CS11-711 Advanced NLP
Mixture of Experts

Sean Welleck

(Carnegie A

Yetlon i Tl

University

https://cmu-I13.qgithub.io/anlp-fall2025/
https://github.com/cmu-I3/anlp-fall2025-code

Acknowledgements: Stanford CS336 Spring 2025 Lecture 4

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

Mixture of experts

« Key idea: replace Transformer feed-forward network (FFN) layer with a new layer

Dense Model

Add + Normalize

t

FFN Layer

1

Add + Normalize

)

Self-Attention

f

X

y1 O y, O
>[Add + Normalize]<—w y
\ 1)
[Add + Normalize
0
FFN FFN
Cuj C\] [Sparse FFN Layer]
t
’ [Add + Normalize
:{ Add + Normalize]1—\ 0
T T Self-Attention

Self-Attention
A A

X

x1 CTITT] xo CITTTT]

"The" "Dog"

[Fedus et al 2022]

Sparse Model

y» O v, OO

f—>[Add + Normalize]<—\

/ el

fmm o |
(FFN 1) (FFN 2] [FFN 3] [FFN 4] FFN 1] [FFN 2] [FFN 3] (FFN 4]
| e

AN

\ J
:[Add + Normalize](—\
Self-Attention
A A
x1 (ITIT1T1] xo CITITT]
"The" "Dog"

Mixture of experts

 Key idea: sparsity

 The model has many total parameters, but only a
relatively smaller number of them are active for
training and inference

Acive

o FFN 1) FEN 2

Inactive

New dimension of scaling

e Scale parameter count while keeping the amount of
computation (FLOPs per example) fixed

le ~1.21
6.0 e = Switch-Base: 128e
N 28 — Switch-Base: 64e
\ —1 .3'
5.8 ™
v 4de -1.41
)
6 . H
5.6" < X _1.54
8 \\‘88 % .
9 \ 5
4 5 4 . o _1 .6_
%)) (@)
R _16e b
o P -1.71
5.2 . 32e -
-
. 64de o
\.\
. .. 128e L
\\\\\\ 256e
4.8 =
. " T LN B | T T T T T L B —2_0 T 1 1 1 1
10° 1010 0 1 2 3 4
Sparse Model Parameters Training Step 1eb

[Fedus et al 2022]

More efficient training

Fewer FLOPs needed reach a given level of
performance compared to the standard dense
architecture

3.2

3.0

2.8

2.6

2.4

3.2

3.0

2.8

2.6

2.4

Training loss

10 40 70 100 130
Tokens (B)

1 2 3 4 5 6 7
Training time (h)

3.5

3.0

Validation loss (C4)

10 40 70 100 130
Tokens (B)

1 2 3 4 5 6 7
Training time (h)

[Al2 2025]

60

50

40

30

60

50

40

30

HellaSwag

ﬁ’

70 100 130
Tokens(B)

_—

- MoE
- Dense

1 2 3 4 5 6 7
Training time (h)

More efficient training

e Faster wall-clock time to reach a given level of
performance:

0.
—1.31

2.5x Speedup =)

L
AN
A

I
—
Ol

1

4 7.0xX Speedup I

Neg Log Perplexity
|
(@)

—1.71
—1.84
- Switch-Base: 64e
—1.91 T5-Large
T5-Base
-2.0

50 100, 30 60 50 200 ss0
Training Time

[Fedus et al 2022]

Better inference-cost vs.

O BN O)
o N

Average Performance
w NN AN ﬁ H Ha

W
()]

performance tradeoft

1 DeepSeekMoE 16B

S 00

Q0 O . N

x -
LLaMA2 7B

LLaMA 7B
Falcon-7B
@)

Open-tlLa MA.7B

©
RedPajar.na-INCITE 7B

RedPajama-INCITE 3B GPT-J 6B
«Open LLaMA 3B

OPT 2.7B,Pythia 2.8B
s BLOOM 3B

|L.GPT-neo 2.7B

. 3 4 5 6 7
Number of Activated Parameters (Billions)

[DeepSeek 2024]

HellaSwag MMLU ARC-Challenge

— 50
70 45
60
40 40
5 30 -
g PIQA COPA 70 WinoGrande
E 80 o M
)
= 65
-'é 80
70
2 60
() 7
0 - (QLMOE-1B-7B
60 55 —— OLMo-1B (0724)
60 0 — (OLMo-7B (0724)
5
1x10%2 4x10%2 7x10%2 1x10%3 1x10%2 4x10%2 7x10%2 1x102%3 1x10%2 4x10%2 7x10%2 1x1023

Training FLOPs

Figure 3: Evaluation of OLMOE-1B-7B and the current best OLMo models dur-
ing pretraining. OLMOE-1B-7B differs from the OLMo models in its MoE archi-

[Al2 2025]

(o)}
(o)}

(@)
IS

(@)
N

Comprehension (%)

(o))
o

50 Mixtral 8x7B 50 Mixtral 8x7B
Mixtral 8x7B 40
g 40
_ - - Mistral 7B
Mistral /B '% 30 Mistral 7B %
= S 301
20 1)
Mistral
10 20+ —e— LLaMA 2
7B 13B 34B 70B 7B 13B 34B 70B 7B 13B 34B 70B
Active Params Active Params Active Params

[Mistral 2024]

Used In top LLMs

Architecture Gemini 3 Pro is a sparse mixture-of-experts (MoE) (Clark et al.. 2022; Du et al.. 2021; Fedus
et al., 2021; Jiang et al., 2024, Lepikhin et al., 2020; Riquelme et al., 2021; Roller et al., 2021; Shazeer et al.,
2017) transformer-based model (Vaswani et al., 2017) with native multimodal support for text, vision, and
audio inputs. Sparse MoE models activate a subset of model parameters per input token by learning to
dynamically route tokens to a subset of parameters (experts); this allows them to decouple total model
capacity from computation and serving cost per token. Developments to the model architecture
contribute to the significantly improved performance from previous model families.

Gemini 3.0 [11/18/2025]

Qwen3-30B-A3B

openai.com/index/introducing-gpt-oss/ w ** Qwen Chat

Each model is a Transformer which leverages mixture-of-cRSiLuERI-Ul-gS

reduce the number of active para meters neede qwensisthe latest generation of large language models in Qwen series

comprehensive suite of dense and mixture-of-experts (MoE) models. Bi

gpt-0ss Qwen 3

Potential downsides

* [ncreased system complexity

 Need to coordinate usage of the experts
* New losses and new hyperparameters

* Manage a lot of devices to host all of the
parameters

 Can be unstable / tricky to train

This lecture

What are MoEs
Expert design
Routing functions
Loss functions
Systems

Case studies

What are MoEs

Mixture of Experts Layer

* A neural network layer

that only activates some
parameters e —y (D
—1 > expert Y
* |n current state-of-the
art LMs, the
feedforward layer in a [Mistral 2024]

Transformer block

What are MoEs

e Standard Transformer layer:
ill:T — Attn(hl:T) + hl:T
hi:T = FFN(%LT) + %I:T

. MOE layer: replace FEN(/1;.7) with:
%I:T = Attn(hl:T) T hl:T
i:T N MOE(%I:T) T ill:T

o Internally, the MOE has:
« Feedforward networks FFN, ..., FENy (“experts”) with params 0, ..., Oy

* A parameterized router that chooses 1 or more FFNs to use for each input

Expert design

* Considerations
* Where to put the experts
e Expert count
e Size of each expert

 Number of shared experts

Where to put the experts

 Feed forward layer

e | ess common:;
attention layer

e Can be unstable

 Nowadays, typically
every FFEN layer

Output
ProbaEiIities

Softmax

7

Linear

A

Add & Norm

Feed ¥l

Forward

—F

w |

Add & Norm

Masked
Multi-Head
Attention

L;LA—J W,

y1 OO Y2 OO
Add + Normalize]1—
N 2| |FFN 3

Positional D
Encoding A

Input
Embedding

T

Inputs

Expert count | increase params

-1.2-

» Strategy 1: Increase number — Swtorase: 120

= Switch-Base: 64e

-1.31

of parameters
2N, 4N, 8N, 16N,

* More Is better, but with
diminishing returns

—1.4-

—i
o
1

Neg Log Perplexity
| [
.

—
5
1

—h
o
1

—h
©
1

 More parameters => more

g
o

computational resources Training Step e

Expert count | fine-grained

- Strategy 2: increase number of experts for a fixed
number of parameters by splitting the hidden dimension

- “Fine-grained expert segmentation” [DeepSeek 2024]

Output Hidden | Output Hidden |OO|

B & B00 a0

\// \%/’/
[Router]I]:[I]KzZ [Router]I]:[[I]:[I]KZ4
Input Hidden ' Input Hidden OO

(a) Conventional Top-2 Routing === (b) + Fine-grained Expert Segmentation =

Expert count | fine-grained

« Make more experts of dimension d/n for some integer n.
Example:

» Baseline: 8-experts per layer of dimension d,
2 activated

 Fine-grained: 16-experts per layer of dimension d/2,
4 activated

* Increases flexibility
 Baseline => 28 combinations per layer

 Fine-grained => 1,820 combinations per layer

w
o

N
o

Performance
!\) N
> O

Fine-grained experts

Training loss

10 40 70 100130

Validation loss (C4)
3.5

3.2
3.0

2.8

10 40 70 100130

Tokens (B)

60

40

HellaSwag

experts
— 064
— 32
— 8

10 40 70 100130

35

30

MMLU Var

10 40 70 100130

Figure 5: Expert granularity. We| vary the number of experts in tandem with the FEN dimension
to ensure that active and total parameters and thus compute cost remain the same. For example, for
64 experts, the FFN dimension is 1,024 and 8 experts are activated, while for 32 experts it is 2,048
with 4 activated experts. More results, logs, and configurations: https://wandb.ai/ai2-11m/
olmoe/reports/Plot-Granularity--Vmlldzo40TIx0TE4

* Diminishing returns in practice after a certain granularity

 Could lead to more communication costs it not managed well

Shared experts

o Always keep a fixed set of experts active, route to the rest

 E.g. 1 shared expert, 3 experts selected by routing
from the 31 experts

o Claim/intuition: shared expert learns common information,
reducing redundancy among the experts () o)

(a) Conventional Top-2 Routing == (b) + Fine-grained Expert Segmentation mmms) (c) + Shared Expert Isolation

Shared experts

1.2
I 0 shared expert + 2 out of 16 routed experts (GShard)

3 1 shared expert + 1 out of 15 routed experts (+ shared expert isolation)
1.1 I 1 shared expert + 3 out of 31 routed experts (+ fine-grained expert segmentation)
I 1 shared expert + 7 out of 63 routed experts (+ finer expert segmentation)

1.0
0.9
0.8
0.7
0.6
0.5

HellaSwag PIQA ARC-easy ARC-challenge TriviaQA NaturalQuestions
Metrics

Normalized Performance

Figure 3 | Ablation studies for DeepSeekMOoE. The performance is normalized by the best perfor-

Shared experts

3.0 Training loss Validation loss (C4) HellaSwag MMLU Var
o . 3.50° 60 35
U N
E 3.25 # experts
L 2.6 3.00 40 — 32 routed 30
+ ___ 31 routed,
g_’ 2.4 2.75 1 shared

10 40 70 100130 10 40 70 100130 10 40 70 100130 10 40 70 100130

Tokens (B)

Figure 6: Shared experts. Both setups have the same number of active and total param-
eters and use the same number of FLOPs. 4 of the 32 routed experts are activated, while
it is 3 for the 31 routed experts of the other model, as it has 1 always-active shared ex-
pert. More results, logs, and configurations: https://wandb.ai/ai2-11m/olmoe/reports/
Plot-Expert-sharing--Vml1dzo40TIyMj(Qz

e Mixed results across research studies

 Reduces modeling flexibility

This lecture

What are MoEs
Expert design

- Routing functions
Loss functions
Systems

Example

Routing: basic idea

 Compute a score for each (token, expert) pair

 Choose experts according to some strategy

Tokens Tokens Tokens
TT T2 T3 Tt T2 T3 TT T2 T3
| | | |
T L | Choose Top-K T
x| T I l I - -
Q|| (0 (0
o U9l | o — o || Globally |
O o ||@ S o S o | Decide Expert
S "3 < W g W | Assignment
L —_8 u LLI n u L
o | O N o
] u] o L
|
Lo O O
ol B ' ' w || 2|
| | |]

 Token choice: Each token ¢ Expert choice: Each expert * Global choice: Each expert
chooses top-k experts chooses top-k tokens chooses top-k tokens

Computing routing scores

o Surprisingly simple:

* |Introduce a weight vector for each expert

* Jake dot products between each token's hidden
state and each expert's weight vector

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
/ \ J
Router Weights Token .
Representations
-0.3|-1.6/ 0.1 | 0.8 |-0.1 0.22.3(17
0.5|-0.6/-11/-0.2|-0.4 1.3 [-11]0.9
1.2 (1.3 0.7 | 15 | -1 -0.7| 0.1 [0.4

Normalized
Router Scores
Router Scores
T T2 T3 T T2 T3
Dot Product = 1313|014 | 074 = 1067|005 | 022
N 1051 |-0.25| 1.58]0.05]|003]| 05
0.2
= O o
[T s] 1.3 @ 1-1.32 [197 | o1 10011031 | 01
-0.7 —
- S | 2.25 | 261 | 0.02 N 10.27 | 059 | 01
Lo 1-2.81[-0.68 |-0.41 ¥ 10.00 | 0.02 | 0.07

[Fedus et al 2022]

Routing functions

T1 T2 T3

0.67 | 0.05 | 0.22

E1

e (3iven a matrix of scores,

E2

now we want to select a set 0.05 | 0.03 | 0.5

of experts for each token
0.01 | 0.31 | 0.11

¥3

e [.e. “route” each token to
a set of experts

E4

0.27 1 0.59 | 01

ES

0.00 | 0.02 | 0.07

Top-k token-choice routing

Top-2 Routing

Top-k token-choice routing
s, ; = softmax; (ﬁtTei)

{Sit s;. € Topk({s;,|[1 < j < N}, K),
it =Y. |
! 0 otherwise

N
=Y (gi,tFFNi(ht)) +h

=1

| oad balancing and capacity

* Fallure modes: expert gets too many tokens, expert
gets too few tokens

(Capacity Factor: 1.0)

Expert 1 Expert 2

Expert 3

é Device 0 \ é Device 1)

“Token dropping”

1
1
Device 2 \ "

(Capacity Factor: 1.5) U nuse d

Expert 1 Expert 2
Device 0 Device 1

. capdaeity

Across Device
Communication

Top-k token-choice routing

* Pros
* Ensures that each token is assigned to experts
* Relatively simple
* Potential cons
* Load balancing is tricky
 Example: every token picks the same expert

- Token dropping: when too many tokens are routed to an
expert so we have to drop some (e.g., due to memory)

e Selection operation is not differentiable

- Keep In mind: every major Mok LLM nowadays uses top-k token
choice routing!

Alternatives: expert choice

* Each expert chooses a fixed number of tokens

e Pros Tokens

e Solves load balancing at training time 1A . T2 . TS\

* Model can allocate more capacity to certain tokens = Mmi

* |.e., atoken may be selected by multiple experts) o | |
« Cons E& %
* At generation time, we only have one token being L <
processed at a time -+
* We would need to design a selection mechanism L]

* Joken dropping: a token is not selected by any
experts

Alternatives: expert choice

35 Training loss Validation loss (C4)60_

)

S, 50
3.5

& 3.0

§ 40
3.0

tos .

o

HellaSwag

— TC
— EC

10 50 100 150 200 10 50 100 150 200

10 50 100 150 200

Tokens (B)

30

28

26

MMLU Var

10 50 100 150 200

Figure 7: Expert choice (EC) vs. token choice (TC). Both models have an 8-expert MoE in every
2nd layer. For TC, 2 experts are activated per token, while for EC the capacity factor is 2. Thus,
both models use the same number of active parameters. More results, logs, and configurations:
https://wandb.ai/ai2-11m/olmoe/reports/Plot-EC-vs-TC--Vmlldzo4MzkzMDM3

Alternatives: even simpler?

 Hashing [Roller et al 2021]

* A simple no-learning baseline: can perform
surprisingly well, but not learning is suboptimal

Hash Routing

Vit E 1l 111 el 1 11111
T‘ A
r >[Add + Normalize]< ~
[FFN1] FFN 2 [FFNS FFN4 FFN1 FFN2 V]F"u
Hash
ST .

& | ol LI 1111
IlThell IIDOgll

Alternatives: more complicated?

* Example: reinforcement learning

Reinforcement Learning

* Learn expert selection via RL MLITITT] [ITIT1]
. Pros f o mvomae e
* A principled solution for non- . o / 3] [Fe) [/ [Fens) (Feue)
differentiability ~ Io&f;;;ffu\ T
* Cons g & L

» Expensive to train, can lead to |
even more instability

* Empirically hasn't shown much
benetit over simpler methods
(e.g. [Clark et al 2022]

NIEEEEEE ol L1 1 111

IITheII IIDOgII

Other methods:
inear assignment,

optimal transport...

This lecture

What are MoEs
Expert design

Routing functions

- Loss functions

Systems

Example

How do we train MoEs”?

» Considerations:
* We want a good model (PPL, task metrics)
 We want to utilize hardware optimally
* Non-differentiable routing decision

 RL"” [Bengio 2016, Clark 2022]

* Add noise to explore” [Shazeer 2017]

- Heuristic balancing losses
[Fedus 2022 and current methods]

Expert balancing loss

[Zoph et al 2022]

* |ntuition: penalize expert if it receives too many tokens
and/or gets too much probability mass

N
L=a) fP,
=1

f: - proportion of tokens in sequence routed to expert

P;: proportion of routing probability assigned to expert

The balancing loss Is important

< No load balancing Load balancing

2t 100

P4 2 —— Expert 0 Expert 4

co Expert 1 —— Expert5

" 2 50 —— Expert 2 Expert 6

3 —— Expert 3 Expert 7

ocC

O

5% ol

X 1 5 10 1 5 10
Tokens (B) Tokens (B)

Figure 10: Expert assignment during training when using or not using a load balancing loss
for the first MoE layer. More results, logs, and configurations: https://wandb.ai/ai2-11m/
olmoe/reports/Plot-LBL-vs-No-LBL--Vml1dzo40TkyNDg4

Training loss Load balancing loss Validation loss (C4) Validation loss (Pile)
0 0.4 — LBL
g 4 4.5 4.3 —— No LBL
© 0.3
g 4.0 4.0
£ 0.2 4.0
@ 3.5 - 3.5
o 0.1
1 5 10 1 5 10 1 5 10 1 5 10

Tokens (B)

Figure 9: Impact of applying a load balancing loss (LBL). The training loss plot excludes the
load balancing loss for both models. More results, logs, and configurations: https://wandb.ai/
ai2-11m/olmoe/reports/Plot-LBL-vs-No-LBL--Vml1dzo40TkyNDg4

Variations

* Per-device balancing
* Put a group of experts on each device

* Apply loss to groups rather than individual experts

* |n practice, used in addition to expert balancing loss

Stability: mixed precision

 Typically float32 is used for the expert routing
computations

e But large logits (e.g., strongly preferring an expert)
are still an issue...

Stability: z-loss

« Explicitly penalize large logits through a loss

2
B

N
L(x) = % Z log Z e"is
j=1

=1

e B: number of tokens in batch

e N: number of experts

. x € RN |ogits used in router

e Basic idea: make the denominator in the softmax smaller

Stability: z-loss

40 Training loss Validation loss (C4) HellaSwag MMLU Var
' 4.0 35
60
$3.5
3.5

©
£3.0 - 30
S 30 40 -loss
022 ~_No
o z-loss g

10 250 500 7502'51'0 250 500 750 10 250 500 750 10 250 500 750
Tokens (B)

Figure 11: Router z-loss. We compare adding router z-loss with a loss weight of 0.001 versus no
additional z-loss. More results, logs, and configurations: https://wandb.ai/ai2-11m/olmoe/
reports/Plot-Zloss-vs—none--Vml1ldzo4NDM4NjUz

This lecture

What are MoEs
Routing functions
Expert design
Training objectives
-+ Systems

Example

Expert parallelism

 Basic idea: experts can reside on different
accelerators. The input data is dynamically
dispatched to and fetched from them

Data
Parallelism

How the model weights are split over cores

Model
Parallelism

...........................

Model and Data
Parallelism

Data
Parallelism

Expert and Data
Parallelism

Expert, Model and Data

Parallelism

How the data is split over cores

Model
Parallelism

Model and Data
Parallelism

Expert and Data

Expert, Model and Data

Parallelism

Parallelism
& n
_ D

[Fedus et al 2022]

Other topics : sparse upcycling

Turn a dense model into a MoE model

e Clone the dense MLP multiple times

e |ntroduce router parameters

e Continue pre-training

Useful it at a fixed number of FLOPs:

* Dense pretraining + sparse upcycle > sparse pretraining
Can bias the optimization

* Intuition: if the pretrained model is already well-trained, it may
be difficult for the optimization to find a much different model

Need to use some of the original model’'s hyper-parameters

Other topics : sparse upcycling

Training loss Validation loss (C4) HellaSwag 35 MMLU Var
10.0 60
‘
@ /.5
é \ i N
ug 3.0] 3 — Scratch
& o5 l..u.l /— Upcycle 5

50 250 450 650 50 250 450 650 50 250 450 650 50 250 450 650
Tokens (B)

Figure 8: Sparse upcycling. We upcycle OLMo-1B (0724) at 2T tokens into an MoE
with 8 total experts of which 2 are activated and train it for an additional 610 billion to-
kens. We compare it to a model trained from scratch for 610 billion tokens. Except for
this difference, both models use the same config, which includes some suboptimal settings
that contribute to the instability, such as no QK-Norm (§4.2.5) and no truncated normal init
(§4.2.2). More results, logs, and configurations: https://wandb.ai/ai2-11m/olmoe/reports/
Plot-Scratch-vs-Upcycle--Vml1ldzo4NDIy0Tc4

Mixed results: e.g. iIn OLMOe, sparse pretraining alone catches up quickly
(25% of the dense model’s budget [Al2 2025])

Other phenomena:
domain specialization

e SOme experts in some layers may activate
frequently in particular domains

BN GitHub BN arXiv Bl \Wikipedia Books N C4

Layer 0 Layer 7 Layer 15

U TR 0 O RS N A Y

Domain specialization (%)

o

l

| !

;

'

: I

i

’

I E

0
0 8 16 24 32 40 48 56 0 8 16 24 32 40 48 56 0 8 16 24 32 40 48 56
Expert ID

This lecture

What are MoEs
Routing functions
Expert design
Training objectives

Systems

- Case studies

Deepseek-MoE

Architecture
* 16B total parameters, 2.8B active
* 66 experts with 8 activated
e 512 dimension
* 2 shared experts
* All FFNs use MoE layers
Routing
* Per-token
Pipeline parallelism, no expert parallelism
* => no token dropping
Losses
* Expert balance loss, weight 0.001
* Device-level balance loss
Efficiency

* With 40% of pre-training compute, reaches performance of dense DeepSeek 7B

OLMoE

Architecture
e 6.9B total parameters, 1.3B active
* 64 small experts with 8 activated
e “Small expert”: 1,024 FFN dimension
 No shared expert
Routing
* Per-token
* Dropless
Losses
e Expert balance loss, weight 0.01
e Router z-loss, weight 0.001
Efficiency
* Pretraining: 23,600 tok/sec/GPU for Mok, 37,500 for dense
 Reaches performance of dense model 2x faster

Others

DeepSeek v3
Mixtral

Qwena3
gpt-0Ss

Thank you

