
CS11-711 Advanced NLP

Parallelism and Scaling
Sean Welleck

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

Content based on The Ultra-Scale Playbook: Training LLMs on GPU Clusters

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

Recap: pre-training
Data Pre-train Base

Model

More data

Better  
Loss

Bigger
model

Scale the training of LLMs

• Key problem: take advantage of multiple devices
(e.g., GPUs)

• Train larger models

• Process more tokens in a given amount of time

Scale the training of LLMs

• Memory usage: training steps need to fit in
memory

• Compute efficiency: we want our hardware to
spend most time computing

• Communication overhead: minimize since it
keeps GPUs idle

Large impact

Today’s lecture

• Basics of training on one GPU

• Parallelization on multiple GPUs

• Data, tensor, pipeline parallelism, ZeRO

• Choosing and comparing strategies

Training on one GPU

Training basics

• Compute

• Memory

• Activation recomputation

• Gradient accumulation

Compute

• Compute: floating point operations (FLOP)

• Forward and backward pass:

• FLOPS: floating point operations per second

6 × model_parameters × token_batch_size

Compute
• Model FLOP Utilization (MFU) measures how

effectively available compute is used for training

• Theoretical peak (H100):

• Inefficiencies: communication, memory bandwidth,
idle time (discussed later!)

MFU =
Achieved FLOPS

Theoretical Peak FLOPS

Memory usage

• Weights, gradients, optimizer states, activations

• Tensors with shapes and precisions

Memory usage
• A rough approximation for a training step:

• BF16 model: 2 * num_parameters

• FP32 model/grads: 4 * num_parameters

• FP32 optimizer states: (4 + 4) * num_parameters

• Adam momentum and variance

peak_memory = model_bf16 + model_fp32 + grads_fp32 + optim_states + activations

Memory usage

Memory usage

H100 GPU: 80 GB

Batch size

• Small: adjust parameters quickly but noisily

• Large: adjust parameters accurately, fewer steps to
train on a given dataset

Typically ~4-60 million tokens per batch

• Too large: out of memory due to large activations!

bst = bs * seq

Memory usage: activations

• Linear with batch size, quadratic sequence length

mact = L ⋅ seq ⋅ bs ⋅ h ⋅ (34 +
5 ⋅ nheads ⋅ seq

h
)

seq seq seq

Activation recomputation
• Recompute some activations during the backward pass

• Store some activations during the forward pass as
“checkpoints”

• Discard other activations and recompute them during the
backward pass

• Increases compute, reduces activation memory
requirements

Activation recomputation

Without
recomputation

With
recomputation

Gradient accumulation
• Split batch into micro-batches, do forward/backward

passes on each micro-batch, average the gradients

• Lets you increase batch size with constant memory

bs = gbs = mbs ⋅ grad_acc

Recap: basics (single GPU)

• Compute: FLOPS and MFU

• Memory: parameters, gradients, optimizer states, activations

• Activation recomputation: save memory, add compute

• Gradient accumulation: save memory, add compute

• Use of memory savings: larger batch size and/or larger model

Multiple GPUs: Parallelism

Parallelism
• Techniques for leveraging computation and

memory from multiple GPUs

• Data parallelism

• Tensor parallelism

• Pipeline parallelism

• Memory optimization

• Choosing parallelism strategies

Data Parallelism

• Replicate model on several GPUs

• Run forward / backward passes on different micro-
batches in parallel for each GPU

• Average the gradients across the GPUs

Data Parallelism

Data Parallelism: Naive
• Wait for all backward passes to finish, trigger an all-

reduce over all GPUs

All-reduce
Layer 0

activations
Layer 2

activations
Layer 2

gradients

Aside: communication ops
• Primitive operations for sending and aggregating

information across multiple processes

[code example]

Aside: communication ops

[code example]

Overlap + bucketing
• Start all-reduce as soon as gradients are ready

• Group gradients into buckets and launch a single
all-reduce for all the gradients in the same bucket

Bucket 2
activations

Bucket 2
gradients Bucket 2

all-reduce

Data Parallelism: + bucketing

Batch size summary

• mbs: micro batch size

• grad_acc: gradient accumulation steps

• dp: number of parallel instances

global batch size = mbs ⋅ grad_acc ⋅ dp

Putting it all together
• Global batch size: 4 million tokens

• Sequence length: 4,000 tokens

• batch size: 1024 sequences

• mbs: Suppose 1 GPU fits 2 sequences

• dp: 128 GPUs: 2*128 = 256

• grad_acc of 4: 256*4 = 1024

⟹

Quiz: what if we had 512 GPUs?

Data Parallelism scaling
• More GPUs means more coordination (e.g., all-

reduce, network communication, stragglers)

What if the model is too large?

• Split tensors:

• Parallelism (e.g., tensor, pipeline)

• Sharding (DeepSpeed ZeRO or PyTorch FSDP)

Parallelism
• Techniques for leveraging computation and

memory from multiple GPUs

• Data parallelism

• Tensor parallelism

• Pipeline parallelism

• Memory optimization

• Choosing parallelism strategies

Tensor Parallelism
• Basic idea: take advantage of the structure of

matrix multiplication to distribute computation
across multiple GPUs.

Column-wise
• Split weight matrix into columns, each GPU

handles a column chunk

Row-wise
• Split weight matrix into rows (and split inputs into

columns), then sum

Example: feedforward
• Use column parallel, then row parallel

(benefit: no intermediate all-reduce/gather)

Forward: identity
Backward: all-reduce

Forward: all-reduce
Backward: identityColumn parallel Row parallel

Example: attention
• Each GPU handles a subset of attention heads

Tensor Parallelism
• Benefit: reduce memory requirements

Tensor Parallelism
• Benefit: reduce memory requirements

Tensor Parallelism
• Tradeoff: communication costs (e.g., all-reduce)

Tensor Parallelism
• Tradeoff: communication costs (e.g., all-reduce)

• Cross-node connections particularly slow

Parallelism
• Techniques for leveraging computation and

memory from multiple GPUs

• Data parallelism

• Tensor parallelism

• Pipeline parallelism

• Memory optimization

• Choosing parallelism strategies

Pipeline Parallelism
• Basic idea: split layers across multiple GPUs

• E.g., layers 1-4 on GPU 1, layers 5-8 on GPU 2

Pipeline Parallelism
• Basic idea: split layers across multiple GPUs

An example of Pipeline parallelism for a model with 16 layers distributed across 4 GPUs. The numbers correspond to the layer IDs.

Key challenge: reducing time lost due to the “bubble” (grey)

One-forward one-backward
• Start performing backward pass as soon as possible

Numbers: microbatch

One-forward one-backward

Small # of microbatches:
inefficient due to bubble

Better scaling with
a larger # of microbatches

Scaling training

• Parallelism

• Data parallelism

• Tensor parallelism

• Pipeline parallelism

• Memory optimization

• Choosing strategies

Memory optimization: ZeRO
• In standard Data Parallelism, each GPU replicates:

• Model parameters

• Gradients

• Optimizer states

• Zero Redundancy Optimizer (ZeRO) partitions
these across GPUs

Memory optimization: ZeRO

Memory

🚨 High

Shard

Nothing

Optimizer
States

+Gradients

+Parameters

Communication

🚨 High

Low

Low

(All-Gathers)

Memory optimization: ZeRO
• Key idea: load parameters just-in-time. Example:

• Model: 1B parameters

• 4 GPUs, each storing 250M parameters

• At each layer :

• GPU uses all-gather to fetch parameters for layer ,
computes activations

• Free fetched parameter memory and continue to next layer

• Different than TP / PP! Only memory sharding, not sharding the
computation

ℓ

ℓ

Recap of strategies
Key Idea Tradeoffs Use Case

Data Parallelism
(DP)

Parallelize on batch
dimension

Redundancy. Need
to fit model on GPU.

Standard models
that fit in GPU

memory

Tensor
Parallelism

(TP)
Parallelize on

hidden dimension
Fine-grained =>

high communication
costs.

Large layers (e.g.
MLP). Parallelize

within a node.

Pipeline
Parallelism

(PP)
Parallelize on model

dimension Pipeline bubbles
Large deep models.

Parallelize across
nodes.

ZeRO
Sharding model,

optimizer, gradients
in DP

High
communication

costs (all-gather)

Big models that
don’t fit in GPU

memory

Often combined for efficient training (next)!

Scaling training

• Parallelism

• Data parallelism

• Tensor parallelism

• Pipeline parallelism

• Memory optimization

• Choosing strategies

Choosing strategies

• Fit model into memory

• Satisfy target global batch size

• Optimize training throughput

Best configuration experiment
(from book)

GBS 1M tokens, sequence length 4096, 1-64 8xH100 nodes

Scaling training

• Parallelism

• Data parallelism

• Tensor parallelism

• Pipeline parallelism

• Memory optimization

• Choosing strategies

Example: torchtitan

Example: Megatron-LM

Thank you

