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Mixture of experts

• Key idea: replace Transformer feed-forward network (FFN) layer with a new layer

[Fedus et al 2022]



Mixture of experts

• Key idea: sparsity 
• The model has many total parameters, but only a 

relatively smaller number of them are active for 
training and inference

Active

Inactive



New dimension of scaling
• Scale parameter count while keeping the amount of 

computation (FLOPs per example) fixed

[Fedus et al 2022]



• Fewer FLOPs needed reach a given level of 
performance compared to the standard dense 
architecture

[AI2 2025]

More efficient training



More efficient training
• Faster wall-clock time to reach a given level of 

performance:

[Fedus et al 2022]



[DeepSeek 2024]

Better inference-cost vs. 
performance tradeoff



[AI2 2025]



[Mistral 2024]



Used in top LLMs

gpt-oss Qwen 3

Gemini 3.0 [11/18/2025]



Potential downsides

• Increased system complexity 
• Need to coordinate usage of the experts 

• New losses and new hyperparameters 

• Manage a lot of devices to host all of the 
parameters 

• Can be unstable / tricky to train



This lecture

• What are MoEs 
• Expert design 
• Routing functions 
• Loss functions 
• Systems 
• Case studies



What are MoEs

• A neural network layer 
that only activates some 
parameters 
• In current state-of-the 

art LMs, the 
feedforward layer in a 
Transformer block

[Mistral 2024]



What are MoEs
• Standard Transformer layer: 

 

 

• MoE layer: replace  with: 

 

 

• Internally, the  has: 
• Feedforward networks  (“experts”) with params  
• A parameterized router that chooses 1 or more FFNs to use for each input

h̃1:T = Attn(h1:T) + h1:T

h′￼1:T = FFN(h̃1:T) + h̃1:T

FFN(h̃1:T)
h̃1:T = Attn(h1:T) + h1:T

h′￼1:T = MoE(h̃1:T) + h̃1:T

MoE
FFN1, …, FFNN θ1, …, θN



Expert design

• Considerations 
• Where to put the experts 
• Expert count 
• Size of each expert 
• Number of shared experts



Where to put the experts

• Feed forward layer 
• Less common: 

attention layer 
• Can be unstable 

• Nowadays, typically 
every FFN layer



Expert count | increase params

• Strategy 1: Increase number 
of parameters 
• 2N, 4N, 8N, 16N, …. 
• More is better, but with  

diminishing returns 
• More parameters => more 

computational resources



Expert count | fine-grained
• Strategy 2: increase number of experts for a fixed 

number of parameters by splitting the hidden dimension 
• “Fine-grained expert segmentation” [DeepSeek 2024]



• Make more experts of dimension  for some integer n. 
Example: 
• Baseline: 8-experts per layer of dimension ,  

2 activated  
• Fine-grained: 16-experts per layer of dimension ,  

4 activated 
• Increases flexibility 

• Baseline => 28 combinations per layer 
• Fine-grained => 1,820 combinations per layer

d/n

d

d/2

Expert count | fine-grained



Fine-grained experts

• Diminishing returns in practice after a certain granularity 
• Could lead to more communication costs if not managed well



Shared experts
• Always keep a fixed set of experts active, route to the rest  

• E.g. 1 shared expert, 3 experts selected by routing 
from the 31 experts  

• Claim/intuition: shared expert learns common information, 
reducing redundancy among the experts



Shared experts



Shared experts

• Mixed results across research studies 
• Reduces modeling flexibility



This lecture

• What are MoEs 
• Expert design 
• Routing functions
• Loss functions 
• Systems 
• Example



Routing: basic idea
• Compute a score for each (token, expert) pair 
• Choose experts according to some strategy

• Expert choice: Each expert 
chooses top-k tokens

• Global choice: Each expert 
chooses top-k tokens

• Token choice: Each token 
chooses top-k experts



Computing routing scores

• Surprisingly simple: 
• Introduce a weight vector for each expert 

• Take dot products between each token’s hidden 
state and each expert’s weight vector



Routing functions

[Fedus et al 2022]



Routing functions

• Given a matrix of scores, 
now we want to select a set 
of experts for each token 
• I.e., “route” each token to 

a set of experts



Top-k token-choice routing



Top-k token-choice routing

 

 

st,i = softmaxi (h̃T
t ei)

gi,t = {si,t si,t ∈ Topk({sj,t∥1 ≤ j ≤ N}, K),
0 otherwise

h′￼t =
N

∑
i=1

(gi,tFFNi(h̃t)) + h̃t



Load balancing and capacity
• Failure modes: expert gets too many tokens, expert 

gets too few tokens

“Token dropping”

Unused 
capacity



Top-k token-choice routing
• Pros 

• Ensures that each token is assigned to experts 
• Relatively simple 

• Potential cons 
• Load balancing is tricky 

• Example: every token picks the same expert 
• Token dropping: when too many tokens are routed to an 

expert so we have to drop some (e.g., due to memory)
• Selection operation is not differentiable 

• Keep in mind: every major MoE LLM nowadays uses top-k token 
choice routing!



Alternatives: expert choice
• Each expert chooses a fixed number of tokens 
• Pros 

• Solves load balancing at training time 
• Model can allocate more capacity to certain tokens 

• I.e., a token may be selected by multiple experts 
• Cons 

• At generation time, we only have one token being 
processed at a time 

• We would need to design a selection mechanism 
• Token dropping: a token is not selected by any 

experts



Alternatives: expert choice



Alternatives: even simpler?
• Hashing [Roller et al 2021] 

• A simple no-learning baseline: can perform 
surprisingly well, but not learning is suboptimal



Alternatives: more complicated?

• Example: reinforcement learning 
• Learn expert selection via RL 

• Pros 
• A principled solution for non-

differentiability 
• Cons 

• Expensive to train, can lead to 
even more instability 

• Empirically hasn’t shown much 
benefit over simpler methods 
(e.g. [Clark et al 2022]

Other methods: 
linear assignment, 
optimal transport…
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How do we train MoEs?

• Considerations: 
• We want a good model (PPL, task metrics) 
• We want to utilize hardware optimally 
• Non-differentiable routing decision 

• RL? [Bengio 2016, Clark 2022] 

• Add noise to explore? [Shazeer 2017] 
• Heuristic balancing losses  

[Fedus 2022 and current methods]



Expert balancing loss

• Intuition: penalize expert if it receives too many tokens 
and/or gets too much probability mass 

 

 
 : proportion of tokens in sequence routed to expert  
: proportion of routing probability assigned to expert 

L = α
N

∑
i=1

fiPi

fi i
Pi i

Heuristic, but surprisingly effective and widely used

[Zoph et al 2022]



The balancing loss is important



Variations

• Per-device balancing 
• Put a group of experts on each device 
• Apply loss to groups rather than individual experts 

• In practice, used in addition to expert balancing loss



Stability: mixed precision

• Typically float32 is used for the expert routing 
computations 

• But large logits (e.g., strongly preferring an expert) 
are still an issue…



Stability: z-loss
• Explicitly penalize large logits through a loss 

 

• B: number of tokens in batch 
• N: number of experts 

•  logits used in router 

• Basic idea: make the denominator in the softmax smaller

LZ(x) =
1
B

B

∑
i=1

log
N

∑
j=1

exi,j

2

x ∈ ℝB×N



Stability: z-loss
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Expert parallelism

• Basic idea: experts can reside on different 
accelerators. The input data is dynamically 
dispatched to and fetched from them



Expert parallelism

[Fedus et al 2022]



Other topics : sparse upcycling
• Turn a dense model into a MoE model 

• Clone the dense MLP multiple times 
• Introduce router parameters 
• Continue pre-training  

• Useful if at a fixed number of FLOPs: 
• Dense pretraining + sparse upcycle > sparse pretraining   

• Can bias the optimization 
• Intuition: if the pretrained model is already well-trained, it may 

be difficult for the optimization to find a much different model 
• Need to use some of the original model’s hyper-parameters



Other topics : sparse upcycling

• Mixed results: e.g. in OLMOe, sparse pretraining alone catches up quickly 
(25% of the dense model’s budget [AI2 2025])



Other phenomena:  
domain specialization

• Some experts in some layers may activate 
frequently in particular domains
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DeepSeek-MoE
• Architecture 

• 16B total parameters, 2.8B active 
• 66 experts with 8 activated 

• 512 dimension 
• 2 shared experts 

• All FFNs use MoE layers 
• Routing 

• Per-token 
• Pipeline parallelism, no expert parallelism 

• => no token dropping 
• Losses 

• Expert balance loss, weight 0.001 
• Device-level balance loss 

• Efficiency 
• With 40% of pre-training compute, reaches performance of dense DeepSeek 7B



OLMoE
• Architecture 

• 6.9B total parameters, 1.3B active 
• 64 small experts with 8 activated 

• “Small expert”: 1,024 FFN dimension 
• No shared expert 

• Routing 
• Per-token 
• Dropless 

• Losses 
• Expert balance loss, weight 0.01 
• Router z-loss, weight 0.001 

• Efficiency 
• Pretraining: 23,600 tok/sec/GPU for MoE, 37,500 for dense 
• Reaches performance of dense model 2x faster



Others
• DeepSeek v3 
• Mixtral 
• Qwen3 
• gpt-oss 
• …



Thank you


