
Inference 1:
Decoding and

Generation
Algorithms

11-711 Spring 2025

1

Good news!

We have a great new model M!

7 billion parameters!

Pretrained on trillions of tokens of text!

2

So what’s in the box?

A model defines a conditional probability distribution

3

A model defines a conditional probability distribution
Input X

English text

Question

Document

Utterance

Chess game state

Math problem

Output Y

Japanese

Answer

Short description

Response

Next chess move

Answer

Task

Translation

Question-answering

Summarization

Response generation

Game-playing

Math reasoning

4

(modern) LMs are locally normalized
Monotonically non-increasing probability scores

The U.S. president in 2024 was

At the sequence level, the first output is clearly better; but if it starts with very low
probability tokens, it can never have high overall probability

5

Barack Obama’s former VP

Joseph Biden’s daughter

easy/fast to train with local normalization, but harder to do inference with global constraints

Probability distributions: confidence
M(“2 + 2 = ”): M(“Sean’s favorite color is ”):

4 (high confidence) green (low confidence)

6

Calibration (quick reminder)

A model is well-calibrated if the
confidence score is well-correlated with
the probability of correctness

Figure from Desai & Durrett (2020)

7

https://aclanthology.org/2020.emnlp-main.21/

Probability distributions: hallucination
Models generally assign non-zero probability to some incorrect outputs

This is true even if all
pretraining data is factual!

8

Reference: Kalai & Vempala, 2023

https://arxiv.org/abs/2311.14648

How do we get outputs from this model?

We know:

● The model’s distribution of likelihood over all vocabulary tokens V, for the
next time step, given the input and previous generations

We want:

● a “good” output

9

up next:

decoding as
optimization

Previous: models as distributions

10

Mode-seeking decoding methods
Given our inputs (evidence) and the model’s parameters (prior), what’s the
single most likely output?

11

(this is the mode of the distribution over outputs!)

Greedy decoding
Idea: choose the single most likely token at each step

12

Exactly what we want for a single-token output!

What about longer sequences? Doesn’t always yield the highest-probability output :(

Beam search
Idea: maintain a few options, so
we don’t miss a high-probability
completion “hidden” behind a
lower-probability prefix

Breadth-first search: explore
many options for each decoding
step before generating candidates
for the next step

Figure from the PyTorch blog on fast decoding

13

https://pytorch.org/blog/fast-beam-search-decoding-in-pytorch-with-torchaudio-and-flashlight-text/

What does this look like in huggingface?

model.generate(do_sample=False, num_beams = 1)

14

Greedy decoding:

Beam search:

model.generate(do_sample=False, num_beams = <n>)

Is the highest-probability output best?

Outputs with low probability tend
to be worse than those with high
probability

Probability Output

0.3 The cat sat down.

0.001 The cat grew wings.

Probability Output

0.3 The cat sat down.

0.25 The cat ran away.

But when you’re just comparing the
top outputs… it’s less clear

15

Wait: is the highest-probability output best?

What if we have multiple ways to say
the same thing? Probability is split
between them

16

6 outputs:

Is the highest-probability output best?

Probability Output

0.3 The cat sat down.

0.25 The cat ran away.

0.2 The cat sprinted off.

0.149 The cat got out of there.

0.1 The cat is very small.

0.001 The cat grew wings.

The single most probable output is
that the cat sat down…

But 60% of the probability mass
says something meaning “the cat
left”!

The probability of this is split over
multiple similar generations

17

Issues with MAP: length
In early models: the mode given any prefix was often <EOS>

Length is a confounder for both quality and probability

- Annotators for preference data prefer long outputs
- With conditional probability distributions, longer outputs are usually

lower probability

Solution: length “penalty”

18

Issues with MAP: repetition
We generated some text and then the sequence repeated

 and then the sequence repeated

 and then the sequence repeated

Solution?

- Train a better model!
- Repetition penalty: discount the scores of previously-generated tokens

(Keskar & McCann et al, 2019)

19

Issues with MAP: Atypicality
If you have a coin with a 60% chance of yielding tails, and you flip it 100
times…

The single most likely output: 100 tails

A typical output: slightly more tails than heads

20

Issues with MAP: Curse of Beam Search
What is better, decoding with beam width 5 or beam width 500?

Very large beam widths can decrease performance on downstream metrics–
despite finding higher-probability sequences

21

Improving diversity: diverse and stochastic beam search
Idea: try to do more exploration during beam search

Diverse beam search: modify the scoring when pruning beams to avoid
choosing overly similar beams

Stochastic beam search: modify the next token selection to sample instead
of using the top greedy decodings

22

What does this look like in huggingface?

model.generate(do_sample=False, num_beams = n, num_beam_groups =
m)

23

Diverse beam search

Stochastic beam search:

model.generate(do_sample=True, num_beams = n)

Locally typical decoding
Information theory approach

24

up next:

sampling from LMs

Previous: decoding as optimization

25

Ancestral Sampling

● Exactly samples from model distribution!
● So we’re done… right?

26

Issues with ancestral sampling: long tail
Llama has 32,000 vocabulary tokens!

Even if each individual token in the
long tail has very little probability….
these small probabilities add up

Figure from Wikipedia

27

https://en.wikipedia.org/wiki/Long_tail

What if we just ignore the long tail?
Top-k sampling: only sample from the most probable <k> next tokens

Figure from the HuggingFace blog on text generation

28

E.g., for k=6:

https://huggingface.co/blog/how-to-generate

What if we just ignore the long tail?
Top-p (nucleus) sampling: only sample from the top <p> probability mass

Figure from the HuggingFace blog on text generation

29

E.g., for p=0.94:

https://huggingface.co/blog/how-to-generate

Epsilon sampling: only sample tokens with probability of at least ϵ

What if we just ignore the long tail?

Figure modified from the HuggingFace blog on text generation

30

E.g., for ϵ=0.05:

https://huggingface.co/blog/how-to-generate

Basis-aware threshold sampling
Idea: not all tokens are in the long-tail for the same reason

Figure from Finlayson et al (2023)

31

https://arxiv.org/abs/2310.01693

Distribution temperature
Idea: manipulate the distribution to have higher (or lower) probability on the
top few tokens

32

What does this look like in huggingface?

model.generate(do_sample=True, num_beams = 1)

33

Ancestral sampling

Top-k sampling:

model.generate(do_sample=True, num_beams = 1, top_k = k)

Nucleus sampling:

model.generate(do_sample=True, num_beams = 1, top_p = p)

What does this look like in huggingface?

model.generate(do_sample=True, num_beams = 1, epsilon_cutoff=e)

34

Epsilon sampling

model.generate(do_sample=True, num_beams=1, temperature = 0.8)

Modifying temperature

Microstat?
Add if there’s time left in the talk

35

Contrastive decoding
Smaller models make different
mistakes– can we learn from these
to improve our models?

Choose outputs that the “expert”
finds much more likely than the
“amateur”

Figure from Li et al (2023)

36

https://aclanthology.org/2023.acl-long.687/

What does this look like in huggingface?

sampling_method(model1.forward(seq) - model2.forward(seq))

37

Contrastive decoding

! not the same as contrastive search

up next:

constrained
generation

Previous: sampling from LMs

38

Templamatic constraints
We’d like the model to output valid JSON, according to some schema we’ve
developed

But even good models can struggle at this task….

39

Templamatic constraints
Format the following information using the JSON schema:

Taylor Swift was born December 13, 1989

40

Slide credit: Matt Finlayson

Key Type

name string

birth year int

Templamatic constraints
Idea: represent the schema as a
state machine

41

Figure credit: Matt Finlayson

Templamatic constraints
42

Figure credit: Matt Finlayson

Unnatural token boundaries
Problem with templatic generation: unnatural token boundaries

43

Figure credit: Matt Finlayson

vs

Token healing
We “know” what needs to come next, so roll back a token or two of generation
and require that the next token contains the same string

44

Figure credit: Matt Finlayson

What does this look like in huggingface?

[write a LogitsProcessor]

45

Templatic constraints with automata

model.generate(token_healing=True)

Token healing

Semantic constraints
M(“Describe a few hobbies I could try to stay in shape.”)

How do we prevent the model from suggesting climbing?

46

I don’t want to try
climbing!

Putting instructions in the input isn’t enough
47

Constrained decoding: logit manipulation
What if we set P(yj = “climbing” | X, y1, …, yj-1) to be 0?

Easy to implement: just add a big negative to the logit before the softmax!

Bad if there are a lot of synonyms

Bad if the tokens we restrict could be used in “allowed” ways

Bad if we generate other related terms before the restricted term

48

Constrained decoding: sample-then-rank (or reject)
Generate a set of sequences S

Easier to check if the full sequence violates the constraint

Expensive (i.e. slow), might even need to re-generate

49

Constrained decoding: FUDGE (Yang & Klein, 2021)

Figure from Yang & Klein (2021)

50

https://aclanthology.org/2021.naacl-main.276/

Constrained decoding via… RLHF?

Figure from Korbak et al (2022)

51

https://aclanthology.org/2022.findings-emnlp.77/

Reward-augmented decoding

Modify probabilities by
factoring in the estimated
final reward of each
sequence

52

Figure from Deng & Raffel (2023)

https://aclanthology.org/2023.emnlp-main.721/

What does this look like in huggingface?

[write a LogitsProcessor or use model.forward() and write your
own decoding loop!]

53

For most more complicated methods:

Summary: two levels of decoding
The model provides a distribution P(y | X)

1. At each decoding step: choose a function f(P(y | X)) to manipulate the
next-token distribution

2. Over the full decoding process: choose a function g(s) to choose
between (full or partial) sequences generated from f(P(y | X))

Not covered here: how do we make these fast?

54

Takeaways: decoding methods
You can use decoding methods to control features of the output

● Match certain constraints
● Factor in a reward function or data source
● You can do more expensive decoding to compensate for a worse model… up to a point

Different methods have tradeoffs in quality, diversity, and inference speed

● Sampling is fast and diverse but can be lower-quality
● More restricted sampling and MAP methods are higher-quality but less diverse
● Adding external scorers can be high quality but slow

Your responsibility to make design decisions doesn’t stop when the model is trained!
Letting your libraries pick “sensible defaults” can leave performance on the table.

55

up next:

Human-in-the-loop
decoding

Previous: constrained generation

56

Human-in-the-loop decoding: interleaved text
Choose when to insert model-generated
text versus human continuation

Optionally, edit model-generated text
before continuing

Figure from Yuan et al (2022)

57

https://dl.acm.org/doi/10.1145/3490099.3511105

Human-in-the-loop decoding: fine-grained replacement
User chooses the point to intervene, adds
additional constraints (e.g. “more
descriptive”, “four words”)

This can be accomplished with

● input manipulation
● modeling changes
● decoding changes

Figure from Yuan et al (2022)

58

https://dl.acm.org/doi/10.1145/3490099.3511105

Provide multiple options… or the option to regenerate

Human-in-the-loop decoding: choosing outputs

Left figure from Yuan et al (2022)

59

https://dl.acm.org/doi/10.1145/3490099.3511105

Model-in-the-loop decoding: Tree of Thought
60

Figure from Yao et al (2023)

https://arxiv.org/abs/2305.10601

up next:

practical
considerations

Previous: human-in-the-loop

61

Practical considerations: speed (speculative decoding)

Propose candidates with small model, accept/reject candidates with larger
model

62

Figure from Leviathan et al (2022)

https://arxiv.org/abs/2211.17192

Practical considerations: speed (attention sinks)
How do we keep
generating quickly
when we have more
and more context to
condition on?

Sliding windows:
performance drops
quickly

Alternative: attn sinks

63

Figure from Xiao et al (2023)

https://arxiv.org/abs/2309.17453

Libraries for decoding (and fast inference)
64

Outlines 〰

󰙭 disco

+ Many methods are implemented in
HuggingFace, fairseq2, jax, etc

Summary: two levels of decoding
The model provides a distribution P(y | X)

1. At each decoding step: choose a function f(P(y | X)) to manipulate the
next-token distribution

2. Over the full decoding process: choose a function g(s) to choose
between (full or partial) sequences generated from f(P(y | X))

65

Takeaways: decoding methods
You can use decoding methods to control features of the output

● Match certain constraints
● Factor in a reward function or data source
● You can do more expensive decoding to compensate for a worse model… up to a point

Different methods have tradeoffs in quality, diversity, and inference speed

● Sampling is fast and diverse but can be lower-quality
● More restricted sampling and MAP methods are higher-quality but less diverse
● MBR is high quality but slow

Your responsibility to make design decisions doesn’t stop when the model is trained!
Letting your libraries pick “sensible defaults” can leave performance on the table.

66

Softmax bottleneck
Softmax of the last layer’s output
(logits) to get a probability
distribution over next tokens

This causes a softmax
bottleneck– the model is very
expressive, but softmax
effectively creates a lower-rank
output (see Yang, Dai et al (2018))

67

Figure from the Google ML course materials

https://openreview.net/forum?id=HkwZSG-CZ
https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax

Issues with mode-seeking search
Mode-seeking search

68

Constrained decoding: A* search
We don’t want to just find the highest-probability (“best”) path, we want the
“best” path that satisfies some conditions

A* and A*-esque algorithms:

69

The probability
up to token n

Heuristic estimation of how
likely we are to satisfy
constraints with this prefix

Practical considerations: text detection
Features of generated text vary by decoding method

70

Figure from Gehrmann et al (2019)

https://arxiv.org/abs/1906.04043

