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INnference

e (Generate outputs with a model and an algorithm



New dimension of scaling
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Strategy 1: generate multiple times
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Strategy 1: generate multiple times
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Strategy 1: generate multiple times
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Strategy 1: generate multiple times
MATH Benchmark
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Strategy 2: generate longer outputs

input -> answer input -> [thought], answer

The

kanswer is9.

[Wel et al 2022]



Strategy 2: generate longer outputs

—e— Standard prompting
—o— Chain-of-thought prompting
Prior supervised best
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[Wel et al 2022]



Strategy 2: generate longer outputs

o1 AIME accuracy Mathematical Competition PhD-Level AMC
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Average thinking time (tokens)

Figure 1. Test-time scaling with s1-32B. We benchmark s1-32B

on reasoning-intensive tasks and vary test-time compute.

s1 [Muennighoff et al 2025]
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Today’s lecture: advanced inference

e Jest-time scaling strategies
* (Generating multiple times

* (Generating longer outputs



Today’s lecture: advanced inference

e Jest-time scaling strategies
- Generating multiple times

* (Generating longer outputs



Recap: generation/decoding algorithms

* (Generator: generates a sequence with a language model
« Example: calling an LLM API
 Decoding algorithms

* Greedy decoding, temperature sampling, etc.

Input sequence —» [Generatorj — Output sequence




Meta-generation algorithms

o Strategies for calling a generator multiple times

-
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 Others we won't discuss: tree search, hybrid strategies



Parallel generation

* (Generate multiple candidates and aggregate them

* (Generate:

[y, ) ~ G )
 Aggregate:

« y=hoW, .., y™)

a - N )
output candidate 1 £ 2
L J
\b [output candidate Nj
N e




Parallel generation: Best-of-N

 Aggregation: max
o Scores: reward model v (aka evaluator, value model, verifier, ...)

arg max p(y®)
y l

4 ' N
K’ [ 2+2=5 ]—b Reward Model u \
( Input ]—» [Generator}/—m> [ i j_,’[RewadMOdeq» ‘[ Max j—b [ 2+2=4]
\‘ [ Reward Model ﬁ /
\_ . J

Score outputs with
. reward model '



Example: solving a math problem

Input:
et f(r) = 375" 7 = -+ + 557+ Find 3282, f(R).

LLEMMA 34B solution:

2007
2008 |

Final Answer: The final answer is %




What it we had a perfect veritier?

MATH (Oracle Evaluator)
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In some applications we have perfect verifiers

* Formal theorem proving

MiniF2F Problems Solved (out of 488)

200 -

150 -

Human informal proof drafts
Minerva (540B) proof drafts
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—— Minerva (62B) proof drafts

#Successful Proofs

Minerva (8B) proof drafts
Codex proof drafts

Ul
o

0 20 40 60 80 100
Attempts per problem

Draft, Sketch, and Prove [Jiang et al 2023]



| earned reward model

« 1(y) > R~ R(y)

 Example: train a model to classify whether a solution is

correct or incorrect

-
Observethat2+2=5 ...
_

... the answer is b.

\

_J

-
Observethat2 + 2 =4 ...
_

... the answer is 4.

_J

—

v

(- )
Reward Model
\_ J

( )
Reward Model
\_ v,




| earned reward model

« 1(y) > R~ R(y)

 Example: train a model to assign a higher score to a
preferred output

e See RL for LLMs lecture!

[Hello, you are awesome ] > [Hello, you are #&@#*@#]




Example: Cobbe et al 2021 (OpenAl)

e Trains a verifier (reward model) to classify whether a solution to
a grade-school math word problem (GSM8K) is correct

@ © ®

Generate and label

100 solutions/problem Train Verifier

Train generator

Generator Generator Verifier
Qi | questions ¢ 1 ? ¢ T ¢ T
S; | solutions BN S; St ¥ Y Q|si|Y
Y; | labels S; | Y
Q;
[ J
SiIOO . Yi100

Figure 4: A diagram of the verification training pipeline.



Example: Cobbe et al 2021 (OpenAl)

e Trains a verifier (reward model) to classify whether a solution to
a grade-school math word problem (GSM8K) is correct

Language Modeling Objective Verifier Objective
Q, Q, Q, S, S, =y Q, Q, Q, & ) 5
Genera tor Verifier
Q the i-th question token V7, the k-th value prediction

S | thej-th solution token masked out (does not
contribute to loss)




Example: Cobbe et al 2021 (OpenAl)
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Example: Cobbe et al 2021 (OpenAl)
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Figure 6: Verification ablations



Question & Model Generation

Verifier
Pred.

Actual
Score

Claire makes a 3 egg omelet every morning for breakfast. How many dozens
of eggs will she eat in 4 weeks?
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Rose bought 4 times the number of onions and potatoes Sophia bought. If
Rose bought 12 onions and 4 potatoes, how many onions and potatoes in
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Two sisters, Elizabeth and Margareth, bought beads. Elizabeth bought 1
pack of red and 2 packs of clear beads, while Margareth bought 3 packs
of blue and 4 packs of red beads. How many more beads do one sister have
than the other, if each pack of beads contains 20 pieces of beads?

Howard spends $8 dollars at the arcade on Monday. On Tuesday, he spends
twice as much at the arcade as he did on Monday. On Wednesday, he spends
4 times as much at the arcade as he spent on Tuesday. If he originally
had $100, how much money does he have left?

In a jewelers store, the price of a gold Jewell is 4/5 times as much as
the price of a diamond Jewell. The cost of a silver Jewell is $400 less
than the price of gold. If a diamond Jewell is $2000, find the total
price for all three jewels.




Why best-of-N7

* Approximates the maximum true reward:

Best-of-N = arg  max  v(y)

ye{yW,....y™}
~ arg max v(y) «—— Gets better as N increases!
y

~ arg max R(y)«—— Syffers from imperfect
g reward model, aka
“Over-optimization” /
reward hacking



Over-optimization / reward hacking
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[Cobbe et al 2021]



Improving the reward model: process labels

* |[f we can get good labels for intermediate steps, it's possible to
train a better reward model

* (Getting good labels is difficult in general!



Example: [Lightman et al 2023] (OpenAl)

The denominator of a fraction is 7 less than 3 times the numerator. If the fraction is equivalent to 2/5, what is the numerator of
the fraction? (Answer: ’ 14)

() ® @ Let's call the numerator x.
) (© & So the denominator is 3x-7.
) () @& We know that x/(3x-7) = 2/5.
() ® & So 5x =2(3x-7).

@ ® S 5x=6x-14.

Figure 1: A screenshot of the interface used to collect feedback for each step in
a solution.

Human-annotated process labels



Example: [Lightman et al 2023] (OpenAl)

ORM | PRM | Majority Voting
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N = number of solutions per problem



Improving the reward model: CoT

o Studies have found that using chain-of-thought tends to help

for the reward model

Problem

Finetuned Verifier

Solution

=

GenRM-CoT

Verification CoT, —>
L XX ] \_>
Verification CoT —>

________________________

________________________

[Zhang et al 2025]
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Improving the reward model: CoT

Studies have found that using chain-of-thought tends to help
for the reward model

LLM-as-a-judge Self-Consistency DPO Discriminative RM GenRM-CoT
Algorithmic Reasoning (2 tasks) Grade-School Math (GSM8K) Transfer to MATH (GSM-Verifiers)

1.2 x efficient 449

92% 0
o 40%| 1.5x% efficient
> ) .
52 32% 88% 40%| 6.4x efficient

o 0
2249 Sa% 36%
5 Q
o® 80%
& 16% 32%
N3 89 76%
(0]
(o)
799 28%
1 2 4 8 16 32 1 2 4 8 16 1 2 4 8 16 32
Number of Solutions (N) Number of Solutions (N) Number of Solutions (N)

Figure 5 | Sample-Efficient Scaling with Generative Verifiers. GenRM-CoT outperforms other methods, especially for length
generalization on algorithmic tasks (Gemma-2B verifiers) and easy-to-hard generalization on MATH (Gemma2-9B verifiers).
Specifically, GenRM-CoT nearly matches the oracle verifier’s Best-of-N performance on algorithmic tasks. On MATH, it matches
discriminative verifier’s Best-of-32 performance using 6.4x fewer solutions.

[Zhang et al 2025]



Improving the reward model: CoT

* |nference compute used for evaluation can itself be scaled up

LLM-as-a-Judge (MajVote@K) GenRM-CoT (MajVote@K) GenRM-CoT (Greedy)
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v 0
m N
=
O 80%
X 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32
# Sampled CoT Rationales (K) # Sampled CoT Rationales (K) # Sampled CoT Rationales (K)

[Zhang et al 2025]



Voting (aka self-consistency)

* Aggregation: pick the most common answer

arg max Z l[y(l) “]

=1
F f ~ \
A
: olynomial Answer: 2
/’ :K P /:f\

_—» We Il solve the problem mx Answer 4 : Majorlty
[ |nput ] —» || Generator |\ three steps. First,. \A —T>
: / Vote
[ Let's th:z::tI:: by step. M j

Reasoning path ,-.Answer.

 Pro: No reward model needed!
« Potential con: need a notion of equivalence of outputs

 (e.g., same answer)
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MATH GSM8k
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0.8 1 0.8 A
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0.0 1 1 1 1 1 1 0.0 1 1 1 1 I 1
0 50 100 150 200 250 0 20 40 60 80 100
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Figure 6: Accuracy as a function of k, the number of samples per task. Majority voting performance saturates
quickly while pass@k seems to continue improving slowly. Accuracies were computed using exact string
match (without SymPy processing).

Minerva [Google 2022]



Voting

* \Voting was better than best-of-N w/ model log-likelihood as the
scoring function

MATH
Minerva 62B, passl T = 0.0 26.5%
Minerva 62B, Majority Voting 1@k  42.0%
Minerva 62B, passl 1T'= 0.6 21.8%

Minerva 62B, Log-likelihood 1Qk 23.8%

Minerva [Google 2022]



Voting

* Voting can still help with recent long CoT models like R

“‘Cons@16” means
self-consistency@16
aka voting@16

Accuracy
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DeepSeek-R1-Zero AIME accuracy during training

—e— r1-zero-pass@1
—e— r1-zero-cons@16
--- Human participant

0 2,000 4,000 6,000 8,000 10,000
Steps

[DeepSeek 2025]



e Aggregation: pick the most common answer

e Scoring: use a reward model to weight votes

[ Input ] —

Weighted Voting

N

argmax ) v(y™)1[y"=]

¢ i
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[Generatorj
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Answer 2
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Weighted Voting

» (Can perform better than unweighted voting

* Improves with a better reward model

SC SC + Disc RM SC + GenRM-CoT

MATH: Effect of Weighted SC

2.5% efficient

% Problems Solved
(Best-of-N)

1 2 4 8 16 32
Number of Solutions (N)

Figure 8 | Weighted Self-Consistency on MATH.
|Zhang et al 2025]



Weighted Voting

Can perform better than best-of-N
MATH (Learned Reward)

55 T " NESUSTSPURsppp— .51‘81_ ,.5.2.415 :
/-O\ 50— 49.87 1
\ %
< 45; |
3
= 40
| -
% 30- —— Majority Voting
W) —— Weighted Voting

257 g —— Best-of-N

20773 748 16 32 64 1282565121024

Number of generations

[Sun et al 2024]



What is voting doing”?

 When we have a chain-of-thought followed by a final output,
voting "marginalizes out” the intermediate reasoning chains

« As the number of candidates N — oo, voting accuracy
converges to:

a

| M
7 Z | [a* = arg max Z v(x,z,a)g(z,alx)
i=1

<

Notation:
e (x,z, a): (input, solution, answer)

o M: number of test examples

Inference Scaling Laws, Theorem 2 [Wu et al 2024]



What is voting doing”?

 \When we have a chain-of-thought followed by a final output,
voting “marginalizes out” the intermediate reasoning chains

« As the number of candidates N — oo, voting accuracy
converges to:

1 M
M Z [ ai* — arg max 2 v(x, Z, a)g(z, a ‘x)

=1 Z

 Takeaway 1: when is weighted voting better than voting”

« When v - g assigns more total mass to correct answers than g

Inference Scaling Laws, Theorem 2 [Wu et al 2024]



What is voting doing”?

 \When we have a chain-of-thought followed by a final output,
voting “marginalizes out” the intermediate reasoning chains

« As the number of candidates N — oo, voting accuracy
converges to:

1 M
M Z [ ai* — arg max 2 v(x, Z, a)g(z, a ‘x)

=1 Z

 Takeaway 2: will accuracy keep improving with more samples?

e |t converges to the accuracy shown above

Inference Scaling Laws, Theorem 2 [Wu et al 2024]



What is voting doing”?

 \When we have a chain-of-thought followed by a final output,
voting “marginalizes out” the intermediate reasoning chains

« As the number of candidates N — oo, voting accuracy
converges to:

1 M
M Z [ ai* — arg max 2 v(x, Z, a)g(z, a ‘x)

=1 Z

 Takeaway 3: how do we improve performance further?

o Improve the reward model v

o Improve the generator g (better model or better algorithm)

Inference Scaling Laws, Theorem 2 [Wu et al 2024]



Meta-generation algorithms

o Strategies for calling a generator multiple times
« Common patterns
e Parallel
» Best-of-N, voting

Next: Refinement



Refinement

 (Generate an output, feed it back into the model

' Bad generation path“f -~

[ Observe that2 + 2 =5... j—.

Corrector

~

J

..........................

;"Better generation path:

_’ [ Observethat2 + 2 =4... j




Refinement

Generate an output, receive feedback, generate a new
output using the feedback

j [ 2+ 2=5iswrong ] ,s \
[ Observethat2 + 2 =5... J
[ Initial j _} [ Feedback } [ Corrector J —I> ( Observe that 2 +2 = 4... j
Generator j ¥ y

Bad generation oo Better generation

Quality is important

Repeat:
- YD~ e(x, y9, F(yW))



Refinement

« Key question: quality and source of the feedback

« Extrinsic: new external information enters the retinement loop

* Intrinsic: no external information enters the refinement loop



Extrinsic feedback

* Refinement tends to work well with “good” extrinsic feedback
* Adds new information
* High quality (e.g., accurate, noise-free)
¢ Specific
* Localizes errors

* (Gives something specific for the model to refine



Example: code generation

Feedback

e Unit test results (extrinsic)

* Explanation (intrinsic)

<= 10 refinement turns

SELF-DEBUGGING (this work)

72.2 (n = 10)

Codex
Simple
UT
UT + Expl.

73.6
75.2
75.6

[Chen et al 2023]

Unit Test + Explanation
(+Expl.)
Below are C++ programs with incorrect
Python translations. Explain the original
code, then explain the translations line
by line and correct them using the
provided feedback.
[C++]

[C++ Explanation]
[Original Python]
[Python Explanation]

[UT Feedback]
[Revised Python #1]
[Python Explanation]

[UT Feedback]
[Revised Python #2]
[Python Explanation]



Example: veritied code generation

* Feedback: formal program verifier (extrinsic)

[Buggy Rust code]

Initial
Generator

error: precondition not satisfied
--> /playground/src/main.rs:23:5
I
9 | substring.len() > 0,
S failed precondition

23 | lemma_step_subrange(tail_a, string.skip(1));

I AAAAAAAAANAAAAANAAAAANAANANAANAAANANAANAAAAAANANAANAAANANANAAAANANAANANAN

error: aborting due to 1 previous error

verification results:: 1 verified, 1 errors

~

\_

Feedback

[Rust Verifier (Verus)]

—> Corrector

J

AlphaVerus, [Aggarwal et al 2024]

20 if tail_a.len() > 0 {
21 lemma_step_subrange(tail_a, string.skip(1));
22 }

[Good Rust codej




Example: veritied code generation

Feedback: formal program verifier (extrinsic)

HumankEval-Verus

P S

32 0.30
N
Q
+—
C
| -

% 0.25
O
%)

Parallel
Refinement
0.20

64 128 192 256 320 384 448 512

Number of generations

AlphaVerus, [Aggarwal et al 2024]



Refinement with extrinsic feedback

Success cases

 (Code execution / test cases [Chen et al 2024]
* Verifiers [Aggarwal et al 2024]

 Retrievers [Asai et al 2024]

e Jools + agent environment



Intrinsic feedback

* Self-refinement: re-prompt the same model to generate, give
feedback, and refine

[ 2+ 2=5is wrong j

( Observethat2 + 2 =5... J K \
Corrector
Generator | _|j | Feedback . L
[ Prompt J [ Prompt ] [ Prompt j
\_ J
777?

[Madaan et al 2023]



Intrinsic feedback

Self-refinement: re-prompt the same model to generate, give
feedback, and refine

Mixed results:

 (Can work on tasks that are easy to evaluate

 Example: we want 10 citations in the output and the model
generation has 9 citations

* Less clear for mathematical reasoning



Percentage (%)
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GSM8k (GPT 3.5)

74.7%

Feedback is too noisy

Incorrect
— |ncorrect

Correct Incorrect
— Incorrect — Correct

LLMs Cannot Selt-Correct Reasoning Yet, [Huang et al 2024]



A toy model for refinement

Task: generate “TAYLORSWIFT”
2000008000

-
N

Generator:

-
o

e Simple unigram model,

)
=
S
o
Q
)}
N t 2 . .
p(C arac el’) qu —— Refinement (Feedback noise 0.0)
c Refinement (Feedback noise 0.01)
FeedbaCk g 6 ] nnan Eeflnement (Feedback r.10|se 0.4)
it est-of-N (Feedback noise 0.0)
. o 5 5 ---- Optimal
* Which character positions are £
incorrect 5 F/
o)
. . O |
° + pOSS|b|y add nO|Se ° 0 50 100 150 200 250 300
Total Sequence Generations
Refinement: Intuition: refinement depends

* Regenerate only the incorrect on how noisy the feedback is

positions

NeurlPS 2024 Tutorial on LLM Inference



Meta-generation algorithms

o Strategies for calling a generator multiple times
« Common patterns
e Parallel
» Best-of-N, voting
* Refinement

* Next: Inference scaling laws



Inference scaling laws

« Compute is a function of model size and number of
generated tokens

Model size Number of tokens Inference strategy
C ) —

[ % ] * C ) [CK? J
C )
( ) [@@%@

Cost



Inference scaling laws

e \We can increase model size and/or increase the number
of tokens generated

Model size Numlber of tokens Inference strategy
C ) —
3 * C D [CK%@
C )
C ) [DT@D?%E]J

a'a
U

e N
*
" g J

Equal cost




Inference scaling laws

Fix strategy

Model size 2
M‘odel size 3

Error

Compute optimal

frontier 0000 S Sca”ng law

-
Compute budget



Inference scaling laws

 Using a smaller model and generating more can be
preferred over using a larger model and generating less

70 - —e— 410M
< 1.4B
s 00 2.8B
8 50 A H10M : —— 6.9B
c Compute-optimal , 12B
© :
§ 40' E
3 : ) 3
e |
wn 30- ] 2.8B

I Compute-optimal

= :
: 12B .
: _Compute-optimal !

2 8 32 128 512 2048
Inference FLOPs per question (x10%!)

Inference Scaling Laws, [Wu et. al 2024]



Today’s lecture: advanced inference

e Jest-time scaling strategies
* (Generating multiple times

- Generating longer outputs



ong chain-of-thought / reasoning models

* [rain a model to generate a “thought” prior to a final
output

pH(yaz‘x)

e Atinference time, just sample a thought+output

* |In principle, the model can “learn a search
algorithm”

e [ry alternatives, refine, etc. within the thought



Accuracy

ong chain-of-thought / reasoning models

* Approach 1: reinforcement learning (see AL for LLMs lecture]

00 DeepSeek-R1-Zero AIME accuracy during training b DeepSeek-R1-Zero average length per response during training
—e— r1-zero-pass@1
—e— r1-zero-cons@16 20,000 -
0.8 - --- Human participant
17,500
0.7 o
» 15,000 —
C
8
061 & 12,500 -
g
0.5 £ 10,000
(@)}
C
o
44 AN L o 7,500 —
o
o
>
0.3 < 5,000
0.2 2,500
| | | | | | 0 | | | | | |
0 2,000 4,000 6,000 8000 10,000 0 2,000 4000 6000 8000 10,000
Steps Steps

[DeepSeek 2025]



ong chain-of-thought / reasoning models

Question: If a > 1, then the sum of the real solutions of v/a — va +x = x is equal to

Response: <think>

To solve the equation \/ a —va+x = x, let’s start by squaring both - - -

(\/a-\/mf:xz s a—VaTx =2

Rearrange to isolate the inner square root term:
(a—x?)? =a+x = a®>-2ax*+(x*)? =a+x = x*-2ax* —-x+(a®*-a) =0

Wait, wait. Wait. That’s an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:
Va-+Va+x=x

First, let’s square both sides:
a—-Va+x=x*> = Va+x=a-x
Next, I could square both sides again, treating the equation: - - -

2

[DeepSeek 2025]



Long chain-of-thought patterns

1. Uncertainty
- Wait... /| Hold on...
- Wait-actually, does this formula apply here?
2. Branching, backtracking, retrying
- Alternatively, generating functions could model this problem...
- Revisiting...
- Wait, I'm overthinRing. Let’s try again...
3. Verification

- Let’s check if we made an error. We should verify...
- This is a contradiction, so we must have made a mistake.
- Let’s test this with...

4. Key Points
- Key takeaway... | It's worth noting...

5. Clarification
- In other words... | To clarify..

6. Synthesis
- Ultimately... | Putting it all together...

Credits: Weihua Du



Controlling the length: budget forcing

Mathematical Competition PhD-Level
Problem Solving Math Science Questions
* Adhere to alength budget g ™0 o e ferakomend
by forcing the model to I
generate “wait” or “final 5" S N
< 65| 0 ®

| ® , 1@ , , ‘ ,
512 2048 512 2048 8192 1024 4096
Average thinking time (tokens)

¢ Trad e Off tO ke N S a N d Figure 1. Test-time scaling with s1-32B. We benchmark s1-32B
on reasoning-intensive tasks and vary test-time compute.
performance

answer’

[Muenninghoff et al 2025]



Controlling the length: L1

Question

Find the largest possible real part of [(75 + 117i)z + %%M] where z is a

complex number with |z| = 4. Let’s think step by step and output the final
answer within boxed{}. Think for 512 tokens.

Correct Answer

540

Correctness

X Incorrect

Tokens Requested

512

Model Response

Okay, so I have this problem: I need to find the largest possible real part of the

expression (75 + 117i)z + (96 + 144i) / z, where z is a complex number with

|z| = 4. Hmm, let’s break this down.

First, since |z| = 4, z can be written as 4¢% for some angle 6. That might help

simplify things.

Let me denote z = 4¢®. Then, 1/z = (1/4)e™ " because |z| = 4.

So, the expression becomes (75 + 117i) - 4e®® + (96 + 144i) - (1/4)e~™.

Simplifying, that's 4(75 + 117)e®® + (24 + 36i)e .

Now, I need to find the real part of this expression. Let’s denote Re[(75 +

117i)z + (96 + 144i) /2].

Breaking it down, Re[(75 + 117i)z] + Re[(96 + 144i) /z].

Since z = 4e'?, Re[(75 + 117i) - 4¢'®] + Re[(96 + 144i) - (1/4)e~0.

This becomes 4Re[(75 + 117i)e’®] + (1/4)Re[(96 + 144i)e~ ).

Now, let’s compute Re[(75 + 117i)e']. This is 75 cos 8 + 117 sin 6.

Similarly, Re[(96 + 144i)e ] is 96 cos § — 144 sin 6.

So, putting it all together, the real part is 4(75cos6 + 117sin6) +

(1/4)(96cos 6 — 144sin6).

Simplifying, that’s 300 cos 6 + 468 sin 6 + 24 cos 6 — 36 sin 6.

Combining like terms, we get (300 + 24) cos 6 + (468 — 36) sinf = 324 cos 6 +

4325sin 6.

Now, we need to find the maximum of 324 cos 6 + 432 sin 6. This can be written

as Rcos(6 — ¢), where R = /3242 + 4322,

Calculating R: 3247 = 104,976, 432> = 186,624. Sum is 391,600. R =
391,600 ~ 625.6.

Thus, the maximum real part is approximately 625.6.

The largest possible real part is | 625.6 |

Incorrect (512 tokens)

Find the largest possible real part of [(75 + 117i)z + 96+T144“‘] where z is a

complex number with |z| = 4. Let’s think step by step and output the final
answer within boxed{}. Think for 3600 tokens.

\

Correct Answer

540

Correctness

+ Correct

Tokens Requested

3600

Model Response

Okay, so I have this problem: I need to find the largest possible real part of
the expression (75 + 117i)z + (96 + 144i)/z, where z is a complex number with
|z| = 4. Hmm, that seems a bit involved, but let’s break it down step by step.
First, let me understand what is given. We have a complex number z with
magnitude 4, so z can be written in the form z = 4" where 6 is the argument
of z. That might be useful because it allows us to express z in terms of its angle,
which could simplify the expression. )

The expression we need to consider is (75 + 117i)z + %14 We are asked
to find the largest possible real part of this expression. So, let’s denote the
expression as E = (75 + 117i)z + 261441,

[Reasoning process truncated for brevity ...]

Then, adding 104,976 + 186,624 = 291,600. /291,600 = /2916100 =
/2916 % 10. Now, 1/2916: let's see, 542 = 2916, because 50? = 2500, 54> = 2916.
So, v/2916 = 54, thus /2916 * 100 = 54 x 10 = 540. So, that seems correct.
Therefore, the maximum value of Re(E) is 540.

Therefore, the largest possible real part is 540.

Given the expression (75 + 117i)z + 96%“‘4" where z is a complex number with
|z| = 4, we need to find the largest possible real part of this expression.

First, we express z as 4¢' since |z| = 4. Then, we substitute z and % into the
expression:

(75 +117i)z +

[Output truncated for brevity ...]
Thus, the largest possible real part is:

96 + 144i
z

Correct (3600 tokens)

[Aggarwal & Welleck 2025]



Controlling the length: L1

60%

e [rain model with RL to

50%

adhere to length constraints e ®
F.g. “Use up to 2000 tokens” %

. . I <
provided in the prompt =
Reward: correctness and »
length constraint penalty

[Aggarwal & Welleck 2025]
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Today’s lecture: advanced inference

e Jest-time scaling strategies
* (Generating multiple times
e Parallel sampling
* Voting
* Inference scaling laws
* (Generating longer outputs
* Reasoning models /long CoT

* Controlling the reasoning length



Thank you



