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Recap: supervised fine-tuning

C Instruction following )

>
Fine-tuned
Model

Example:
(Instruction + input, output)



Recap: maximum likelihood

o Given dataset D = {(x(i),y(i)) }fil

* Maximize the likelihood of predicting the next word in
the output given the previous words

LX) == ) 1og py(y,| yepx)
[

* Intuitively, learn to “imitate” behaviors in the provided
dataset (and in doing so, generalize to new inputs)



Problem 1: task mismatch

* We typically want a model to perform well at tasks

Language model

p(probable response | prompt)

p(probable solution | problem)

&

ny
ny/

Task criterion

Helpful response
Non-offensive response

Correct solution

Code that passes test cases



Problem 2: data mismatch

* Data often contains outputs we don’t want
e Toxic / offensive comments from Reddit

 Buggy code

 We don't have much task-specific data
* Chains of thought while solving problems

* Helpful responses to all prompts



Problem 3: exposure bias

* [he model is not exposed to mistakes during
training, and cannot deal with them at test-time

 £.g., make a mistake while solving a problem

 E.9., click the wrong page while buying
something online
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Today: reinforcement learning

CWhat |S 2+3’?) .............. > Model >

Update&
( Reward ) J




Today: reinforcement learning

CHOW are you?) .............. > Model >

Updatek
( Reward ) J




Today: reinforcement learning

CHOW are you?) .............. > Model >
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Update

Key difference 1:

* The task criteria is now directly optimized via the reward



Today: reinforcement learning

CHOW are you?) .............. > Model >

= _

Update

Key difference 2:

 Data is generated by the model, and a reward tells us how
to use the data for training



Today: reinforcement learning

CHOW are you?) .............. > Model >

= _

Update

Key difference 3:

 Models can learn from any trajectory, so long as we can
evaluate the trajectory’s reward.



Today's lecture

What is reinforcement learning®?
Policy gradient methods

Next lecture:

* Applications in NLP/LLMs
Next next lecture:

 Agents



What is reinforcement learning (RL)?

* A branch of machine
learning concerned with

learning from interaction.
( Agent

* An agentinteracts with an
environment.

Observation Action
Reward

* The agent learns what to
Environmea

do In order to maximize a
reward signal.

 RL: A problem, a class of
solutions, and a field that
studies the problem/
solutions.



What is reinforcement learning (RL)?

e At each step the agent:
e Receives observation
* Receives scalar reward
e EXxecutes action
* The environment:
e Receives action
e Emits observation
e Emits reward

e Agent tries to maximize reward

Observation
Reward

( Agent
Environmea

Action



Example: playing Atarl games

s lisIoN

* Agent: plays the game

e Observation: screen

e Actions: press buttons

 Rewards: score at the end of a game



Example: motor control and robotics

* Agent: the robot
» Observations: camera images, joint angles

e Actions: joint torques

* Rewards: stay balanced, move something to a target location, ...



Example: text generation

Model Response

Find the largest possible real part of [(75 + 117i)z + %t144] where z is a

complex number with |z| = 4. Let’s think step by step and output the final
answer within boxed {} Think for 3600 tokens. Okay, so I have this problem: I need to find the largest possible real part of

the expression (75 + 117i)z + (96 + 144i)/z, where z is a complex number with
|z| = 4. Hmm, that seems a bit involved, but let’s break it down step by step.
First, let me understand what is given. We have a complex number z with
magnitude 4, so z can be written in the form z = 469 where 0 is the argument
of z. That might be useful because it allows us to express z in terms of its angle,
which could simplify the expression.

The expression we need to consider is (75 + 117i)z + %+TM4’. We are asked
to find the largest possible real part of this expression. So, let’s denote the

expression as E = (75 + 117i)z + 264144
La N g ua g S > [Reasoning process truncated for breizity .|
M Od el Then, adding 104,976 + 186,624 = 291,600. /291,600 = /2916 * 100 =

v/2916 % 10. Now, v/2916: let’s see, 54 = 2916, because 50° = 2500, 542 = 2916.
So, /2916 = 54, thus /2916 % 100 = 54 x 10 = 540. So, that seems correct.
Therefore, the maximum value of Re(E) is 540.

Therefore, the largest possible real part is 540.

Given the expression (75 + 117i)z + 96"'7“‘41' where z is a complex number with
|z| = 4, we need to find the largest possible real part of this expression.

First, we express z as 4¢' since |z| = 4. Then, we substitute z and 1 into the
expression:

(75 +1173)z 4 212

[Output truncated for brevity ...]

° Agen’[: the |anguage model Thus, the largest possible real part is:
» Observations: sequence generated so far
Correct Answer
e Actions: generate next token 540
 Rewards: is the final answer correct

v Correct




Formalism: MDPs and Policies

« Formalize the RL setting as a Markov Decision Process (MDP) (S, A, E, R):
. S state space
 E.g. image of a screen
« A: action space
e E.g. Atari controller buttons
« E(s.|s,a,): environment transitions
e E.g. Move to next screen after pressing a button
« R(s,,a,) = R:reward function
* E.g. Return the game score at each time step
« [he agent takes actions using a policy r:

o ﬂ(dt | St)



Formalism: MDPs and Policies

* The agent interacts with the environment until a terminal state is reached:

° SONE

Clo ~ ﬂ(a |S )
010 The sequence

s Elilsed) %1 = (89 Ggs 71> 515 +-» 77> 57)
. 11 = R(sy, ap) s called an episode or a
trajectory.
» ay ~ n(ay|sy)
d ST’ FT

. Letd, be the distribution of trajectories obtained by using policy z to interact with the
environment

T
Goal: find a policy that maximizes expected return, [ Z 9

=1

e Return: sum of future rewards



Example: Pong




Example: Pong

50 l S \
A
dy
( Policy )-» “‘down” — Gnvironmera[ Policy ]-»

. Play out a trajectory, (8, ag), (51, @1), -, ST

e Reward:
e Ofort< T

e +1ifspis “win”, —1if s7is “lose”



States and Observations

E

« Environment state s,

e The environment’s private St = f(O(), Ao, 115 -5 Ay O,)

T

representation

 Observation o,

* The information visible to the 0,
agent.

« Agent state s,

e \Whatever information E
the agent uses to pick Sy
the next action

 Example: just use the
current observation



Example 2: math problem solving

State: a prompt and tokens-generated-
so far What is 2+3?
|
St : (X, y<t) l
Action: generate a token ( )
4y Yy
- Policy: language model G ts thlﬂk )
- PoVi | Y X)
Environment: append token ( et’s think step )

o Spyp (Yo W)

Reward: is the final answer correct —
e 17(x,y;.,.) =1ift =T and the answer

in yq.7 s correct; O otherwise.




Types of RL algorithms

 The agent typically includes at least one of the following:

» Policy: agent’s behavior function, e.9.:

r(a,ls,)

 Value function: how good is each state (and/or action), e.g.:

v.(s) =L

 Model: agent’s representation of the environment, e.g.:

T

>

| t'=t+1

e(Tip1oSep1 51 ap)

o Policy-based methods: learn a policy Ty e

« Value-based methods: involves learning a value function Vi

« Model-based methods: involves learning a model e

W

We will focus on policy
gradient methods. Some
of them will learn a value

function to stabilize
training.



sSummary: setup

« We have a Markov decision process (3, A, E, R)

 (Goal: learn a policy that maximizes expected return



Today's lecture

* What is reinforcement learning??

* Next: Policy gradient methods



Policy gradient

Learn a policy that maximizes expected reward

argmax k£, [R(T)] ‘

0
J(O)

Let’'s use gradient descent?

» Compute V,J(0), then use SGD, Adam, etc...
More tricky than expected, for instance what is VoR(7)?

Solution: estimate the gradient using sampled trajectories
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Policy gradient/REINFORCE

* Let's apply itto RL! We get:

T
VoE, . [R(7)] » Z R, Vylog y(a,|s,)

=1

T

where R, = Z r,is the return and a,, §, 'y, ... is a trajectory

t'=t
sampled with 7,

« When R, is high, push up the probability z,(a, | s,)

« When R, is low, push down the probability z,(a, | s,)

Note: this skips
a derivation; see Appendix slides



Putting it all together (Vanilla Policy Gradient / REINFORCE)

For iteration 1, 2, ... do:

1. Collect trajectories

(S()a a()a rl)a (Sla ala Vz), s (ST—la aT_la rT)

2. Compute returns

T The gradient of this loss equals the
R, = Z vy policy gradient
'=t+1 VHQCZPG = — Z RtVQIOg ﬂe(at | St)

3. Policy gradient loss

*
.
.
*
.
.
“
.

.
*
*
.
.
*
o*
.

4. Update the policy with back-propagation and SGD/Adam



Example (CartPole

Initial state Step 1: LEFT

Initial state: [-0.04058227 0.04756223 0.02611397 0.02860643]

Step 1:
Action: @ (LEFT)
Reward: 1.0
Next state: [-0.03963102 -0.14792429 0.0266861 ©0.32941288]
Done: False

Step 2:
Action: @ (LEFT)
Reward: 1.0
Next state: [-0.04258951 -0.34341577 0.03327436 0.63039047]
Done: False

Step 3:
Action: 1 (RIGHT)
Reward: 1.0
Next state: [-0.04945782 -0.14877352 0.04588217 0.34836957]
Done: False

Step 2: LEFT Step 3: RIGHT

class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__ ()
self.affinel = nn.Linear(4, 128)
self.dropout = nn.Dropout(p=0.6)
self.affine2 = nn.Linear(128, 2)

forward(self, x):
x = self.affinel(x)
x = self.dropout(x)
x = F.relu(x)

action_scores = s
return F.softmax(

elf.affine2(x)
action_scores, dim=1)

https://github.com/cmu-I3/anlp-tall2025-code/tree/main/15_rl



https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl

Example (CartPole

)r i_episode in range(num_episodes):
state, _ = env.reset()
ep_reward = 0 returns = deque()

~ r in rewards[::-1]:

log_probs, rewards = [1, [I] R = r + discount_gamma * R

for t in range(1, max_steps_per_episode):
state = torch.tensor(state).unsqueeze(0) returns.appendleft(R)
probs = policy(state) returns = torch.tensor(returns)

p = Categorical(probs) returns = (returns - returns.mean()) / (returns.std() + EPS)
action = p.sample()

log_prob = p.log_prob(action)

log_probs = torch.cat(log_probs)
policy_loss = —-(log_probsxreturns).sum()

state, reward, terminated, truncated, _ = env.step(action.item())

log_probs.append(log_prob)
rewards.append(reward)
ep_reward += reward

if terminated or truncated:
-~ |

optimizer.zero_grad()
policy_loss.backward()
optimizer.step()

https://github.com/cmu-I3/anlp-tall2025-code/tree/main/15_rl



https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl

Example (CartPole)

CartPole Episode (Reward: 200.0, Steps: 200)

Action: O RIGHT

https://github.com/cmu-I3/anlp-tall2025-code/tree/main/15_rl



https://github.com/cmu-l3/anlp-fall2025-code/tree/main/15_rl

Today's lecture

* What is reinforcement learning??
* Policy gradient methods

* Next. Stabilizing learning



Stabilizing learning

 “Vanilla” policy gradient:

» 8= R, Vylog my(a,|s;) -

e Can we do better?

e Re-weight the gradients =

o Control step size



Strategy 1: weight the
gradients better

Discounting

* There are delays between taking actions and receiving reward

* Discounted return: sum of future rewards, discounted by
how far it is in the future

T
— t'—t—1
R, = Z Y r,

t'=t+1

* Example: suppose we only receive +1 at the end. We
discount using a factor of y = 0.9:

d1 do A3 4d4 4ads 4as
059066 0.73 0.81 09 1 +1



Strategy 1: weight the
gradients better

Baselines

* Estimate of the expected reward for a given state.

“Summari
“Summari

ze 1
ze 1

i

A

IS paper: ..
IS paper: ..
"Prove this theorem: ...”

r

r

Reward Baseline B-R

0.8 0.75
0.3 0.75 -0.45
0.3 0.10

e Subtracted from the actual reward to determine how good
a particular action was relative to what was expected



Strategy 1: weight the
gradients better

Baselines

g.=(R,—b(s)) Vplog m,(a,|s,)

* A good choice is the expected return:

by ~E| Y PO,

* Intuition: increase log-prob of action based on how
much better the action is than expected



Advantages

g, = A, Vglog mya,|s,)

e Baseline
. A, = (R, —(s,))

e Temporal difference (TD) residual [Sutton & Barto 1998]
e A, =0, =1+ yv(s, ) — v(s,)

* Generalized advantage estimation [Schulman et al 2015]
A [
A= 2 G'sy,
l

 Baselines and TD residual are special cases

e Other technigques covered in the next lecture

Strategy 1: weight the
gradients better



Strategy 2: control the
step-size better

| arge updates

 Updates are noisy, so a large update can derail things

« Mitigation: don't move the policy too much at once

» Example: Proximal policy optimization (PPO) [Schulman et al 2017]

Po(y [ x)
Po,, (V] x)
Lppo = min (ratio(x, y)A(x, y), clip(ratio(x, y),1 — €,1 + €)A(x, y))

ratio(x, y) =



Putting it all together

For iteration 1, 2, ... do:

1. Collect trajectories

(S()a a()a rl)a (Sla ala Vz), s (ST—la aT_la rT)
2. Compute advantages

« May involve a baseline, a value function v(s,), discounting, etc.

3. Compute loss

e Policy gradient loss, PPO loss

4. Update the policy with back-propagation and SGD/Adam



Code example
Baseline: a learned value function v¢(st)

# 1. Collect an episode trajectory
log_probs, rewards, values = [], [1, []
for t in range(1l, max_steps_per_episode):

class VF(nn.Module): staEe f tO{gh.tensor(state).unsqueeze(@)
def __init_ (self): probs: = policy\state)
super(VF, self).__init__ () P
self.affinel = nn.Linear(4, 128)
self.affine2 = nn.Linear(128, 1) # 2. Compute returns
returns = deque()
def forward(self, x): F;o; ?‘ in rewards[::-1]:
x = self.affinel(x) R = r + discount_gamma * R
X = F.relu(x) returns.appendleft(R)
v = self.affine2(x)
AT W returns = torch.tensor(returns)

adv = torch.tensor(returns)
for i, v in enumerate(values):
adv[i] -= v.item()

# 3. Compute loss

log_probs = torch.cat(log_probs)

policy_loss = —(log_probsxadv).sum()

values = torch.cat(values)

vf_loss = F.mse_loss(values, returns.unsqueeze(1))

https://github.com/cmu-I3/anlp-fall2025-code/blob/main/15_rl/
0Qg_Vi.ipynb


https://github.com/cmu-l3/anlp-fall2025-code/blob/main/15_rl/pg_vf.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/15_rl/pg_vf.ipynb

Next lecture: RL from human
feedback (RLHF)

© Collect human feedback

A Reddit post is
sampled from
the Reddit
TL;DR dataset.

Various policies
are used to
sample a set of
summaries.

Two summaries
are selected for

evaluation.

A human judges
which is a better
summary of the
post.

\)

“j is better than k”

© Train reward model

One post with
two summaries
judged by a
human are fed
to the reward

model.
The reward
model
calculates a
reward r for T
each summary. | [
A \L
r.
J
: L
The loss is , l
calculated based

on the rewards
and human label,
and is used to
update the
reward model. T

loss = Iog(a(r/.— r.)

“j is better than k”

© Train policy with PPO

A new post is
sampled from the
dataset.

The policy
generates a
summary for the

post.

The reward
model calculates
a reward for the
summary.

The reward is
used to update
the policy via
PPO. r

Figure 2: Diagram of our human feedback, reward model training, and policy training procedure.

o Policy: given prompt x, generate

 Basic MDP, preference reward, PPO

Ziegler et al 2019, Stiennon et al 2020

'esponse yy.r



Step 1

Collect demonstration data,
and train a supervised policy.

Step 2

LHF

Collect comparison data,
and train a reward model.

Step 3

Next lecture: RL from human
feedback

Optimize a policy against
the reward model using
reinforcement learning.

A promptis A prompt and A new prompt ™
sampled from our Eolain several model 2 is sampled from A
xplain the moon Explain the moon Write a story
prom pt dataset. landing to a 6 year old OUtpUtS are landing to a 6 year old the dataset. about frogs
sampled.
o © .
A Iabeler Explain gravity... Explain war... The pollcy .PPO.
demonstrates the @ . o 1. IQ generates N
desired output > satelitao.. ooz an output. w
behavior. Some pe(;ple went
o the moon... A labeler ranks
\ the outputs from @ DL E T
: : ‘ best to worst.
This datais used — 0-0-0-0
to fine-tune GPT-3 2R The reward model M
. . . 0 o
with supervised N | calculates a SR
learning. 2 reward for .\\5.2//.
_ i i [ i ]
228 This data is used o the output.
to train our 058,
o/)?o?\\o .
reward model. w The reward is
0-0-0:-0 used to update l
the policy
using PPO.

 Policy: given prompt X, generate response y;.r

* Basic MDP, preterence reward, PPO

Ouyang et al 2022



Next lecture: RL with verifiable
rewards (RLVR)

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

DeepSeek-R1-Zero AIME accurac y during training

o Policy: given problem x, generate chain of thought + answer

e 1-step MDP, 0/1 rule-based reward, PPO with output-
average baseline (“GRPO”)



Thank you



Policy gradient derivation: |

Recall that the score function estimator Is:

Vb pre(x)[f ()] =L X~p(X) Vlog pg(x)f(x)

 Apply it to the distribution p(7| @), defined on the
T

next slide, and the function R(7) = Z r,

=1

o VoE.pwip[R(@)] = E, | Vglog p(z| OR(7))

From: http://joschu.net/docs/2016-bayareadlschool.pdf



http://joschu.net/docs/2016-bayareadlschool.pdf

Policy gradient derivation: |l

VQ[ETNp(Tlﬁ)[R(T)] — [ET [V@lng(Tlg)R(T)] (%)

T
p(|0) = EGsp) | | [7oa,| s)ECs,,1 5]
=1

T
_ Viogp(z|0) =V, | D’ logmya,s)
=1

« Take the log, the E terms are O after taking the gradient

Plugging this into (*) and moving the gradient inside the sum:

T
 VYER@] =E, [R() ) Vylogmya,|s)

=1 i
From: http://joschu.net/docs/2016-bayareadlschool.pdf
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Policy gradient derivation: |l

T
VoEIR@)] =E, |R(x) ) Vlogzya,s)

=1

T
Now we want to write this using R, = Z 1, 1.e. per-step returns

t'=t

Use a similar argument to get a term for each step:

_ V4E[r] = E[r, ) log mya,|s,)]

t'=1

e Sum over tand rearrange:

T
 VHE[R(@D] = ) Vylogzya,|s)R,
t=1
From: http://joschu.net/docs/2016-bayareadlschool.pdf
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