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Inference

• Generate outputs with a model and an algorithm



New dimension of scaling
• “Test-time compute”



Strategy 1: generate multiple times
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Strategy 2: generate longer outputs

o1 [OpenAI 2024] s1 [Muennighoff et al 2025] L1 [Aggarwal & Welleck 2025]
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Recap: generation/decoding algorithms

• Generator: generates a sequence with a language model 
• Example: calling an LLM API 
• Decoding algorithms 

• Greedy decoding, temperature sampling, etc.



Meta-generation algorithms
• Strategies for calling a generator multiple times 

• Common patterns 
• Parallel 
• Refinement 

• Others we won’t discuss: tree search, hybrid strategies



Parallel generation
• Generate multiple candidates and aggregate them 

• Generate: 

•  
• Aggregate: 

•

{y(1), …, y(K)} ∼ G( ⋅ |x)

y = h(y(1), …, y(N))



Parallel generation: Best-of-N
• Aggregation: max 
• Scores: reward model  (aka evaluator, value model, verifier, …) v

arg max
y(i)

v(y(i))



Example: solving a math problem



What if we had a perfect verifier?

[Brown et al 2024]



In some applications we have perfect verifiers

• Formal theorem proving

Attempts per problem

Draft, Sketch, and Prove [Jiang et al 2023]



Learned reward model
•  

• Example: train a model to classify whether a solution is 
correct or incorrect

v(y) → ℝ ≈ R(y)



Learned reward model
•  

• Example: train a model to assign a higher score to a 
preferred output 
• See RL for LLMs lecture!

v(y) → ℝ ≈ R(y)



Example: Cobbe et al 2021 (OpenAI)
• Trains a verifier (reward model) to classify whether a solution to 

a grade-school math word problem (GSM8K) is correct



Example: Cobbe et al 2021 (OpenAI)
• Trains a verifier (reward model) to classify whether a solution to 

a grade-school math word problem (GSM8K) is correct



Example: Cobbe et al 2021 (OpenAI)



Example: Cobbe et al 2021 (OpenAI)





Why best-of-N?
• Approximates the maximum true reward: 

Best-of-N = arg max
y∈{y(1),…,y(N)}

v(y)

≈ arg max
y

v(y)

≈ arg max
y

R(y)

Gets better as N increases! 

Suffers from imperfect 
reward model, aka 

“Over-optimization” /  
reward hacking



Over-optimization / reward hacking

[Cobbe et al 2021]



Improving the reward model: process labels

• If we can get good labels for intermediate steps, it’s possible to 
train a better reward model 
• Getting good labels is difficult in general!



Example: [Lightman et al 2023] (OpenAI)

Human-annotated process labels



Example: [Lightman et al 2023] (OpenAI)



Improving the reward model: CoT
• Studies have found that using chain-of-thought tends to help 

for the reward model

[Zhang et al 2025]
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Improving the reward model: CoT
• Inference compute used for evaluation can itself be scaled up

[Zhang et al 2025]



Voting (aka self-consistency)
• Aggregation: pick the most common answer 

 

• Pro: No reward model needed! 

• Potential con: need a notion of equivalence of outputs  

• (e.g., same answer)

arg max
a

N

∑
i=1

1[y(i)=a]



Voting

Self-Consistency [Wang et al 2022]



Voting

Minerva [Google 2022]



Voting

Minerva [Google 2022]

• Voting was better than best-of-N w/ model log-likelihood as the 
scoring function



• Voting can still help with recent long CoT models like R1

Voting

[DeepSeek 2025]

“Cons@16” means 
 self-consistency@16 

aka voting@16



Weighted Voting
• Aggregation: pick the most common answer 
• Scoring: use a reward model to weight votes 

arg max
a

N

∑
i=1

v(y(i))1[y(i)=a]



Weighted Voting
• Can perform better than unweighted voting 
• Improves with a better reward model

[Zhang et al 2025]



Weighted Voting
• Can perform better than best-of-N

[Sun et al 2024]



What is voting doing?
• When we have a chain-of-thought followed by a final output, 

voting “marginalizes out” the intermediate reasoning chains 
• As the number of candidates , voting accuracy 

converges to: 

 

Notation: 

•  : (input, solution, answer) 

•  : number of test examples

N → ∞

1
M

M

∑
i=1

𝕀 [a*i = arg max
a ∑

z

v(x, z, a)g(z, a |x)]
(x, z, a)
M

Inference Scaling Laws, Theorem 2 [Wu et al 2024]
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• Takeaway 1: when is weighted voting better than voting? 
• When  assigns more total mass to correct answers than 

N → ∞

1
M

M

∑
i=1

𝕀 [a*i = arg max
a ∑

z

v(x, z, a)g(z, a |x)]

v ⋅ g g

Inference Scaling Laws, Theorem 2 [Wu et al 2024]
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• Takeaway 2: will accuracy keep improving with more samples? 
• It converges to the accuracy shown above

N → ∞

1
M

M
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What is voting doing?
• When we have a chain-of-thought followed by a final output, 

voting “marginalizes out” the intermediate reasoning chains 
• As the number of candidates , voting accuracy 

converges to: 

 

• Takeaway 3: how do we improve performance further? 
• Improve the reward model  

• Improve the generator  (better model or better algorithm)

N → ∞

1
M

M

∑
i=1

𝕀 [a*i = arg max
a ∑

z

v(x, z, a)g(z, a |x)]

v
g

Inference Scaling Laws, Theorem 2 [Wu et al 2024]



Meta-generation algorithms
• Strategies for calling a generator multiple times 
• Common patterns 

• Parallel 
• Best-of-N, voting 

• Next: Refinement 



Refinement
• Generate an output, feed it back into the model 

• Repeat: 

• y(i+1) ∼ g(x, y(i))



Refinement
• Generate an output, receive feedback, generate a new 

output using the feedback 

• Repeat: 

• y(i+1) ∼ g(x, y(i), F(y(i)))

Quality is important



Refinement

• Key question: quality and source of the feedback 

• Extrinsic: new external information enters the refinement loop 
• Intrinsic: no external information enters the refinement loop



Extrinsic feedback
• Refinement tends to work well with “good” extrinsic feedback 

• Adds new information 
• High quality (e.g., accurate, noise-free) 
• Specific 

• Localizes errors 
• Gives something specific for the model to refine



Example: code generation
• Feedback 

• Unit test results (extrinsic) 
• Explanation (intrinsic) 

• <= 10 refinement turns

[Chen et al 2023]



Example: verified code generation
• Feedback: formal program verifier (extrinsic)

AlphaVerus, [Aggarwal et al 2024]
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Refinement with extrinsic feedback
• Success cases 

• Code execution / test cases [Chen et al 2024] 
• Verifiers [Aggarwal et al 2024] 
• Retrievers [Asai et al 2024] 
• Tools + agent environment 
• …



Intrinsic feedback
• Self-refinement: re-prompt the same model to generate, give 

feedback, and refine

[Madaan et al 2023]



Intrinsic feedback
• Self-refinement: re-prompt the same model to generate, give 

feedback, and refine 
• Mixed results: 

• Can work on tasks that are easy to evaluate 
• Example: we want 10 citations in the output and the model 

generation has 9 citations 
• Less clear for mathematical reasoning



Intrinsic feedback

LLMs Cannot Self-Correct Reasoning Yet, [Huang et al 2024]

Feedback is too noisy



A toy model for refinement

• Task: generate “TAYLORSWIFT” 

• Generator: 

• Simple unigram model, 
p(character) 

• Feedback: 

• Which character positions are 
incorrect 

• + possibly add noise 

• Refinement: 

• Regenerate only the incorrect 
positions

Intuition: refinement depends 
on how noisy the feedback is

NeurIPS 2024 Tutorial on LLM Inference



Meta-generation algorithms
• Strategies for calling a generator multiple times 
• Common patterns 

• Parallel 
• Best-of-N, voting 

• Refinement 
• Next: Inference scaling laws 



Inference scaling laws
• Compute is a function of model size and number of 

generated tokens 



Inference scaling laws
• We can increase model size and/or increase the number 

of tokens generated 



Inference scaling laws



Inference scaling laws
• Using a smaller model and generating more can be 

preferred over using a larger model and generating less 

Inference Scaling Laws, [Wu et. al  2024]



Today’s lecture: advanced inference

• Test-time scaling strategies 
• Generating multiple times 
• Generating longer outputs



Long chain-of-thought / reasoning models

• Train a model to generate a “thought” prior to a final 
output 

 

• At inference time, just sample a thought+output 
• In principle, the model can “learn a search 

algorithm” 
• Try alternatives, refine, etc. within the thought

pθ(y, z |x)



Long chain-of-thought / reasoning models

• Approach 1: reinforcement learning [see RL for LLMs lecture]

[DeepSeek 2025]



Long chain-of-thought / reasoning models

[DeepSeek 2025]



Long chain-of-thought patterns

Credits: Weihua Du



Controlling the length: budget forcing

[Muenninghoff et al 2025]

• Adhere to a length budget 
by forcing the model to 
generate “wait” or “final 
answer” 

• Trade off tokens and 
performance



Controlling the length: L1

[Aggarwal & Welleck 2025]

Incorrect (512 tokens) Correct (3600 tokens)



Controlling the length: L1

[Aggarwal & Welleck 2025]

• Train model with RL to 
adhere to length constraints 

• E.g. “use up to 2000 tokens” 
provided in the prompt 

• Reward: correctness and 
length constraint penalty



Today’s lecture: advanced inference
• Test-time scaling strategies 

• Generating multiple times 
• Parallel sampling 
• Voting 
• Inference scaling laws 

• Generating longer outputs 
• Reasoning models / long CoT 
• Controlling the reasoning length



Thank you


