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How Long are Sequences?

• One sentence: ~20 tokens 
• One document: 100-10k tokens 
• One book: 50k-300k tokens 
• One video: 1.5k-1M tokens (~300/sec) 
• One codebase: 20k-1B tokens 
• One genome: 3B nucleotides



Why is Modeling Long 
Sequences Hard?

• Memory Complexity: Transformer models scale 
quadratically in memory

• Compute Complexity: Transformer models scale 
quadratically in computation 

• Training: Data is lacking, training signal is weak, 
training on long sequences is costly



Long-context Use Cases and 
Evaluation
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Early benchmarks for long-
context models

• Long Range Arena: 
Composite benchmark 
containing mostly non-
NLP tasks (Tay et al. 
2020) 

• SCROLLS: Benchmark 
containing long-context 
summarization, QA, etc. 
(Shaham et al. 2022) 



Targeted Analysis Tools
• “lost-in-the-middle” (Liu et al. 2023) demonstrates that 

models pay less attention to things in middle context 

• “needle in a haystack” tests (Kamradt 2023) test across 
document length/position 

• RULER (Hsieh et al. 2024) compiles a number of 
different NIAH tasks

6



Long-context In-context Learning 
(Bertsch et al. 2024)

• When many in-context examples are provided, it can 
be better than fine-tuning



Long-context Dialog

• Chatbots that maintain 
long-term conversational 
context 

• E.g., Locomo corpus 
(Maharana et al. 2024) 

• Evaluate with question 
answering, summarization, 
response generation
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Oolong [Bertsch et al 2025]

• Tests the ability to 
aggregate multiple pieces 
of information 

• Example: in a transcript 
from a Dungeons and 
Dragons show, how 
many times did a 
character cast a spell
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Oolong [Bertsch et al 2025]
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Today’s lecture

• Long sequence modeling 

• Improving transformers

• Memory-efficient computation 

• Extrapolation 

• Transformer modifications 

• Transformer alternatives
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Vanilla Attention Complexity

Compute: O(bs2d) for QKT

Memory: O(bs2) for all ops

b: batch size, s: sequence length, d: dimension

Compute: O(bs2d) for AV

Memory: O(bsd)



Multi-head Attention Complexity

Compute: O(bs2d) for QKT

Memory: O(bs2h) for all ops

b: batch size, s: sequence length, d: dimension, h: heads

Compute: O(bs2d) for AV

Memory: O(bsd)

• Multi-head attention splits attention heads 
• No effect on compute complexity, but effect on memory



Memory bottlenecks
• Accelerators (e.g., CUDA GPU) have limited 

memory capacity and bandwidth

Image: FlashAttention [Dao et al 2022]

 memory means many slow SRAM  HBM transfers O(bs2h) ↔

https://arxiv.org/pdf/2205.14135


Memory bottlenecks
• Implications: 

• Expensive to (pre-)train with a long context length 
• Expensive to generate (inference) 

• Expensive can mean: 
• Slow: bandwidth leads to transfers 
• Infeasible: simply run out of memory



Memory-efficient computation 
(Jang 2019, Rabe and Staats 2021)

• Insight: you can compute softmax “online” to avoid 
materializing the s2 matrices 

Memory: O(bsd)

softmax numerator * V softmax denominator

Memory: O(bsh)

Memory: O(bsd)



Memory-efficient computation 
(Jang 2019, Rabe and Staats 2021)

• Online softmax



Memory-efficient computation

Inference benchmarking from [Rabe and Staats 2021]

Analogous improvements for training



Memory-efficient computation

• Transformer attention [Rabe & Staats 2021] 

• FlashAttention: incorporate online softmax into a 
new CUDA kernel [Dao et al 2022] 

• Ring Attention: distribute online computation across 
multiple devices [Liu et al 2023]



Ring Attention (Liu et al. 2023)

Context parallelism
• Split sequence into blocks 

across devices 
• Each host holds one query 

block, and key-value blocks 
traverse through a ring 

• Different strategies for 
splitting: contiguous blocks, 
clever interleaving

Image: The Ultra-Scale Playbook [Tazi et al 2025]

https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=high_level_overview


Ring attention / context parallelism

Image: The Ultra-Scale Playbook [Tazi et al 2025]

https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=high_level_overview


Today’s lecture

• Long sequence modeling 

• Improving transformers 

• Memory-efficient computation 

• Extrapolation

• Transformer modifications 

• Transformer alternatives
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Trained Models Fail to 
Extrapolate

• Most transformer models are trained on shorter sequences (4k) 

• If a document is longer than the limit, truncate or chunk 

• This poses problems for positional encodings: 

• Learned absolute encodings: impossible to extrapolate 

• Fixed absolute encodings: move models out of distribution, 
very bad 

• Relative encodings: should extrapolate better in theory, but 
not really in practice
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An Example of Failed 
Extrapolation (Fu et al. 2024)

• Llama-2 w/ 32k context (RoPE) can answer questions 
about sequences up to about 40k, but not beyond
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Training with Long Context 
(Fu et al. 2024)

• A solution: continually train on longer 
documents 

• Upsample longer documents 

• Maintain domain mixture, and 
upsample long docs in each domain
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RoPE Scaling
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• RoPe embeddings have a 
periodic structure 

• Parameter  impacts the 
period, e.g.,  
with 

θ
θj = b− 2j

dk

b = 10000



RoPE Scaling
• Vanilla RoPE naturally decays as s increases 

• Rope ABF: Increase base frequency 

• Position Interpolation: Multiply period by a constant
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Today’s lecture

• Long sequence modeling 

• Improving transformers 

• Memory-efficient computation 

• Extrapolation 

• Transformer modifications

• Transformer alternatives
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Transformer modifications

• Sparse Attention 
• Sliding Window Attention 
• Compression 
• Low-rank Approximation

Skipped in lecture due to time



Sparse Transformers 
(Child et al. 2019)

• Add "stride", only attending to every n previous states
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Skipped in lecture due to time



Truncated BPTT+Transformer
• Transformer-XL (Dai et al. 2019) attends to fixed 

vectors from the previous sentence
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Standard Transformer Transformer-XL

• Like truncated backprop through time for RNNs; can use 
previous states, but not backprop into them 

• See also Mistral’s (Jiang et al. 2023) sliding window attention

Skipped in lecture due to time



Compressing Previous States
• Add a "strided" compression step over previous 

states (Rae et al. 2019)
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Skipped in lecture due to time



Low-rank Approximation
• Calculating the attention matrix is expensive, can it be 

predicted with a low-rank matrix? 

• Linformer: Add low-rank linear projections into model 
(Wang et al. 2020) 

• Nystromformer: Approximate using the Nystrom 
method, sampling "landmark" points (Xiong et al. 2021)
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Skipped in lecture due to time



Today’s lecture

• Long sequence modeling 

• Improving transformers 

• Transformer alternatives

• State-space models
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Reminder: RNNs

• Infinite context 

• Memory-efficient inference 
(single hidden state)

• Hard to parallelize training



Convolution
• Calculate based on local context

I hate this movie

CNN CNN

ht = f(W [xt−1; xt; xt+1])



Convolution for Auto-regressive 
Models

• Functionally identical, just consider previous context

I hate this movie

CNNCNNCNNCNN



Structured State Space Models 
(Gu et al. 2021)

• Models that take a form like the following
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Slide Credit: Albert Gu

𝑥 𝑦

𝐴

v𝐵 𝐶h

𝐷

• Key idea: we can compute h(t) in parallel (fast training), or 
compute h(t) like in an RNN (fast inference)



Structured State Space Models

39 Figure: A Visual Guide to Mamba

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state


Structured State Space Models

40 Figure: A Visual Guide to Mamba

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state


SSMs: Discretization

41 Figure: A Visual Guide to Mamba

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state


SSMs: Recurrent View

42 Figure: A Visual Guide to Mamba

Efficient inference

Parallelizable training

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state


SSM: Convolution View

Figure: A Visual Guide to Mamba

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state


SSM: Convolution View

Figure: A Visual Guide to Mamba

Parallelizable training

Unbounded context

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state


SSM Variants
• S4: Discrete SSM with a 

structured form of the recurrent 
update matrix A (“HiPPO”) for 
better memory retention 

• Mamba: S4 + selectively retain 
information
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S4: SSM + Structured Matrix
• S4: Discrete SSM with a structured form of the recurrent update 

matrix A (“HiPPO”) for better memory retention



Mamba: Selective SSMs
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Mamba: Selective SSMs
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Mamba: Selective SSMs
• S6: S4 with time-varying parameters (B,C, )Δ



Mamba: Selective SSMs
• Parallel scan algorithm due to sequential computation

Figure: A Visual Guide to Mamba

https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state


Mamba
• Block/layer that incorporates S6 



Mamba

Human 
Genome

Text Data

Audio



Recap: SSMs

• Combine insights from recurrent models and 
convolutional models 

• Enables efficient training and inference 

• Scales linearly in sequence length
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Recap: long context models

• Long sequence modeling 

• Improving transformers 

• Memory efficient computation 

• Extrapolation: training and embeddings 

• Transformer alternatives 

• State-space models
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Thank you


