
CS11-711 Advanced NLP

Attention and Transformers

Many slides from Graham Neubig from Fall 2024

https://cmu-l3.github.io/anlp-spring2025/

Sean Welleck

https://cmu-l3.github.io/anlp-spring2025/

Recap: sequence model

•

• : hidden state

• Language modeling:

•

fθ(x1, …, x|x|) → h1, …, h|x|

ht ∈ ℝd

pθ(⋅ |x<t) = softmax (Wh⊤
t)

fθ

x1 x2 x3 x4

h1 h2 h3 h4
W

softmax

…

Three types of sequence models

• Recurrence: Condition
representations on an
encoding of the history

• Convolution: Condition
representations on local
context

• Attention: Condition
representations on a weighted
average of all tokens

RNN RNN RNN RNN

CNNCNN CNN CNN

AttnAttn Attn Attn

Today’s lecture

• Transformer: a sequence model based on attention

• Roadmap:

• Attention

• Transformer architecture

• Improved transformer architecture

Attention

Basic Idea
(Bahdanau et al. 2015)

• Encode each token in the sequence into a vector

• When decoding, perform a linear combination of these
vectors, weighted by “attention weights”

Cross Attention
(Bahdanau et al. 2015)

• Each element in a sequence attends to elements of
another sequence

this is an example
kore
wa
rei

desu

Self Attention
(Cheng et al. 2016, Vaswani et al. 2017)
• Each element in the sequence attends to elements

of that sequence

this is an example
this
is
an

example

Calculating Attention (1)
• Use “query” vector (decoder state) and “key” vectors (all encoder states)
• For each query-key pair, calculate weight
• Normalize to add to one using softmax

kono eiga ga kirai
Key

Vectors

I hate

Query Vector

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03

Calculating Attention (2)
• Combine together value vectors (usually encoder

states, like key vectors) by taking the weighted sum
kono eiga ga kirai

Value
Vectors

α1=0.76 α2=0.08 α3=0.13 α4=0.03
* * * *

• Use this in any part of the model you like

Image from Bahdanau et al. (2015)

A Graphical Example

Attention Score Functions (1)

• q is the query and k is the key

• Nonlinear (Bahdanau et al. 2015)

• Bilinear (Luong et al. 2015)

a(q,k) = w|
2 tanh(W1[q;k])

a(q,k) = q|Wk

Attention Score Functions (2)
• Dot Product (Luong et al. 2015)

• Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions
get larger

• Fix: scale by size of the vector

a(q,k) = q|k

a(q,k) =
q|kp
|k|

Today’s lecture

• Roadmap:

• Attention

• Transformer architecture

• Improved transformer architecture

Transformers

• A sequence-to-sequence
model based entirely on
attention

• Strong results on machine
translation

• Fast: only matrix
multiplications

“Attention is All You Need”
(Vaswani et al. 2017)

Output
Embedding

Multi-Head
Attention

Feed
Forward

Feed
Forward

Multi-Head
Attention

Nx

Nx

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Output
Probabilities

⊕ ⊕

Input
Embedding

Add & Norm

Add & Norm

Add & Norm

Softmax

Linear

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Two Types of Transformers

Output
Embedding

Multi-Head
Attention

Feed
Forward

Feed
Forward

Multi-Head
Attention

Nx

Nx

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Output
Probabilities

⊕ ⊕

Input
Embedding

Add & Norm

Add & Norm

Add & Norm

Softmax

Linear

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Encoder-Decoder Model
(e.g. T5, MBART)

Decoder Only Model
(e.g. GPT, LLaMa)

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Basic idea

• Stack “transformer layers”

• 5 key concepts in the
layer design and how we
embed inputs

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Core Transformer Concepts

• Positional encodings

• Scaled dot product self-attention

• Multi-headed attention

• Residual + layer normalization

• Feed-forward layer

• Inputs: Generally split using
subwords

the books were improved

the book _s were improv _ed

• Input Embedding: Looked up, like in
previously discussed models

(Review)
Inputs and Embeddings

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Positional Encoding

• The transformer model is purely attentional

• We need a way to identify the position of each
token

Positional Encoding

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

• Positional encodings add an embedding
based on the word position

wbig + wpos2 wbig + wpos7

A big dog and a very big cat

A big cat and a very big dog

Sinusoidal Encoding
(Vaswani+ 2017, Kazemnejad 2019)

• Calculate each dimension with a sinusoidal function

p
(i)
t = f(t)(i) :=

{

sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1 where ωk =
1

100002k/d

• Motivation: may be easy to learn relative positions, since
 is a linear function of PEpos+k PEpos

Core Transformer Concepts

• Positional encodings

• Scaled dot product self-attention

• Multi-headed attention

• Residual + layer normalization

• Feed-forward layer

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Scaled Dot-Product Self-
Attention

• As we saw on the previous slide:

• Full version, efficient matrix version:

Scaled dot product attention
a(q,k) =

q|kp
|k|

Attention(Q, K, V) = softmax
QK⊤

dk

V

K ∈ ℝT×d V ∈ ℝT×dQ ∈ ℝT×d

T
d

Scaled dot product self-attention
• Apply attention to the output of the previous layer:

Attention(Hℓ−1, Hℓ−1, Hℓ−1) → H̃ℓ H ∈ ℝT×d

Attention

’th layer:
output of -1’th layer

ℓ
ℓ

Core Transformer Concepts

• Positional encodings

• Scaled dot product self-attention

• Multi-headed attention

• Residual + layer normalization

• Feed-forward layer

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Multi-head Attention

• Intuition: Information from different
parts of the sentence can be useful to
disambiguate in different ways

Intuition for Multi-heads

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

I run a small business

I run a mile in 10 minutes

The robber made a run for it

The stocking had a run

syntax
(nearby context)

semantics
(farther context)

Multi-head Attention Concept

Q

K

V

* WQ

* WK

* WV

Split/rearrange
to n attn inputs

Run attn over
each head

attn()

Concat
and *WO

Multiply by
weights

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i)

Code Example
 def forward(self, query, key, value, mask=None):
 nbatches = query.size(0)

 # 1) Do all the linear projections
 query = self.W_q(query)
 key = self.W_k(key)
 value = self.W_v(value)

 # 2) Reshape to get h heads
 query = query.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)
 key = key.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)
 value = value.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)

 # 3) Apply attention on all the projected vectors in batch.
 x, self.attn = attention(query, key, value)

 # 4) "Concat" using a view and apply a final linear.
 x = (
 x.transpose(1, 2)
 .contiguous()
 .view(nbatches, -1, self.h * self.d_k)
)
 return self.W_o(x)

https://github.com/karpathy/minGPT/blob/master/mingpt/model.py

https://github.com/karpathy/minGPT/blob/master/mingpt/model.py

What Happens w/ Multi-heads?
• Example from Vaswani et al.

• See also BertVis: https://github.com/jessevig/bertviz

https://github.com/jessevig/bertviz

Masking for Language Model Training
• Mask the attention from future timesteps

• Prevents the model from cheating when
predicting the next token

kono eiga ga kirai I hate this movie </s>

Core Transformer Concepts

• Positional encodings

• Scaled dot product self-attention

• Multi-headed attention

• Residual + layer normalization

• Feed-forward layer

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Layer Normalization and
Residual Connections

Reminder:
Gradients and Training Instability
• RNNs: backpropagation can make gradients

vanish or explode

• The same issue occurs in multi-layer transformers!

RNN RNN RNN

W
∂L
∂h3

normal
∂L
∂h2

small
∂L
∂h1

tiny
∂L
∂h0

very  
tiny

• Normalizes the outputs to be within a
consistent range, preventing too
much variance in scale of outputs

Layer Normalization
(Ba et al. 2016)

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

LayerNorm(x;g,b) =
g

σ(x)
⊙ (x− µ(x)) + b

gain bias

vector
mean

µ(x) =
1

n

n∑

i=1

xi

vector
stddev

σ(x) =

√

√

√

√

1

n

n
∑

i=1

(xi − µ)2

• Add an additive connection between
the input and output

Residual Connections

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & NormResidual(x, f) = f(x) + x

• Prevents vanishing gradients and
allows f to learn the difference from
the input

Core Transformer Concepts

• Positional encodings

• Scaled dot product self-attention

• Multi-headed attention

• Residual + layer normalization

• Feed-forward layer

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Feed Forward Layers

• Extract features from the attended outputs

Feed Forward Layers

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Linear1
Non-linearity

Linear2
f()

FFN(x;W1,b1,W2,b2) = f(xW1 + b1)W2 + b2

In code

https://github.com/cmu-l3/anlp-spring2025-code/blob/main/
05_transformers/transformer.ipynb

https://github.com/cmu-l3/anlp-spring2025-code/blob/main/05_transformers/transformer.ipynb
https://github.com/cmu-l3/anlp-spring2025-code/blob/main/05_transformers/transformer.ipynb

In code

In code

Today’s lecture

• Roadmap:

• Attention

• Transformer architecture

• Improved transformer architecture

Transformer improvements

Learned Positional Encoding
(Shaw+ 2018)

• Instead of sinusoidal encodings, just create a
learnable embedding

• Advantages: flexibility

• Disadvantages: impossible to extrapolate to
longer sequences

0 1 2

Absolute vs. Relative Encodings
(Shaw+ 2018)

• Absolute positional encodings add an encoding to
the input in hope that relative position will be
captured

• Relative positional encodings explicitly encode
relative position

“Token 0 and token 2
are 2 - 0 = 2 tokens apart”

Rotary Positional Encodings (RoPE)
(Su+ 2021)

• Fundamental idea: we want the dot product of
embeddings to result in a function of relative position

fq(xm,m) · fk(xn, n) = g(xm,xn,m− n)

• In summary, RoPE uses trigonometry and imaginary numbers
to come up with a function that satisfies this property

R
d
Θ,mx =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1

x2

x3

x4

...

xd−1

xd

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosmθ1

cosmθ1

cosmθ2

cosmθ2
...

cosmθ d

2

cosmθ d

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−x2

x1

−x4

x3

...

−xd

xd−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sinmθ1

sinmθ1

sinmθ2

sinmθ2
...

sinmθ d

2

sinmθ d

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Pre- Layer Norm
(e.g. Xiong et al. 2020)

• Where should
LayerNorm be
applied? Before or
after?

• Pre-layer-norm is
better for gradient
propagation

post-LayerNorm pre-LayerNorm

RMSNorm
(Zhang and Sennrich 2019)

• Simplifies LayerNorm by removing the mean and bias terms

RMS(x) =

√

√

√

√

1

n

n
∑

i=1

x
2
i

RMSNorm(x) =
x

RMS(x)
· g

Grouped-query attention

• Shares key and value heads for each group of query heads

• Saves on memory, which leads to faster inference

In code

https://github.com/meta-llama/llama/blob/main/llama/model.py

https://github.com/meta-llama/llama/blob/main/llama/model.py

Original Transformer vs. LLama

Vaswani et al. LLama Llama 2

Norm
Position Post Pre Pre

Norm Type LayerNorm RMSNorm RMSNorm

Non-linearity ReLU SwiGLU SwiGLU

Positional
Encoding Sinusoidal RoPE RoPE

Attention Multi-head Multi-head Grouped-
query

How Important is It?
• “Transformer” is Vaswani et al., “Transformer++” is (basically) LLaMA2

Image: Gu and Dao (2023)

• Stronger architecture is ≈10x more efficient!

Transformer vs RNN

Transformer Training
• We can compute next-token

probabilities for all positions at
once using matrix multiplications

• No sequential hidden state
(as in RNNs)

• Modern hardware (e.g. GPU) is
optimized for parallel operations
like the matrix multiplications in
self-attention

• easy-to-parallelize training∴ I hate thismovie </s>

⊕

……

p(⋅ |<s>)

<s>

p(⋅ |<s>,I,hate)

…… …… …… ……

RNNs vs. Transformers
• RNN:

• At each step , a operation, e.g.

• Transformer attention:

• E.g.,

•

• =>

O(Td2)

1,…, T O(d2) Wh

O(T2d)

QK⊤

Q ∈ ℝT×d

K ∈ ℝT×d O(T2d)

Key difference:
 (RNNs)

 (Transformers)
T

T2

RNNs vs. Transformers
• Transformers:

• Quadratic in sequence length

• Need to store a large matrix in memory

• Need to perform computations

• Easy to parallelize the training

• Long-range dependency: handled by attention

O(T2d)

T

T × T

O(T2d)

Recap

• Transformer: a sequence model based on attention

• We saw:

• Attention

• Transformer architecture

• Improved transformer architecture

Questions?

