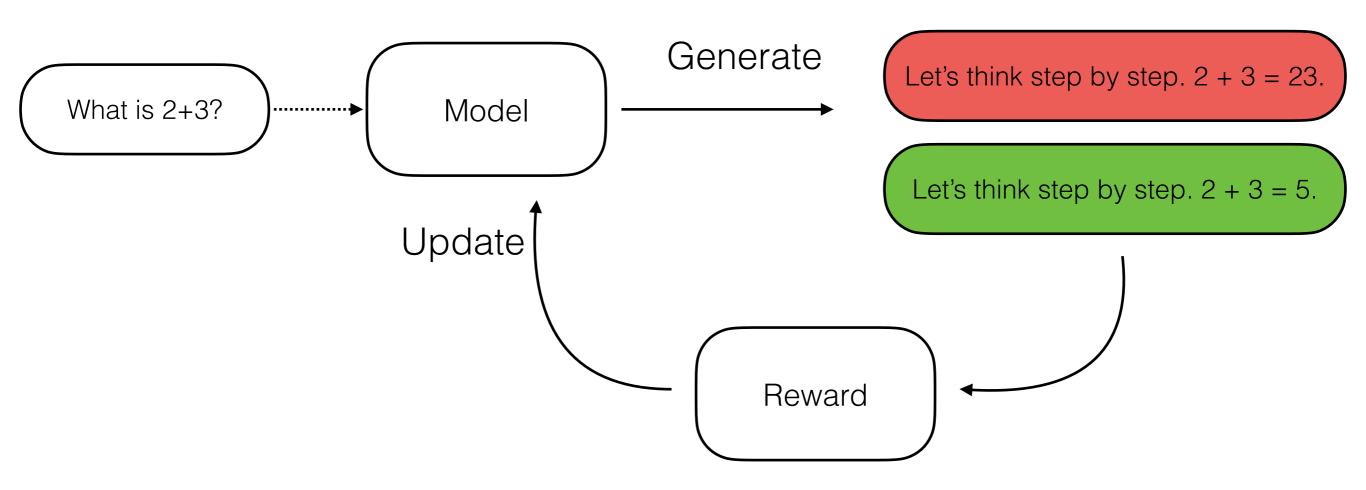
- Data often contains outputs we don't want
 - Toxic / offensive comments from Reddit
 - Buggy code
- We don't have much task-specific data
 - Chains of thought while solving problems
 - Helpful responses to all prompts

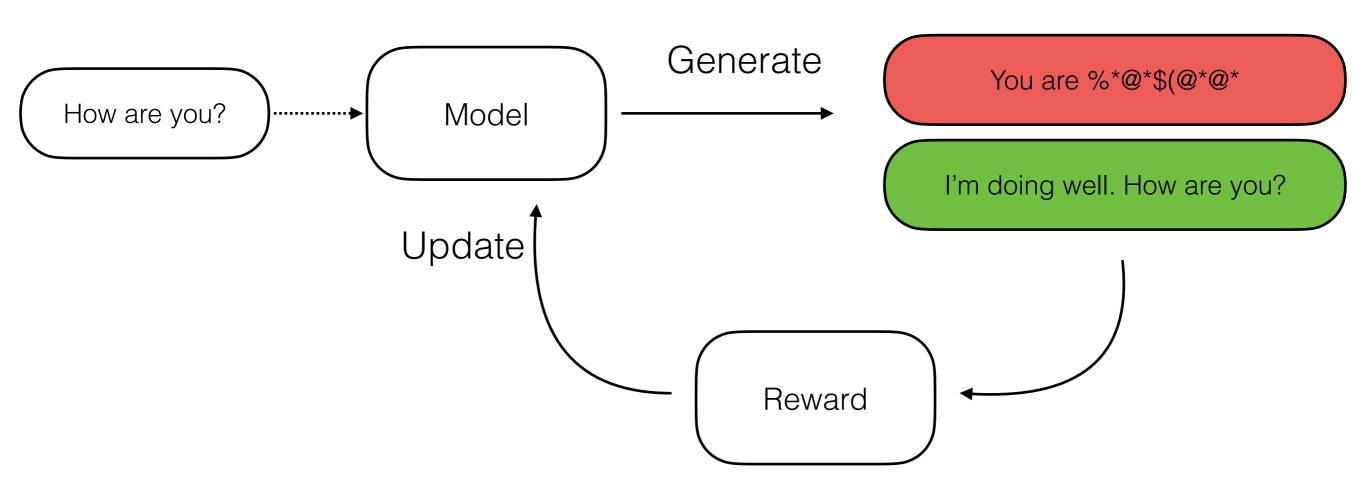
Problem 3: exposure bias

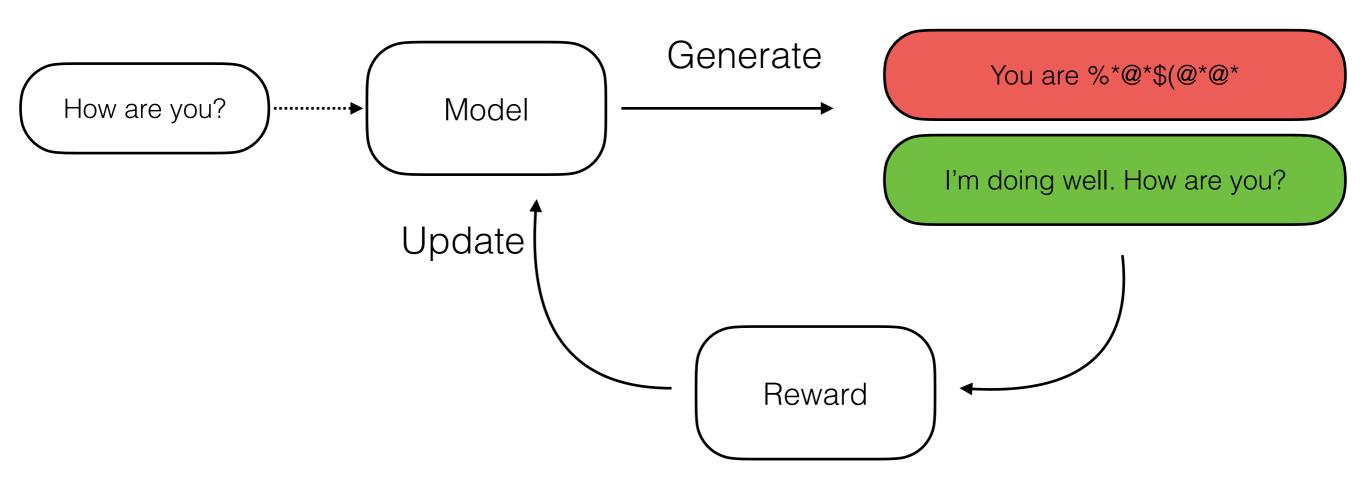
- The model is not exposed to mistakes during training, and cannot deal with them at test-time
 - E.g., make a mistake while solving a problem
 - E.g., click the wrong page while buying something online

Problem 3: exposure bias

- The model is not exposed to mistakes during training, and cannot deal with them at test-time
 - E.g., make a mistake while solving a problem
 - E.g., click the wrong page while buying something online

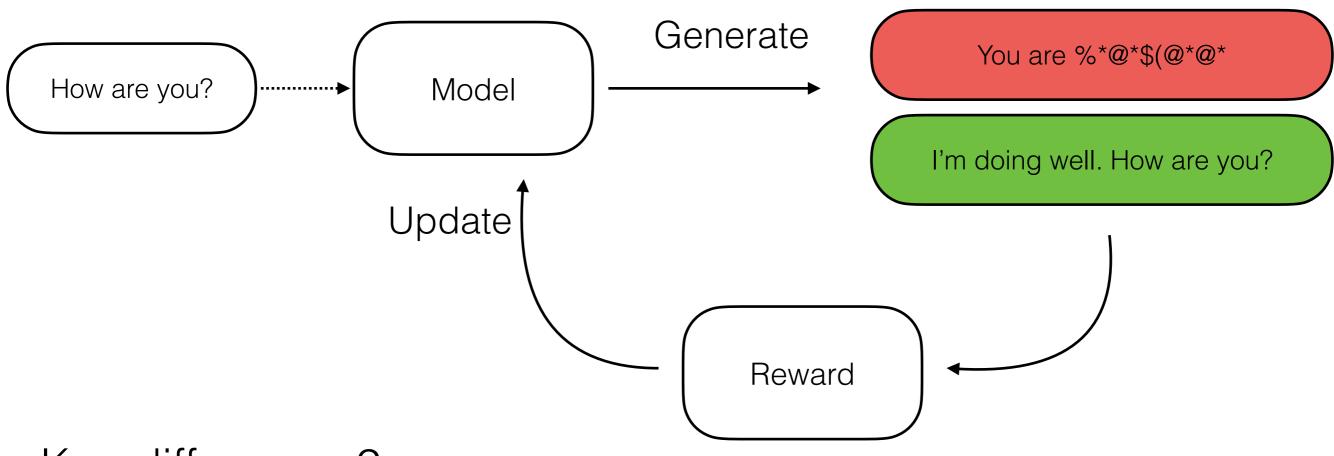






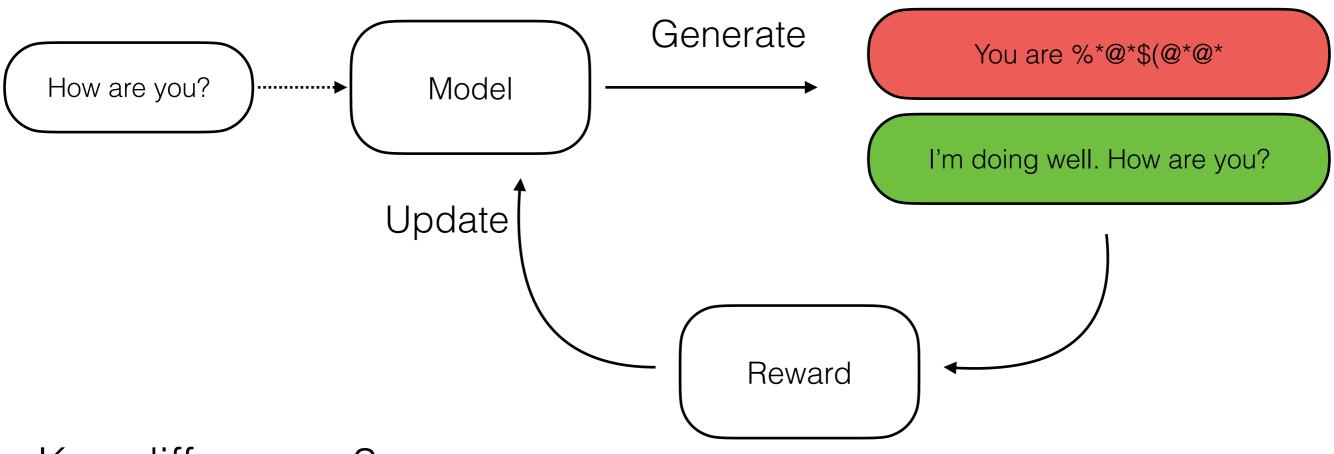
Key difference 1:

The task criteria is now directly optimized via the reward



Key difference 2:

 Data is generated by the model, and a reward tells us how to use the data for training



Key difference 3:

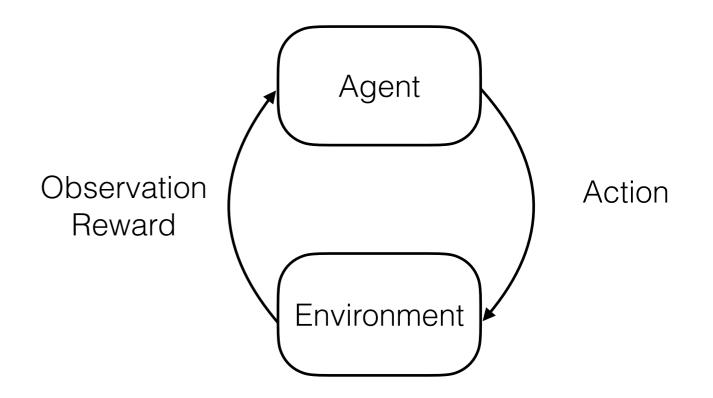
 Models can learn from any trajectory, so long as we can evaluate the trajectory's reward.

Today's lecture

- What is reinforcement learning?
- Policy gradient methods
- Next lecture:
 - Applications in NLP/LLMs
- Next next lecture:
 - Agents

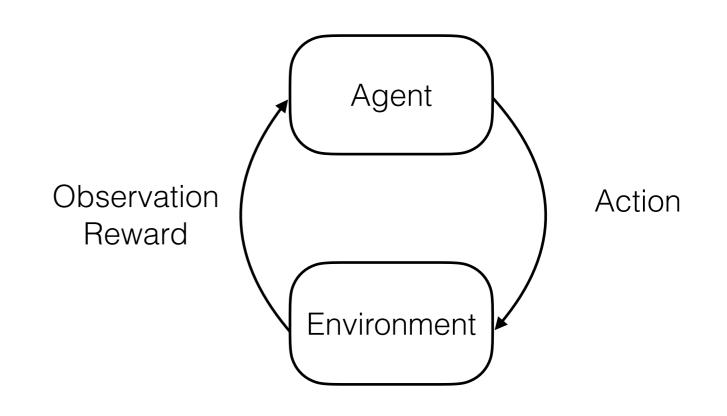
What is reinforcement learning (RL)?

- A branch of machine learning concerned with learning from interaction.
 - An agent interacts with an environment.
 - The agent learns what to do in order to maximize a reward signal.
- RL: A problem, a class of solutions, and a field that studies the problem/ solutions.

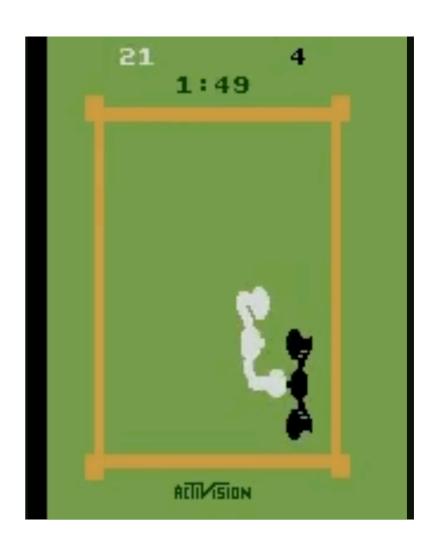


What is reinforcement learning (RL)?

- At each step the agent:
 - Receives observation
 - Receives scalar reward
 - Executes action
- The environment:
 - Receives action
 - Emits observation
 - Emits reward
- Agent tries to maximize reward



Example: playing Atari games



• Agent: plays the game

Observation: screen

• Actions: press buttons

• Rewards: score at the end of a game

Example: motor control and robotics

• Agent: the robot

• Observations: camera images, joint angles

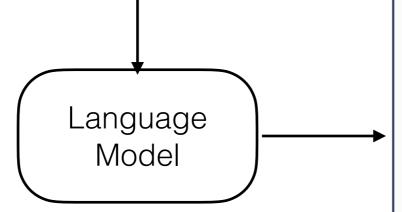
Actions: joint torques

• Rewards: stay balanced, move something to a target location, ...

Example: text generation

Question

Find the largest possible real part of $[(75 + 117i)z + \frac{96 + 144i}{z}]$ where z is a complex number with |z| = 4. Let's think step by step and output the final answer within $boxed\{\}$. Think for 3600 tokens.



- Agent: the language model
- Observations: sequence generated so far
- Actions: generate next token
- Rewards: is the final answer correct

Model Response

Thinking Process (not shown to user)

Okay, so I have this problem: I need to find the largest possible real part of the expression (75+117i)z+(96+144i)/z, where z is a complex number with |z|=4. Hmm, that seems a bit involved, but let's break it down step by step. First, let me understand what is given. We have a complex number z with magnitude 4, so z can be written in the form $z=4e^{i\theta}$, where θ is the argument of z. That might be useful because it allows us to express z in terms of its angle, which could simplify the expression.

The expression we need to consider is $(75 + 117i)z + \frac{96 + 144i}{z}$. We are asked to find the largest possible real part of this expression. So, let's denote the expression as $E = (75 + 117i)z + \frac{96 + 144i}{z}$.

[Reasoning process truncated for brevity ...]

Then, adding 104,976+186,624=291,600. $\sqrt{291,600}=\sqrt{2916*100}=\sqrt{2916*10}$. Now, $\sqrt{2916}$: let's see, $54^2=2916$, because $50^2=2500,54^2=2916$. So, $\sqrt{2916}=54$, thus $\sqrt{2916*100}=54*10=540$. So, that seems correct.

Therefore, the maximum value of Re(E) is 540.

Therefore, the largest possible real part is 540.

Given the expression $(75 + 117i)z + \frac{96 + 144i}{z}$ where z is a complex number with |z| = 4, we need to find the largest possible real part of this expression.

First, we express z as $4e^{i\theta}$ since |z|=4. Then, we substitute z and $\frac{1}{z}$ into the expression:

$$(75+117i)z + \frac{96+144i}{z}$$

[Output truncated for brevity ...] Thus, the largest possible real part is:

540

Correct Answer

540

Correctness

Formalism: MDPs and Policies

- Formalize the RL setting as a Markov Decision Process (MDP) (S, A, E, R):
 - S: state space
 - E.g. image of a screen
 - A: action space
 - E.g. Atari controller buttons
 - $E(s_{t+1} | s_t, a_t)$: environment transitions
 - E.g. Move to next screen after pressing a button
 - $R(s_t, a_t) \to \mathbb{R}$: reward function
 - E.g. Return the game score at each time step
- The agent takes actions using a *policy* π :
 - $\pi(a_t | s_t)$

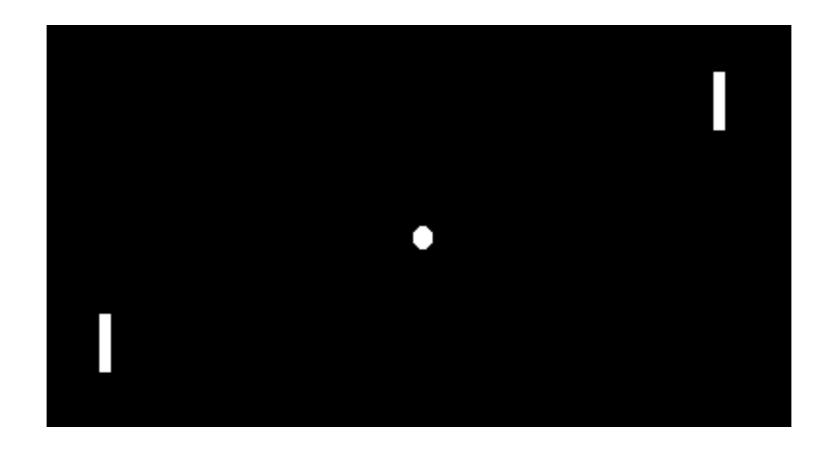
Formalism: MDPs and Policies

- The agent interacts with the environment until a terminal state is reached:
 - $s_0 \sim E$
 - $a_0 \sim \pi(a_0 | s_0)$
 - $s_1 \sim E(s_1 | s_0, a_0)$ • $r_1 = R(s_0, a_0)$
 - $a_1 \sim \pi(a_1 | s_1)$
 - ...
 - S_T, r_T

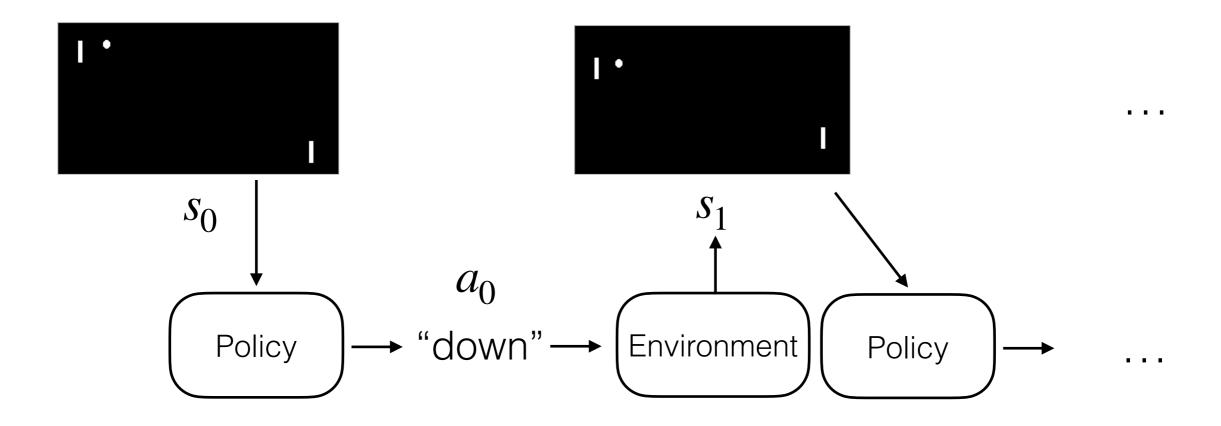
- - The sequence $\tau_{0:T} = (s_0, a_0, r_1, s_1, ..., r_T, s_T)$ is called an episode or a trajectory.

- Let $d_{ au_{\pi}}$ be the distribution of trajectories obtained by using policy π to interact with the environment
- Goal: find a policy that maximizes expected return, $\mathbb{E}_{d_{\tau_{\pi}}} \left[\sum_{t=0}^{T} r_{t} \right]$
 - Return: sum of future rewards

Example: Pong



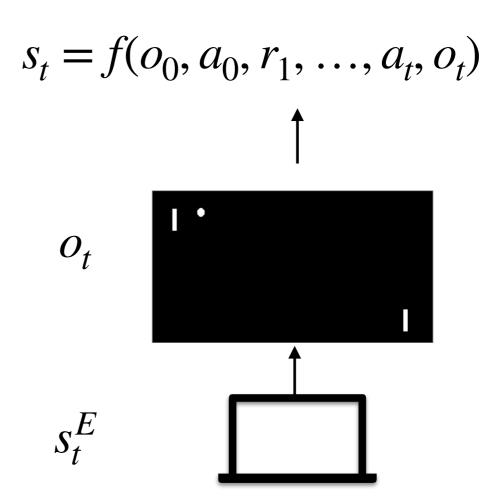
Example: Pong



- Play out a trajectory, $(s_0, a_0), (s_1, a_1), ..., s_T$
- Reward:
 - 0 for t < T
 - +1 if s_T is "win", -1 if s_T is "lose"

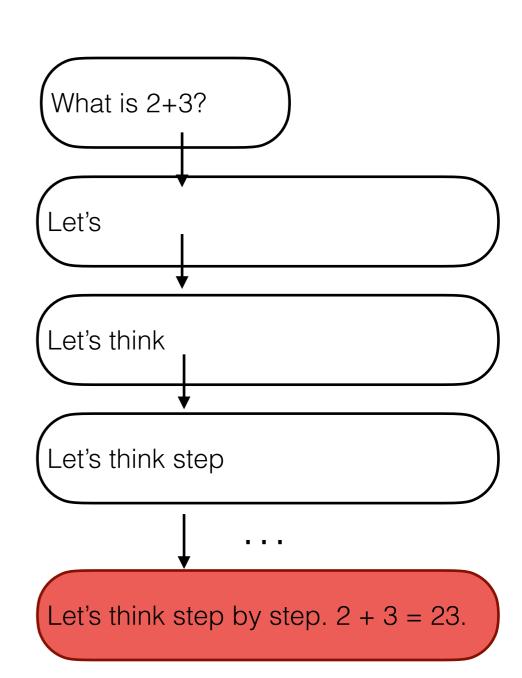
States and Observations

- Environment state s_t^E
 - The environment's private representation
- Observation o_t
 - The information visible to the agent.
- Agent state s_t
 - Whatever information the agent uses to pick the next action
 - Example: just use the current observation



Example 2: math problem solving

- State: a prompt and tokens-generatedso far
 - S_t : $(x, y_{\leq t})$
- Action: generate a token
 - $a_t : y_t$
- Policy: language model
 - $\cdot p_{\theta}(y_t | y_{< t}, x)$
- Environment: append token
 - $S_{t+1} : (x, y_{< t} \circ y_t)$
- Reward: is the final answer correct
 - $r(x, y_{1:t}) = 1$ if t = T and the answer in $y_{1:T}$ is correct; 0 otherwise.



Types of RL algorithms

- The agent typically includes at least one of the following:
 - Policy: agent's behavior function, e.g.:

$$\pi(a_t | s_t)$$

Value function: how good is each state (and/or action), e.g.:

$$v_{\pi}(s_t) = \mathbb{E}\left[\sum_{t'=t+1}^{T} r_{t'}\right]$$

• Model: agent's representation of the environment, e.g.:

$$e(r_{t+1}, s_{t+1} | s_t, a_t)$$

- Policy-based methods: learn a policy $\pi_{ heta}$ ------
- Value-based methods: involves learning a value function v_{ϕ}
- Model-based methods: involves learning a model e_{ψ}

We will focus on policy gradient methods. Some of them will learn a value function to stabilize training.

Summary: setup

- We have a Markov decision process (S, A, E, R)
- Goal: learn a policy that maximizes expected return

Today's lecture

- What is reinforcement learning?
- Next: Policy gradient methods

Policy gradient

Learn a policy that maximizes expected reward

$$\underset{\theta}{\operatorname{arg max}} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[R(\tau) \right]$$

- Let's use gradient descent?
 - Compute $\nabla_{\theta} J(\theta)$, then use SGD, Adam, etc...
- More tricky than expected, for instance what is $\nabla_{\theta} R(\tau)$?
- Solution: estimate the gradient using sampled trajectories

Score function gradient estimator ("REINFORCE" [Williams 1992])

• For a distribution $x \sim p$ and a function f(x):

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)] = \nabla_{\theta} \sum_{x} p_{\theta}(x) f(x)$$

$$= \sum_{x} \frac{p_{\theta}(x)}{p_{\theta}(x)} \nabla_{\theta} p_{\theta}(x) f(x)$$

$$= \sum_{x} p_{\theta}(x) \nabla_{\theta} \log p_{\theta}(x) f(x)$$
.....

$$\nabla_{\theta} \log p_{\theta}(x) = \frac{\nabla_{\theta} p_{\theta}(x)}{p_{\theta}(x)}$$

$$= \mathbb{E}_{x \sim p_{\theta}(x)} \nabla_{\theta} \log p_{\theta}(x) f(x)$$

$$pprox \nabla_{\theta} \log p_{\theta}(\hat{x}) f(\hat{x})$$
 where $\hat{x} \sim p_{\theta}$

- In summary, $\hat{g}_{\text{REINFORCE}} = f(\hat{x}) \, \nabla_{\theta} \log p_{\theta}(\hat{x})$

Policy gradient/REINFORCE

Let's apply it to RL! We get:

$$\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)] \approx \sum_{t=1}^{T} R_{t} \nabla_{\theta} \log \pi_{\theta}(\hat{a}_{t} | \hat{s}_{t})$$

where $R_t = \sum_{t'=t}^T r_t$ is the return and $\hat{a}_1, \hat{s}_1, \hat{r}_1, \ldots$ is a trajectory sampled with π_{θ}

- When R_t is high, push up the probability $\pi_{\theta}(a_t \mid s_t)$
- When R_t is low, push down the probability $\pi_{\theta}(a_t \mid s_t)$

Note: this skips a derivation; see Appendix slides

Putting it all together (Vanilla Policy Gradient / REINFORCE)

For iteration 1, 2, ... do:

1. Collect trajectories

$$\cdot$$
 $(s_0, a_0, r_1), (s_1, a_1, r_2), ..., (s_{T-1}, a_{T-1}, r_T)$

2. Compute returns

$$\cdot \quad R_t = \sum_{t'=t+1}^T r_{t'}$$

The gradient of this loss equals the policy gradient $\nabla_{\theta} \mathcal{L}_{PG} = -\sum_{t} R_{t} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t})$

3. Policy gradient loss

$$\mathcal{L}_{PG} = -\sum_{t} R_{t} \log \pi_{\theta}(a_{t} | s_{t})$$

4. Update the policy with back-propagation and SGD/Adam

Example (CartPole)


```
Initial state: [-0.04058227 0.04756223 0.02611397 0.02860643]
Step 1:
 Action: 0 (LEFT)
 Reward: 1.0
 Next state: [-0.03963102 -0.14792429 0.0266861 0.32941288]
 Done: False
Step 2:
 Action: 0 (LEFT)
 Reward: 1.0
 Next state: [-0.04258951 -0.34341577 0.03327436 0.63039047]
 Done: False
Step 3:
 Action: 1 (RIGHT)
 Reward: 1.0
 Next state: [-0.04945782 -0.14877352 0.04588217 0.34836957]
  Done: False
```

```
class Policy(nn.Module):
    def __init__(self):
        super(Policy, self).__init__()
        self.affine1 = nn.Linear(4, 128)
        self.dropout = nn.Dropout(p=0.6)
        self.affine2 = nn.Linear(128, 2)

def forward(self, x):
        x = self.affine1(x)
        x = self.dropout(x)
        x = F.relu(x)
        action_scores = self.affine2(x)
        return F.softmax(action_scores, dim=1)
```

Example (CartPole)

```
for i_episode in range(num_episodes):
   state, _ = env.reset()
   ep reward = 0
   # 1. Collect an episode trajectory
   log_probs, rewards = [], []
   for t in range(1, max_steps_per_episode):
       state = torch.tensor(state).unsqueeze(0)
       probs = policy(state)
       p = Categorical(probs)
       action = p.sample()
       log_prob = p.log_prob(action)
       state, reward, terminated, truncated, _ = env.step(action.item())
       log_probs.append(log_prob)
       rewards.append(reward)
       ep_reward += reward
       if terminated or truncated:
```

```
# 2. Compute returns
returns = deque()
R = 0
for r in rewards[::-1]:
    R = r + discount_gamma * R
    returns.appendleft(R)
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + EPS)

# 3. Compute loss
log_probs = torch.cat(log_probs)
policy_loss = -(log_probs*returns).sum()

# 4. Update policy
optimizer.zero_grad()
policy_loss.backward()
optimizer.step()
```

Example (CartPole)

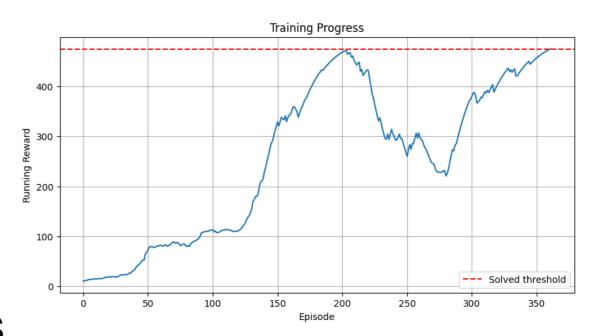
https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl

Today's lecture

- What is reinforcement learning?
- Policy gradient methods
- Next: Stabilizing learning

Stabilizing learning

- "Vanilla" policy gradient:
 - $\hat{g}_t = R_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$
- Can we do better?
 - Re-weight the gradients
 - Control step size



Discounting

- There are delays between taking actions and receiving reward
 - Discounted return: sum of future rewards, discounted by how far it is in the future

$$R_{t} = \sum_{t'=t+1}^{T} \gamma^{t'-t-1} r_{t'}$$

• Example: suppose we only receive +1 at the end. We discount using a factor of $\gamma = 0.9$:

$$a_1$$
 a_2 a_3 a_4 a_5 a_6 0.59 0.66 0.73 0.81 0.9 1 $+1$

Strategy 1: weight the gradients better

Baselines

Estimate of the expected reward for a given state.

	Reward	<u>Baseline</u>	<u>B - R</u>
"Summarize this paper:"	8.0	0.75	0.05
"Summarize this paper:"	0.3	0.75	-0.45
"Prove this theorem:"	0.3	0.10	0.20

 Subtracted from the actual reward to determine how good a particular action was relative to what was expected

Baselines

$$\hat{g}_t = (R_t - b(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

A good choice is the expected return:

$$b(s_t) \approx \mathbb{E} \left[\sum_{t'=t+1}^{T} \gamma^{f(t')} r_{t'} \right] \quad \begin{array}{l} \text{Quiz: we saw this function} \\ \text{earlier; what is it called?} \end{array}$$

 Intuition: increase log-prob of action based on how much better the action is than expected

Advantages

$$\hat{g}_t = A_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Baseline

$$\bullet \ \hat{A}_t = (R_t - v(s_t))$$

Temporal difference (TD) residual [Sutton & Barto 1998]

•
$$\hat{A}_t = \delta_t = r_t + \gamma v(s_{t+1}) - v(s_t)$$

Generalized advantage estimation [Schulman et al 2015]

$$\hat{A}_t = \sum_{l} (\gamma \alpha)^l \delta_{t+l}^{\nu}$$

- Baselines and TD residual are special cases
- Other techniques covered in the next lecture

Large updates

- Updates are noisy, so a large update can derail things
 - Mitigation: don't move the policy too much at once
- Example: Proximal policy optimization (PPO) [Schulman et al 2017]

$$\operatorname{ratio}(x, y) = \frac{p_{\theta}(y \mid x)}{p_{\theta_{old}}(y \mid x)}$$

 $L_{PPO} = \min \left(\text{ratio}(x, y) A(x, y), \text{ clip}(\text{ratio}(x, y), 1 - \epsilon, 1 + \epsilon) A(x, y) \right)$

Putting it all together

For iteration 1, 2, ... do:

1. Collect trajectories

 \cdot $(s_0, a_0, r_1), (s_1, a_1, r_2), ..., (s_{T-1}, a_{T-1}, r_T)$

2. Compute advantages

• May involve a baseline, a value function $v(s_t)$, discounting, etc.

3. Compute loss

- Policy gradient loss, PPO loss
- 4. Update the policy with back-propagation and SGD/Adam

Code example

Baseline: a learned value function $v_{\phi}(s_t)$

```
class VF(nn.Module):
    def __init__(self):
        super(VF, self).__init__()
        self.affine1 = nn.Linear(4, 128)
        self.affine2 = nn.Linear(128, 1)

def forward(self, x):
    x = self.affine1(x)
    x = F.relu(x)
    v = self.affine2(x)
    return v
```

```
# 1. Collect an episode trajectory
log_probs, rewards, values = [], [], []
for t in range(1, max_steps_per_episode):
    state = torch.tensor(state).unsqueeze(0)
    probs = policy(state)
v = vf(state)
```

```
# 2. Compute returns
returns = deque()
R = 0
for r in rewards[::-1]:
    R = r + discount_gamma * R
    returns.appendleft(R)

returns = torch.tensor(returns)
adv = torch.tensor(returns)
for i, v in enumerate(values):
    adv[i] -= v.item()

# 3. Compute loss
log_probs = torch.cat(log_probs)
policy_loss = -(log_probs*adv).sum()
values = torch.cat(values)
vf_loss = F.mse_loss(values, returns.unsqueeze(1))
```

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/15_rl/pg_vf.ipynb

Next lecture: RL from human feedback (RLHF)

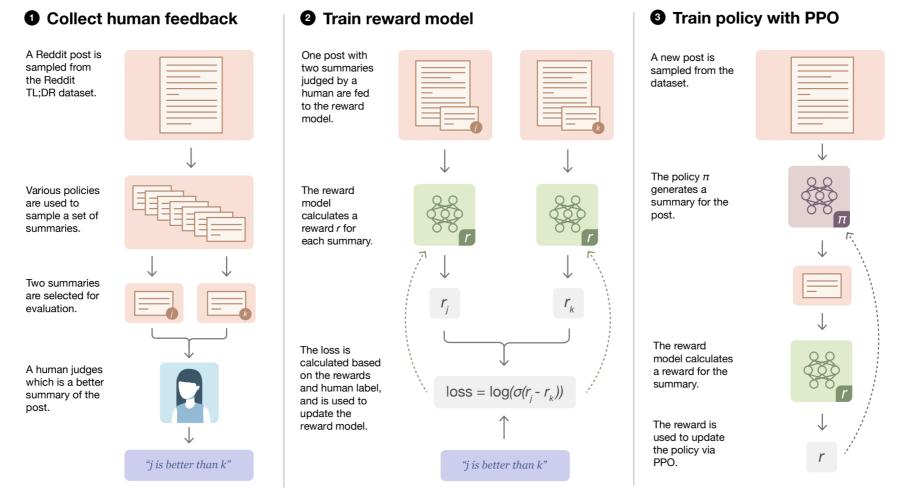
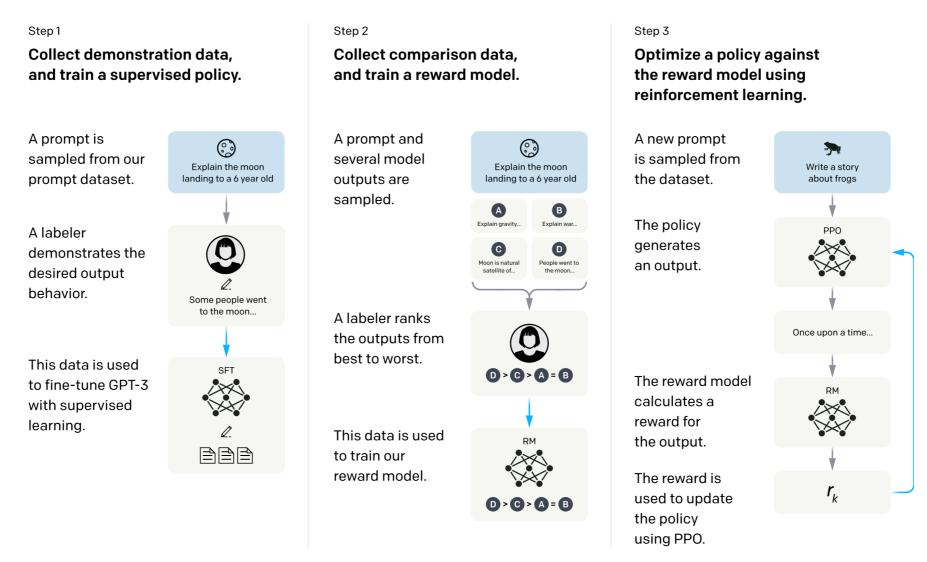


Figure 2: Diagram of our human feedback, reward model training, and policy training procedure.

- Policy: given prompt x, generate response $y_{1:T}$
- Basic MDP, preference reward, PPO

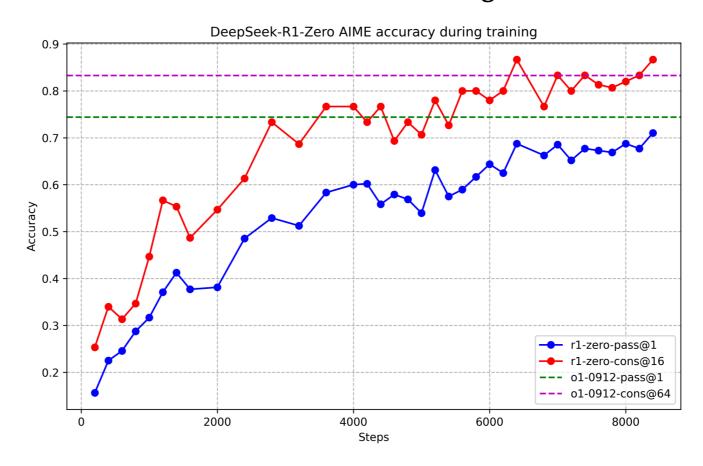
Next lecture: RL from human feedback (RLHF)



- Policy: given prompt x, generate response $y_{1:T}$
- Basic MDP, preference reward, PPO

Next lecture: RL with verifiable rewards (RLVR)

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning



- Policy: given problem x, generate chain of thought + answer
- 1-step MDP, 0/1 rule-based reward, PPO with outputaverage baseline ("GRPO")

Thank you

Policy gradient derivation: I

Recall that the score function estimator is:

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)] = \mathbb{E}_{x \sim p_{\theta}(x)} \nabla_{\theta} \log p_{\theta}(x) f(x)$$

• Apply it to the distribution $p(\tau | \theta)$, defined on the next slide, and the function $R(\tau) = \sum_{t=1}^{T} r_t$:

•
$$\nabla_{\theta} \mathbb{E}_{\tau \sim p(\tau \mid \theta)}[R(\tau)] = \mathbb{E}_{\tau} \left[\nabla_{\theta} \log p(\tau \mid \theta) R(\tau) \right]$$

From: http://joschu.net/docs/2016-bayareadlschool.pdf

Policy gradient derivation: II

$$\nabla_{\theta} \mathbb{E}_{\tau \sim p(\tau \mid \theta)}[R(\tau)] = \mathbb{E}_{\tau} \left[\nabla_{\theta} \log p(\tau \mid \theta) R(\tau) \right] (*)$$

$$p(\tau | \theta) = E(s_0) \prod_{t=1}^{T} [\pi_{\theta}(a_t | s_t) E(s_{t+1} | s_t, a_t)]$$

•
$$\nabla \log p(\tau | \theta) = \nabla_{\theta} \left[\sum_{t=1}^{T} \log \pi_{\theta}(a_t | s_t) \right]$$

- Take the \log , the E terms are 0 after taking the gradient
- Plugging this into (*) and moving the gradient inside the sum:

$$\mathbf{\nabla}_{\theta} \mathbb{E}_{\tau}[R(\tau)] = \mathbb{E}_{\tau} \left[R(\tau) \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) \right]$$

From: http://joschu.net/docs/2016-bayareadlschool.pdf

Policy gradient derivation: III

$$\nabla_{\theta} \mathbb{E}_{\tau}[R(\tau)] = \mathbb{E}_{\tau} \left[R(\tau) \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) \right]$$

- Now we want to write this using $R_t = \sum_{t'=t}^{I} r_t$, i.e. per-step returns
- Use a similar argument to get a term for each step:

$$\nabla_{\theta} \mathbb{E}[r_t] = \mathbb{E}[r_t \sum_{t'=1}^t \log \pi_{\theta}(a_{t'} | s_{t'})]$$

• Sum over *t* and rearrange:

$$\nabla_{\theta} \mathbb{E}_{\tau}[R(\tau)] = \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) R_{t}$$

From: http://joschu.net/docs/2016-bayareadlschool.pdf