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Mixture of experts

« Key idea: replace Transformer feed-forward network (FFN) layer with a new layer
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Mixture of experts

 Key idea: sparsity

 The model has many total parameters, but only a
relatively smaller number of them are active for
training and inference
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New dimension of scaling

e Scale parameter count while keeping the amount of
computation (FLOPs per example) fixed
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More efficient training

Fewer FLOPs needed reach a given level of
performance compared to the standard dense
architecture
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More efficient training

e Faster wall-clock time to reach a given level of
performance:
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Better inference-cost vs.
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HellaSwag MMLU ARC-Challenge

— 50
70 45
60
40 40
5 30 -
g PIQA COPA 70 WinoGrande
E 80 o M
)
= 65
-'é 80
70
2 60
() 7
0 - (QLMOE-1B-7B
60 55 —— OLMo-1B (0724)
60 0 — (OLMo-7B (0724)
5
1x10%2 4x10%2 7x10%2 1x10%3 1x10%2 4x10%2 7x10%2 1x102%3 1x10%2 4x10%2 7x10%2 1x1023

Training FLOPs

Figure 3: Evaluation of OLMOE-1B-7B and the current best OLMo models dur-
ing pretraining. OLMOE-1B-7B differs from the OLMo models in its MoE archi-

[Al2 2025]



(o)}
(o)}

(@)
IS

(@)
N

Comprehension (%)

(o))
o

50 Mixtral 8x7B 50 Mixtral 8x7B
Mixtral 8x7B 40
g 40
_ - - Mistral 7B
Mistral /B '% 30 Mistral 7B %
= S 301
20 1 )
Mistral
10 20+ —e— LLaMA 2
7B 13B 34B  70B 7B 13B 34B  70B 7B 13B 34B  70B
Active Params Active Params Active Params

[Mistral 2024]



Used In top LLMs

Architecture Gemini 3 Pro is a sparse mixture-of-experts (MoE) (Clark et al.. 2022; Du et al.. 2021; Fedus
et al., 2021; Jiang et al., 2024, Lepikhin et al., 2020; Riquelme et al., 2021; Roller et al., 2021; Shazeer et al.,
2017) transformer-based model (Vaswani et al., 2017) with native multimodal support for text, vision, and
audio inputs. Sparse MoE models activate a subset of model parameters per input token by learning to
dynamically route tokens to a subset of parameters (experts); this allows them to decouple total model
capacity from computation and serving cost per token. Developments to the model architecture
contribute to the significantly improved performance from previous model families.

Gemini 3.0 [11/18/2025]

Qwen3-30B-A3B

openai.com/index/introducing-gpt-oss/ w ** Qwen Chat
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reduce the number of active para meters neede qwensisthe latest generation of large language models in Qwen series

comprehensive suite of dense and mixture-of-experts (MoE) models. Bi
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Potential downsides

* [ncreased system complexity

 Need to coordinate usage of the experts
* New losses and new hyperparameters

* Manage a lot of devices to host all of the
parameters

 Can be unstable / tricky to train
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What are MoEs

Mixture of Experts Layer

* A neural network layer

that only activates some
parameters e —y (D
—1 > expert Y
* |n current state-of-the
art LMs, the
feedforward layer in a [Mistral 2024]

Transformer block



What are MoEs

e Standard Transformer layer:
ill:T — Attn(hl:T) + hl:T
hi:T = FFN(%LT) + %I:T

. MOE layer: replace FEN(/1;.7) with:
%I:T = Attn(hl:T) T hl:T
i:T N MOE(%I:T) T ill:T

o Internally, the MOE has:
« Feedforward networks FFN, ..., FENy (“experts”) with params 0, ..., Oy

* A parameterized router that chooses 1 or more FFNs to use for each input



Expert design

* Considerations
* Where to put the experts
e Expert count
e Size of each expert

 Number of shared experts



Where to put the experts

 Feed forward layer

e | ess common:;
attention layer

e Can be unstable

 Nowadays, typically
every FFEN layer
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Expert count | increase params
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Expert count | fine-grained

- Strategy 2: increase number of experts for a fixed
number of parameters by splitting the hidden dimension

- “Fine-grained expert segmentation” [DeepSeek 2024 ]
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Expert count | fine-grained

« Make more experts of dimension d/n for some integer n.
Example:

» Baseline: 8-experts per layer of dimension d,
2 activated

 Fine-grained: 16-experts per layer of dimension d/2,
4 activated

* Increases flexibility
 Baseline => 28 combinations per layer

 Fine-grained => 1,820 combinations per layer
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Figure 5: Expert granularity. We| vary the number of experts in tandem with the FEN dimension
to ensure that active and total parameters and thus compute cost remain the same. For example, for
64 experts, the FFN dimension is 1,024 and 8 experts are activated, while for 32 experts it is 2,048
with 4 activated experts. More results, logs, and configurations: https://wandb.ai/ai2-11m/
olmoe/reports/Plot-Granularity--Vmlldzo40TIx0TE4

* Diminishing returns in practice after a certain granularity

 Could lead to more communication costs it not managed well



Shared experts

o Always keep a fixed set of experts active, route to the rest

 E.g. 1 shared expert, 3 experts selected by routing
from the 31 experts

o Claim/intuition: shared expert learns common information,
reducing redundancy among the experts () o)

(a) Conventional Top-2 Routing == (b) + Fine-grained Expert Segmentation mmms) (c) + Shared Expert Isolation



Shared experts

1.2
I 0 shared expert + 2 out of 16 routed experts (GShard)

3 1 shared expert + 1 out of 15 routed experts (+ shared expert isolation)
1.1 I 1 shared expert + 3 out of 31 routed experts (+ fine-grained expert segmentation)
I 1 shared expert + 7 out of 63 routed experts (+ finer expert segmentation)
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Figure 3 | Ablation studies for DeepSeekMOoE. The performance is normalized by the best perfor-



Shared experts
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Figure 6: Shared experts. Both setups have the same number of active and total param-
eters and use the same number of FLOPs. 4 of the 32 routed experts are activated, while
it is 3 for the 31 routed experts of the other model, as it has 1 always-active shared ex-
pert. More results, logs, and configurations: https://wandb.ai/ai2-11m/olmoe/reports/
Plot-Expert-sharing--Vml1dzo40TIyMj(Qz

e Mixed results across research studies

 Reduces modeling flexibility
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Routing: basic idea

 Compute a score for each (token, expert) pair

 Choose experts according to some strategy
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Computing routing scores

o Surprisingly simple:

* |Introduce a weight vector for each expert

* Jake dot products between each token's hidden
state and each expert's weight vector
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Routing functions

T1 T2 T3
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Top-k token-choice routing

Top-2 Routing




Top-k token-choice routing
s, ; = softmax; (ﬁtTei)

{Sit s;. € Topk({s;,|[1 < j < N}, K),
it =Y. |
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| oad balancing and capacity

* Fallure modes: expert gets too many tokens, expert
gets too few tokens

(Capacity Factor: 1.0)

Expert 1 Expert 2

Expert 3

é Device 0 \ é Device 1 )

“Token dropping”

1
1
Device 2 \ "

(Capacity Factor: 1.5) U nuse d

Expert 1 Expert 2
Device 0 Device 1

. capdaeity

Across Device
Communication




Top-k token-choice routing

* Pros
* Ensures that each token is assigned to experts
* Relatively simple
* Potential cons
* Load balancing is tricky
 Example: every token picks the same expert

- Token dropping: when too many tokens are routed to an
expert so we have to drop some (e.g., due to memory)

e Selection operation is not differentiable

- Keep In mind: every major Mok LLM nowadays uses top-k token
choice routing!



Alternatives: expert choice

* Each expert chooses a fixed number of tokens

e Pros Tokens

e Solves load balancing at training time 1A . T2 . TS\

* Model can allocate more capacity to certain tokens = Mmi

* |.e., atoken may be selected by multiple experts ) o | |
« Cons E& %
* At generation time, we only have one token being L <
processed at a time -+
* We would need to design a selection mechanism L]

* Joken dropping: a token is not selected by any
experts



Alternatives: expert choice
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Figure 7: Expert choice (EC) vs. token choice (TC). Both models have an 8-expert MoE in every
2nd layer. For TC, 2 experts are activated per token, while for EC the capacity factor is 2. Thus,
both models use the same number of active parameters. More results, logs, and configurations:
https://wandb.ai/ai2-11m/olmoe/reports/Plot-EC-vs-TC--Vmlldzo4MzkzMDM3



Alternatives: even simpler?

 Hashing [Roller et al 2021]

* A simple no-learning baseline: can perform
surprisingly well, but not learning is suboptimal

Hash Routing
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Alternatives: more complicated?

* Example: reinforcement learning

Reinforcement Learning

* Learn expert selection via RL MLITITT] [ITIT1]
. Pros f o mvomae e
* A principled solution for non- . o / 3] [Fe) [/ [Fens) (Feue)
differentiability ~ Io&f;;;ffu\ T
* Cons g & L

» Expensive to train, can lead to |
even more instability

* Empirically hasn't shown much
benetit over simpler methods
(e.g. [Clark et al 2022]
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Other methods:
inear assignment,

optimal transport...
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How do we train MoEs”?

» Considerations:
* We want a good model (PPL, task metrics)
 We want to utilize hardware optimally
* Non-differentiable routing decision

 RL"” [Bengio 2016, Clark 2022]

* Add noise to explore” [Shazeer 2017]

- Heuristic balancing losses
[Fedus 2022 and current methods]



Expert balancing loss

[Zoph et al 2022]

* |ntuition: penalize expert if it receives too many tokens
and/or gets too much probability mass

N
L=a) fP,
=1

f: - proportion of tokens in sequence routed to expert

P;: proportion of routing probability assigned to expert



The balancing loss Is important
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Figure 10: Expert assignment during training when using or not using a load balancing loss
for the first MoE layer. More results, logs, and configurations: https://wandb.ai/ai2-11m/
olmoe/reports/Plot-LBL-vs-No-LBL--Vml1dzo40TkyNDg4
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Figure 9: Impact of applying a load balancing loss (LBL). The training loss plot excludes the
load balancing loss for both models. More results, logs, and configurations: https://wandb.ai/
ai2-11m/olmoe/reports/Plot-LBL-vs-No-LBL--Vml1dzo40TkyNDg4



Variations

* Per-device balancing
* Put a group of experts on each device

* Apply loss to groups rather than individual experts

* |n practice, used in addition to expert balancing loss



Stability: mixed precision

 Typically float32 is used for the expert routing
computations

e But large logits (e.g., strongly preferring an expert)
are still an issue...



Stability: z-loss

« Explicitly penalize large logits through a loss

2
B

N
L(x) = % Z log Z e"is
j=1

=1

e B: number of tokens in batch

e N: number of experts

. x € RN |ogits used in router

e Basic idea: make the denominator in the softmax smaller



Stability: z-loss
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Figure 11: Router z-loss. We compare adding router z-loss with a loss weight of 0.001 versus no
additional z-loss. More results, logs, and configurations: https://wandb.ai/ai2-11m/olmoe/
reports/Plot-Zloss-vs—none--Vml1ldzo4NDM4NjUz
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Expert parallelism

 Basic idea: experts can reside on different
accelerators. The input data is dynamically
dispatched to and fetched from them



Data
Parallelism

How the model weights are split over cores

Model
Parallelism
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Other topics : sparse upcycling

Turn a dense model into a MoE model

e Clone the dense MLP multiple times

e |ntroduce router parameters

e Continue pre-training

Useful it at a fixed number of FLOPs:

* Dense pretraining + sparse upcycle > sparse pretraining
Can bias the optimization

* Intuition: if the pretrained model is already well-trained, it may
be difficult for the optimization to find a much different model

Need to use some of the original model’'s hyper-parameters



Other topics : sparse upcycling

Training loss Validation loss (C4) HellaSwag 35 MMLU Var
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Figure 8: Sparse upcycling. We upcycle OLMo-1B (0724) at 2T tokens into an MoE
with 8 total experts of which 2 are activated and train it for an additional 610 billion to-
kens. We compare it to a model trained from scratch for 610 billion tokens. Except for
this difference, both models use the same config, which includes some suboptimal settings
that contribute to the instability, such as no QK-Norm (§4.2.5) and no truncated normal init
(§4.2.2). More results, logs, and configurations: https://wandb.ai/ai2-11m/olmoe/reports/
Plot-Scratch-vs-Upcycle--Vml1ldzo4NDIy0Tc4

Mixed results: e.g. iIn OLMOe, sparse pretraining alone catches up quickly
(25% of the dense model’s budget [Al2 2025])



Other phenomena:
domain specialization

e SOme experts in some layers may activate
frequently in particular domains
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Deepseek-MoE

Architecture
* 16B total parameters, 2.8B active
* 66 experts with 8 activated
e 512 dimension
* 2 shared experts
* All FFNs use MoE layers
Routing
* Per-token
Pipeline parallelism, no expert parallelism
* => no token dropping
Losses
* Expert balance loss, weight 0.001
* Device-level balance loss
Efficiency

* With 40% of pre-training compute, reaches performance of dense DeepSeek 7B



OLMoE

Architecture
e 6.9B total parameters, 1.3B active
* 64 small experts with 8 activated
e “Small expert”: 1,024 FFN dimension
 No shared expert
Routing
* Per-token
* Dropless
Losses
e Expert balance loss, weight 0.01
e Router z-loss, weight 0.001
Efficiency
* Pretraining: 23,600 tok/sec/GPU for Mok, 37,500 for dense
 Reaches performance of dense model 2x faster



Others

DeepSeek v3
Mixtral

Qwena3
gpt-0Ss



Thank you



