
CS11-711 Advanced NLP

Advanced Inference
Strategies

Sean Welleck

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

Inference

• Generate outputs with a model and an algorithm

New dimension of scaling
• “Test-time compute”

Strategy 1: generate multiple times

Strategy 1: generate multiple times

[Deepmind 2022]

Strategy 1: generate multiple times

[Deepmind 2022]

Strategy 1: generate multiple times

[Sun et al 2024]

Strategy 2: generate longer outputs

[Wei et al 2022]

Strategy 2: generate longer outputs

[Wei et al 2022]

Strategy 2: generate longer outputs

o1 [OpenAI 2024] s1 [Muennighoff et al 2025] L1 [Aggarwal & Welleck 2025]

Today’s lecture: advanced inference

• Test-time scaling strategies
• Generating multiple times
• Generating longer outputs

Today’s lecture: advanced inference

• Test-time scaling strategies
• Generating multiple times
• Generating longer outputs

Recap: generation/decoding algorithms

• Generator: generates a sequence with a language model
• Example: calling an LLM API
• Decoding algorithms

• Greedy decoding, temperature sampling, etc.

Meta-generation algorithms
• Strategies for calling a generator multiple times

• Common patterns
• Parallel
• Refinement

• Others we won’t discuss: tree search, hybrid strategies

Parallel generation
• Generate multiple candidates and aggregate them

• Generate:

•
• Aggregate:

•

{y(1), …, y(K)} ∼ G(⋅ |x)

y = h(y(1), …, y(N))

Parallel generation: Best-of-N
• Aggregation: max
• Scores: reward model (aka evaluator, value model, verifier, …) v

arg max
y(i)

v(y(i))

Example: solving a math problem

What if we had a perfect verifier?

[Brown et al 2024]

In some applications we have perfect verifiers

• Formal theorem proving

Attempts per problem

Draft, Sketch, and Prove [Jiang et al 2023]

Learned reward model
•

• Example: train a model to classify whether a solution is
correct or incorrect

v(y) → ℝ ≈ R(y)

Learned reward model
•

• Example: train a model to assign a higher score to a
preferred output
• See RL for LLMs lecture!

v(y) → ℝ ≈ R(y)

Example: Cobbe et al 2021 (OpenAI)
• Trains a verifier (reward model) to classify whether a solution to

a grade-school math word problem (GSM8K) is correct

Example: Cobbe et al 2021 (OpenAI)
• Trains a verifier (reward model) to classify whether a solution to

a grade-school math word problem (GSM8K) is correct

Example: Cobbe et al 2021 (OpenAI)

Example: Cobbe et al 2021 (OpenAI)

Why best-of-N?
• Approximates the maximum true reward:

Best-of-N = arg max
y∈{y(1),…,y(N)}

v(y)

≈ arg max
y

v(y)

≈ arg max
y

R(y)

Gets better as N increases!

Suffers from imperfect
reward model, aka

“Over-optimization” /
reward hacking

Over-optimization / reward hacking

[Cobbe et al 2021]

Improving the reward model: process labels

• If we can get good labels for intermediate steps, it’s possible to
train a better reward model
• Getting good labels is difficult in general!

Example: [Lightman et al 2023] (OpenAI)

Human-annotated process labels

Example: [Lightman et al 2023] (OpenAI)

Improving the reward model: CoT
• Studies have found that using chain-of-thought tends to help

for the reward model

[Zhang et al 2025]

Improving the reward model: CoT
• Studies have found that using chain-of-thought tends to help

for the reward model

[Zhang et al 2025]

Improving the reward model: CoT
• Inference compute used for evaluation can itself be scaled up

[Zhang et al 2025]

Voting (aka self-consistency)
• Aggregation: pick the most common answer

• Pro: No reward model needed!

• Potential con: need a notion of equivalence of outputs

• (e.g., same answer)

arg max
a

N

∑
i=1

1[y(i)=a]

Voting

Self-Consistency [Wang et al 2022]

Voting

Minerva [Google 2022]

Voting

Minerva [Google 2022]

• Voting was better than best-of-N w/ model log-likelihood as the
scoring function

• Voting can still help with recent long CoT models like R1

Voting

[DeepSeek 2025]

“Cons@16” means
 self-consistency@16

aka voting@16

Weighted Voting
• Aggregation: pick the most common answer
• Scoring: use a reward model to weight votes

arg max
a

N

∑
i=1

v(y(i))1[y(i)=a]

Weighted Voting
• Can perform better than unweighted voting
• Improves with a better reward model

[Zhang et al 2025]

Weighted Voting
• Can perform better than best-of-N

[Sun et al 2024]

What is voting doing?
• When we have a chain-of-thought followed by a final output,

voting “marginalizes out” the intermediate reasoning chains
• As the number of candidates , voting accuracy

converges to:

Notation:

• : (input, solution, answer)

• : number of test examples

N → ∞

1
M

M

∑
i=1

𝕀 [a*i = arg max
a ∑

z

v(x, z, a)g(z, a |x)]
(x, z, a)
M

Inference Scaling Laws, Theorem 2 [Wu et al 2024]

What is voting doing?
• When we have a chain-of-thought followed by a final output,

voting “marginalizes out” the intermediate reasoning chains
• As the number of candidates , voting accuracy

converges to:

• Takeaway 1: when is weighted voting better than voting?
• When assigns more total mass to correct answers than

N → ∞

1
M

M

∑
i=1

𝕀 [a*i = arg max
a ∑

z

v(x, z, a)g(z, a |x)]

v ⋅ g g

Inference Scaling Laws, Theorem 2 [Wu et al 2024]

What is voting doing?
• When we have a chain-of-thought followed by a final output,

voting “marginalizes out” the intermediate reasoning chains
• As the number of candidates , voting accuracy

converges to:

• Takeaway 2: will accuracy keep improving with more samples?
• It converges to the accuracy shown above

N → ∞

1
M

M

∑
i=1

𝕀 [a*i = arg max
a ∑

z

v(x, z, a)g(z, a |x)]

Inference Scaling Laws, Theorem 2 [Wu et al 2024]

What is voting doing?
• When we have a chain-of-thought followed by a final output,

voting “marginalizes out” the intermediate reasoning chains
• As the number of candidates , voting accuracy

converges to:

• Takeaway 3: how do we improve performance further?
• Improve the reward model

• Improve the generator (better model or better algorithm)

N → ∞

1
M

M

∑
i=1

𝕀 [a*i = arg max
a ∑

z

v(x, z, a)g(z, a |x)]

v
g

Inference Scaling Laws, Theorem 2 [Wu et al 2024]

Meta-generation algorithms
• Strategies for calling a generator multiple times
• Common patterns

• Parallel
• Best-of-N, voting

• Next: Refinement 

Refinement
• Generate an output, feed it back into the model

• Repeat:

• y(i+1) ∼ g(x, y(i))

Refinement
• Generate an output, receive feedback, generate a new

output using the feedback

• Repeat:

• y(i+1) ∼ g(x, y(i), F(y(i)))

Quality is important

Refinement

• Key question: quality and source of the feedback

• Extrinsic: new external information enters the refinement loop
• Intrinsic: no external information enters the refinement loop

Extrinsic feedback
• Refinement tends to work well with “good” extrinsic feedback

• Adds new information
• High quality (e.g., accurate, noise-free)
• Specific

• Localizes errors
• Gives something specific for the model to refine

Example: code generation
• Feedback

• Unit test results (extrinsic)
• Explanation (intrinsic)

• <= 10 refinement turns

[Chen et al 2023]

Example: verified code generation
• Feedback: formal program verifier (extrinsic)

AlphaVerus, [Aggarwal et al 2024]

Example: verified code generation
• Feedback: formal program verifier (extrinsic)

AlphaVerus, [Aggarwal et al 2024]

Refinement with extrinsic feedback
• Success cases

• Code execution / test cases [Chen et al 2024]
• Verifiers [Aggarwal et al 2024]
• Retrievers [Asai et al 2024]
• Tools + agent environment
• …

Intrinsic feedback
• Self-refinement: re-prompt the same model to generate, give

feedback, and refine

[Madaan et al 2023]

Intrinsic feedback
• Self-refinement: re-prompt the same model to generate, give

feedback, and refine
• Mixed results:

• Can work on tasks that are easy to evaluate
• Example: we want 10 citations in the output and the model

generation has 9 citations
• Less clear for mathematical reasoning

Intrinsic feedback

LLMs Cannot Self-Correct Reasoning Yet, [Huang et al 2024]

Feedback is too noisy

A toy model for refinement

• Task: generate “TAYLORSWIFT”

• Generator:

• Simple unigram model,
p(character)

• Feedback:

• Which character positions are
incorrect

• + possibly add noise

• Refinement:

• Regenerate only the incorrect
positions

Intuition: refinement depends
on how noisy the feedback is

NeurIPS 2024 Tutorial on LLM Inference

Meta-generation algorithms
• Strategies for calling a generator multiple times
• Common patterns

• Parallel
• Best-of-N, voting

• Refinement
• Next: Inference scaling laws

Inference scaling laws
• Compute is a function of model size and number of

generated tokens

Inference scaling laws
• We can increase model size and/or increase the number

of tokens generated

Inference scaling laws

Inference scaling laws
• Using a smaller model and generating more can be

preferred over using a larger model and generating less

Inference Scaling Laws, [Wu et. al 2024]

Today’s lecture: advanced inference

• Test-time scaling strategies
• Generating multiple times
• Generating longer outputs

Long chain-of-thought / reasoning models

• Train a model to generate a “thought” prior to a final
output

• At inference time, just sample a thought+output
• In principle, the model can “learn a search

algorithm”
• Try alternatives, refine, etc. within the thought

pθ(y, z |x)

Long chain-of-thought / reasoning models

• Approach 1: reinforcement learning [see RL for LLMs lecture]

[DeepSeek 2025]

Long chain-of-thought / reasoning models

[DeepSeek 2025]

Long chain-of-thought patterns

Credits: Weihua Du

Controlling the length: budget forcing

[Muenninghoff et al 2025]

• Adhere to a length budget
by forcing the model to
generate “wait” or “final
answer”

• Trade off tokens and
performance

Controlling the length: L1

[Aggarwal & Welleck 2025]

Incorrect (512 tokens) Correct (3600 tokens)

Controlling the length: L1

[Aggarwal & Welleck 2025]

• Train model with RL to
adhere to length constraints

• E.g. “use up to 2000 tokens”
provided in the prompt

• Reward: correctness and
length constraint penalty

Today’s lecture: advanced inference
• Test-time scaling strategies

• Generating multiple times
• Parallel sampling
• Voting
• Inference scaling laws

• Generating longer outputs
• Reasoning models / long CoT
• Controlling the reasoning length

Thank you

