
CS11-711 Advanced NLP

Mixture of Experts
Sean Welleck

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

Acknowledgements: Stanford CS336 Spring 2025 Lecture 4

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

Mixture of experts

• Key idea: replace Transformer feed-forward network (FFN) layer with a new layer

[Fedus et al 2022]

Mixture of experts

• Key idea: sparsity
• The model has many total parameters, but only a

relatively smaller number of them are active for
training and inference

Active

Inactive

New dimension of scaling
• Scale parameter count while keeping the amount of

computation (FLOPs per example) fixed

[Fedus et al 2022]

• Fewer FLOPs needed reach a given level of
performance compared to the standard dense
architecture

[AI2 2025]

More efficient training

More efficient training
• Faster wall-clock time to reach a given level of

performance:

[Fedus et al 2022]

[DeepSeek 2024]

Better inference-cost vs.
performance tradeoff

[AI2 2025]

[Mistral 2024]

Used in top LLMs

gpt-oss Qwen 3

Gemini 3.0 [11/18/2025]

Potential downsides

• Increased system complexity
• Need to coordinate usage of the experts

• New losses and new hyperparameters

• Manage a lot of devices to host all of the
parameters

• Can be unstable / tricky to train

This lecture

• What are MoEs
• Expert design
• Routing functions
• Loss functions
• Systems
• Case studies

What are MoEs

• A neural network layer
that only activates some
parameters
• In current state-of-the

art LMs, the
feedforward layer in a
Transformer block

[Mistral 2024]

What are MoEs
• Standard Transformer layer:

• MoE layer: replace with:

• Internally, the has:
• Feedforward networks (“experts”) with params
• A parameterized router that chooses 1 or more FFNs to use for each input

h̃1:T = Attn(h1:T) + h1:T

h′￼1:T = FFN(h̃1:T) + h̃1:T

FFN(h̃1:T)
h̃1:T = Attn(h1:T) + h1:T

h′￼1:T = MoE(h̃1:T) + h̃1:T

MoE
FFN1, …, FFNN θ1, …, θN

Expert design

• Considerations
• Where to put the experts
• Expert count
• Size of each expert
• Number of shared experts

Where to put the experts

• Feed forward layer
• Less common:

attention layer
• Can be unstable

• Nowadays, typically
every FFN layer

Expert count | increase params

• Strategy 1: Increase number
of parameters
• 2N, 4N, 8N, 16N, ….
• More is better, but with

diminishing returns
• More parameters => more

computational resources

Expert count | fine-grained
• Strategy 2: increase number of experts for a fixed

number of parameters by splitting the hidden dimension
• “Fine-grained expert segmentation” [DeepSeek 2024]

• Make more experts of dimension for some integer n.
Example:
• Baseline: 8-experts per layer of dimension ,

2 activated
• Fine-grained: 16-experts per layer of dimension ,

4 activated
• Increases flexibility

• Baseline => 28 combinations per layer
• Fine-grained => 1,820 combinations per layer

d/n

d

d/2

Expert count | fine-grained

Fine-grained experts

• Diminishing returns in practice after a certain granularity
• Could lead to more communication costs if not managed well

Shared experts
• Always keep a fixed set of experts active, route to the rest

• E.g. 1 shared expert, 3 experts selected by routing
from the 31 experts

• Claim/intuition: shared expert learns common information,
reducing redundancy among the experts

Shared experts

Shared experts

• Mixed results across research studies
• Reduces modeling flexibility

This lecture

• What are MoEs
• Expert design
• Routing functions
• Loss functions
• Systems
• Example

Routing: basic idea
• Compute a score for each (token, expert) pair
• Choose experts according to some strategy

• Expert choice: Each expert
chooses top-k tokens

• Global choice: Each expert
chooses top-k tokens

• Token choice: Each token
chooses top-k experts

Computing routing scores

• Surprisingly simple:
• Introduce a weight vector for each expert

• Take dot products between each token’s hidden
state and each expert’s weight vector

Routing functions

[Fedus et al 2022]

Routing functions

• Given a matrix of scores,
now we want to select a set
of experts for each token
• I.e., “route” each token to

a set of experts

Top-k token-choice routing

Top-k token-choice routing

st,i = softmaxi (h̃T
t ei)

gi,t = {si,t si,t ∈ Topk({sj,t∥1 ≤ j ≤ N}, K),
0 otherwise

h′￼t =
N

∑
i=1

(gi,tFFNi(h̃t)) + h̃t

Load balancing and capacity
• Failure modes: expert gets too many tokens, expert

gets too few tokens

“Token dropping”

Unused
capacity

Top-k token-choice routing
• Pros

• Ensures that each token is assigned to experts
• Relatively simple

• Potential cons
• Load balancing is tricky

• Example: every token picks the same expert
• Token dropping: when too many tokens are routed to an

expert so we have to drop some (e.g., due to memory)
• Selection operation is not differentiable

• Keep in mind: every major MoE LLM nowadays uses top-k token
choice routing!

Alternatives: expert choice
• Each expert chooses a fixed number of tokens
• Pros

• Solves load balancing at training time
• Model can allocate more capacity to certain tokens

• I.e., a token may be selected by multiple experts
• Cons

• At generation time, we only have one token being
processed at a time

• We would need to design a selection mechanism
• Token dropping: a token is not selected by any

experts

Alternatives: expert choice

Alternatives: even simpler?
• Hashing [Roller et al 2021]

• A simple no-learning baseline: can perform
surprisingly well, but not learning is suboptimal

Alternatives: more complicated?

• Example: reinforcement learning
• Learn expert selection via RL

• Pros
• A principled solution for non-

differentiability
• Cons

• Expensive to train, can lead to
even more instability

• Empirically hasn’t shown much
benefit over simpler methods
(e.g. [Clark et al 2022]

Other methods:
linear assignment,
optimal transport…

This lecture

• What are MoEs
• Expert design
• Routing functions
• Loss functions
• Systems
• Example

How do we train MoEs?

• Considerations:
• We want a good model (PPL, task metrics)
• We want to utilize hardware optimally
• Non-differentiable routing decision

• RL? [Bengio 2016, Clark 2022]

• Add noise to explore? [Shazeer 2017]
• Heuristic balancing losses  

[Fedus 2022 and current methods]

Expert balancing loss

• Intuition: penalize expert if it receives too many tokens
and/or gets too much probability mass

 : proportion of tokens in sequence routed to expert
: proportion of routing probability assigned to expert

L = α
N

∑
i=1

fiPi

fi i
Pi i

Heuristic, but surprisingly effective and widely used

[Zoph et al 2022]

The balancing loss is important

Variations

• Per-device balancing
• Put a group of experts on each device
• Apply loss to groups rather than individual experts

• In practice, used in addition to expert balancing loss

Stability: mixed precision

• Typically float32 is used for the expert routing
computations

• But large logits (e.g., strongly preferring an expert)
are still an issue…

Stability: z-loss
• Explicitly penalize large logits through a loss

• B: number of tokens in batch
• N: number of experts

• logits used in router

• Basic idea: make the denominator in the softmax smaller

LZ(x) =
1
B

B

∑
i=1

log
N

∑
j=1

exi,j

2

x ∈ ℝB×N

Stability: z-loss

This lecture

• What are MoEs
• Routing functions
• Expert design
• Training objectives
• Systems
• Example

Expert parallelism

• Basic idea: experts can reside on different
accelerators. The input data is dynamically
dispatched to and fetched from them

Expert parallelism

[Fedus et al 2022]

Other topics : sparse upcycling
• Turn a dense model into a MoE model

• Clone the dense MLP multiple times
• Introduce router parameters
• Continue pre-training

• Useful if at a fixed number of FLOPs:
• Dense pretraining + sparse upcycle > sparse pretraining

• Can bias the optimization
• Intuition: if the pretrained model is already well-trained, it may

be difficult for the optimization to find a much different model
• Need to use some of the original model’s hyper-parameters

Other topics : sparse upcycling

• Mixed results: e.g. in OLMOe, sparse pretraining alone catches up quickly
(25% of the dense model’s budget [AI2 2025])

Other phenomena:
domain specialization

• Some experts in some layers may activate
frequently in particular domains

This lecture

• What are MoEs
• Routing functions
• Expert design
• Training objectives
• Systems
• Case studies

DeepSeek-MoE
• Architecture

• 16B total parameters, 2.8B active
• 66 experts with 8 activated

• 512 dimension
• 2 shared experts

• All FFNs use MoE layers
• Routing

• Per-token
• Pipeline parallelism, no expert parallelism

• => no token dropping
• Losses

• Expert balance loss, weight 0.001
• Device-level balance loss

• Efficiency
• With 40% of pre-training compute, reaches performance of dense DeepSeek 7B

OLMoE
• Architecture

• 6.9B total parameters, 1.3B active
• 64 small experts with 8 activated

• “Small expert”: 1,024 FFN dimension
• No shared expert

• Routing
• Per-token
• Dropless

• Losses
• Expert balance loss, weight 0.01
• Router z-loss, weight 0.001

• Efficiency
• Pretraining: 23,600 tok/sec/GPU for MoE, 37,500 for dense
• Reaches performance of dense model 2x faster

Others
• DeepSeek v3
• Mixtral
• Qwen3
• gpt-oss
• …

Thank you

