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Recap: sequence model

•  

• : hidden state 

• Language modeling: 

•

fθ(x1, …, x|x|) → h1, …, h|x|

ht ∈ ℝd

pθ( ⋅ |x<t) = softmax (Wh⊤
t )

fθ

x1 x2 x3 x4

h1 h2 h3 h4
W

softmax

…



Three types of sequence models

• Recurrence: Condition 
representations on an 
encoding of the history 

• Convolution: Condition 
representations on local 
context 

• Attention: Condition 
representations on a weighted 
average of all tokens

RNN RNN RNN RNN

CNNCNN CNN CNN

AttnAttn Attn Attn



Today’s lecture

• Transformer: a sequence model based on attention 

• Roadmap: 

• Attention 

• Transformer architecture 

• Improved transformer architecture



Attention



Basic Idea 
(Bahdanau et al. 2015)

• Encode each token in the sequence into a vector 

• When decoding, perform a linear combination of these 
vectors, weighted by “attention weights”



Cross Attention 
(Bahdanau et al. 2015)

• Each element in a sequence attends to elements of 
another sequence

this is an example
kore
wa
rei

desu



Self Attention 
(Cheng et al. 2016, Vaswani et al. 2017)
• Each element in the sequence attends to elements 

of that sequence

this is an example
this
is
an

example



Calculating Attention (1)
• Use “query” vector (decoder state) and “key” vectors (all encoder states) 
• For each query-key pair, calculate weight 
• Normalize to add to one using softmax

kono eiga ga kirai
Key 

Vectors

I hate

Query Vector

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03



Calculating Attention (2)
• Combine together value vectors (usually encoder 

states, like key vectors) by taking the weighted sum
kono eiga ga kirai

Value 
Vectors

α1=0.76 α2=0.08 α3=0.13 α4=0.03
* * * *

• Use this in any part of the model you like



Image from Bahdanau et al. (2015)

A Graphical Example



Attention Score Functions (1)

• q is the query and k is the key 

• Nonlinear (Bahdanau et al. 2015) 
 

• Bilinear (Luong et al. 2015)

a(q,k) = w|
2 tanh(W1[q;k])

a(q,k) = q|Wk



Attention Score Functions (2)
• Dot Product (Luong et al. 2015) 

 

• Scaled Dot Product (Vaswani et al. 2017) 

• Problem: scale of dot product increases as dimensions 
get larger 

• Fix: scale by size of the vector

a(q,k) = q|k

a(q,k) =
q|kp
|k|



Today’s lecture

• Roadmap: 

• Attention 

• Transformer architecture

• Improved transformer architecture



Transformers



• A sequence-to-sequence 
model based entirely on 
attention 

• Strong results on machine 
translation 

• Fast: only matrix 
multiplications

“Attention is All You Need” 
(Vaswani et al. 2017)
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Two Types of Transformers
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Encoder-Decoder Model 
(e.g. T5, MBART)
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Basic idea

• Stack “transformer layers” 

• 5 key concepts in the 
layer design and how we 
embed inputs
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Core Transformer Concepts

• Positional encodings 

• Scaled dot product self-attention 

• Multi-headed attention 

• Residual + layer normalization 

• Feed-forward layer



• Inputs: Generally split using 
subwords 
 
the books were improved 
 
the book _s were improv _ed 

• Input Embedding: Looked up, like in 
previously discussed models

(Review) 
Inputs and Embeddings
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Positional Encoding



• The transformer model is purely attentional 

• We need a way to identify the position of each 
token

Positional Encoding
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• Positional encodings add an embedding 
based on the word position

wbig + wpos2 wbig + wpos7

A big dog and a very big cat

A big cat and a very big dog



Sinusoidal Encoding 
(Vaswani+ 2017, Kazemnejad 2019)

• Calculate each dimension with a sinusoidal function

p
(i)
t = f(t)(i) :=

{

sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1 where ωk =
1

100002k/d

• Motivation: may be easy to learn relative positions, since  
 is a linear function of PEpos+k PEpos



Core Transformer Concepts

• Positional encodings 

• Scaled dot product self-attention

• Multi-headed attention 

• Residual + layer normalization 

• Feed-forward layer
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Scaled Dot-Product Self-
Attention



• As we saw on the previous slide: 

• Full version, efficient matrix version:

Scaled dot product attention
a(q,k) =

q|kp
|k|

Attention(Q, K, V ) = softmax
QK⊤

dk

V

K ∈ ℝT×d V ∈ ℝT×dQ ∈ ℝT×d

T
d



Scaled dot product self-attention
• Apply attention to the output of the previous layer:

Attention(Hℓ−1, Hℓ−1, Hℓ−1) → H̃ℓ H ∈ ℝT×d

Attention

’th layer:  
output of -1’th layer

ℓ
ℓ



Core Transformer Concepts

• Positional encodings 

• Scaled dot product self-attention 

• Multi-headed attention

• Residual + layer normalization 

• Feed-forward layer
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Multi-head Attention



• Intuition: Information from different 
parts of the sentence can be useful to 
disambiguate in different ways

Intuition for Multi-heads
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I run a small business

I run a mile in 10 minutes

The robber made a run for it

The stocking had a run

syntax 
(nearby context)

semantics 
(farther context)



Multi-head Attention Concept

Q

K

V

* WQ

* WK

* WV

Split/rearrange 
to n attn inputs

Run attn over 
each head

attn()

Concat 
and *WO

Multiply by 
weights

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i )



Code Example
    def forward(self, query, key, value, mask=None): 
        nbatches = query.size(0) 

        # 1) Do all the linear projections 
        query = self.W_q(query) 
        key = self.W_k(key) 
        value = self.W_v(value) 

        # 2) Reshape to get h heads 
        query = query.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2) 
        key = key.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2) 
        value = value.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2) 

        # 3) Apply attention on all the projected vectors in batch. 
        x, self.attn = attention(query, key, value) 

        # 4) "Concat" using a view and apply a final linear. 
        x = ( 
            x.transpose(1, 2) 
            .contiguous() 
            .view(nbatches, -1, self.h * self.d_k) 
        ) 
        return self.W_o(x) 

https://github.com/karpathy/minGPT/blob/master/mingpt/model.py 

https://github.com/karpathy/minGPT/blob/master/mingpt/model.py


What Happens w/ Multi-heads?
• Example from Vaswani et al.

• See also BertVis: https://github.com/jessevig/bertviz 

https://github.com/jessevig/bertviz


Masking for Language Model Training
• Mask the attention from future timesteps  

• Prevents the model from cheating when 
predicting the next token

kono eiga ga kirai I hate this movie </s>



Core Transformer Concepts

• Positional encodings 

• Scaled dot product self-attention 

• Multi-headed attention 

• Residual + layer normalization

• Feed-forward layer
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Layer Normalization and 
Residual Connections



Reminder:  
Gradients and Training Instability
• RNNs: backpropagation can make gradients 

vanish or explode

• The same issue occurs in multi-layer transformers!

RNN RNN RNN

W
∂L
∂h3

normal
∂L
∂h2

small
∂L
∂h1

tiny
∂L
∂h0

very  
tiny



• Normalizes the outputs to be within a 
consistent range, preventing too 
much variance in scale of outputs

Layer Normalization 
(Ba et al. 2016)
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LayerNorm(x;g,b) =
g

σ(x)
⊙ (x− µ(x)) + b

gain bias

vector 
mean

µ(x) =
1

n

n∑

i=1

xi

vector 
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√
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1

n

n
∑
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• Add an additive connection between 
the input and output

Residual Connections
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• Prevents vanishing gradients and 
allows f to learn the difference from 
the input



Core Transformer Concepts

• Positional encodings 

• Scaled dot product self-attention 

• Multi-headed attention 

• Residual + layer normalization 

• Feed-forward layer
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Feed Forward Layers



• Extract features from the attended outputs

Feed Forward Layers
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FFN(x;W1,b1,W2,b2) = f(xW1 + b1)W2 + b2



In code

https://github.com/cmu-l3/anlp-spring2025-code/blob/main/
05_transformers/transformer.ipynb 

https://github.com/cmu-l3/anlp-spring2025-code/blob/main/05_transformers/transformer.ipynb
https://github.com/cmu-l3/anlp-spring2025-code/blob/main/05_transformers/transformer.ipynb


In code



In code



Today’s lecture

• Roadmap: 

• Attention 

• Transformer architecture 

• Improved transformer architecture



Transformer improvements



Learned Positional Encoding 
(Shaw+ 2018)

• Instead of sinusoidal encodings, just create a 
learnable embedding 

• Advantages: flexibility 

• Disadvantages: impossible to extrapolate to 
longer sequences

0 1 2



Absolute vs. Relative Encodings 
(Shaw+ 2018)

• Absolute positional encodings add an encoding to 
the input in hope that relative position will be 
captured 

• Relative positional encodings explicitly encode 
relative position

“Token 0 and token 2 
are 2 - 0 = 2 tokens apart” 



Rotary Positional Encodings (RoPE) 
(Su+ 2021)

• Fundamental idea: we want the dot product of 
embeddings to result in a function of relative position

fq(xm,m) · fk(xn, n) = g(xm,xn,m− n)

• In summary, RoPE uses trigonometry and imaginary numbers 
to come up with a function that satisfies this property
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Pre- Layer Norm 
(e.g. Xiong et al. 2020)

• Where should 
LayerNorm be 
applied? Before or 
after? 

• Pre-layer-norm is 
better for gradient 
propagation

post-LayerNorm pre-LayerNorm



RMSNorm 
(Zhang and Sennrich 2019)

• Simplifies LayerNorm by removing the mean and bias terms

RMS(x) =

√

√

√

√

1

n

n
∑

i=1

x
2
i

RMSNorm(x) =
x

RMS(x)
· g



Grouped-query attention

• Shares key and value heads for each group of query heads 

• Saves on memory, which leads to faster inference



In code

https://github.com/meta-llama/llama/blob/main/llama/model.py 

https://github.com/meta-llama/llama/blob/main/llama/model.py


Original Transformer vs. LLama

Vaswani et al. LLama Llama 2

Norm 
Position Post Pre Pre

Norm Type LayerNorm RMSNorm RMSNorm

Non-linearity ReLU SwiGLU SwiGLU

Positional 
Encoding Sinusoidal RoPE RoPE

Attention Multi-head Multi-head Grouped-
query



How Important is It?
• “Transformer” is Vaswani et al., “Transformer++” is (basically) LLaMA2

Image: Gu and Dao (2023)

• Stronger architecture is ≈10x more efficient!



Transformer vs RNN



Transformer Training
• We can compute next-token 

probabilities for all positions at 
once using matrix multiplications 

• No sequential hidden state  
(as in RNNs) 

• Modern hardware (e.g. GPU) is 
optimized for parallel operations 
like the matrix multiplications in 
self-attention 

•  easy-to-parallelize training∴ I hate thismovie </s>

⊕

……

p( ⋅ |<s>)

<s>

p( ⋅ |<s>,I,hate)

…… …… …… ……



RNNs vs. Transformers
• RNN:  

• At each step , a  operation, e.g.  

• Transformer attention:  

• E.g.,  

•  

•     => 

O(Td2)

1,…, T O(d2) Wh

O(T2d)

QK⊤

Q ∈ ℝT×d

K ∈ ℝT×d O(T2d)

Key difference: 
 (RNNs) 

 (Transformers)
T

T2



RNNs vs. Transformers
• Transformers:  

• Quadratic in sequence length  

• Need to store a large  matrix in memory 

• Need to perform  computations 

• Easy to parallelize the training 

• Long-range dependency: handled by attention

O(T2d)

T

T × T

O(T2d)



Recap

• Transformer: a sequence model based on attention 

• We saw: 

• Attention 

• Transformer architecture 

• Improved transformer architecture



Questions?


