
CS11-711 Advanced NLP 

Reinforcement 
Learning

Sean Welleck

https://cmu-l3.github.io/anlp-spring2025/ 

Some slides adapted from Graham Neubig Fall 2024

https://cmu-l3.github.io/anlp-spring2025/


Recap: fine-tuning

Base 
Model

Task 
Data

Instruction following

Fine-tuned 
Model

Example:  
(Instruction + input, output) 

+



Recap: maximum likelihood
• Given dataset   

• Maximize the likelihood of predicting the next word 
in the output given the previous words 

D = {(x(i), y(i))}N
i=1

ℒ(y1:T |x) = − ∑
t

log pθ(yt |y<t, x)



Problem 1: task mismatch

• We typically want a model to perform well at tasks

Language model Task criterion
p(probable response |prompt) Helpful response

Non-offensive response

p(probable solution |problem) Correct solution
Code that passes test cases

≈

≈



Problem 2: data mismatch

• Data often contains outputs we don’t want 
• Toxic / offensive comments from Reddit 
• Buggy code 

• We don’t have much task-specific data 
• Chains of thought while solving problems 
• Helpful responses to all prompts



Problem 3: exposure bias

• The model is not exposed to mistakes during 
training, and cannot deal with them at test-time 
• E.g., make a mistake while solving a problem 
• E.g., click the wrong page while buying 

something online



Today: reinforcement learning

Let’s think step by step. 2 + 3 = 23.

Reward

ModelWhat is 2+3?

Generate

Update
Let’s think step by step. 2 + 3 = 5.



Today: reinforcement learning

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

ModelHow are you?

Generate

Update



Today: reinforcement learning

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

Model
Generate

Update

Key difference 1: 

• The task criteria is now directly optimized via the reward

How are you?



Today: reinforcement learning

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

ModelHow are you?

Generate

Update

Key difference 2: 

• Data is generated by the model, and a reward tells us how 
to use the data for training



Today: reinforcement learning

You are %*@*$(@*@*

I’m doing well. How are you?

Reward

Model
Generate

Update

Key difference 3: 

• Model generations are now in the learning loop, so test-
time better resembles training time

How are you?



Today’s lecture

• Reward functions for NLP 

• Optimizing reward functions 

• Examples



Reward functions for NLP

• Rule-based rewards 

• Model-based rewards



Rule-based rewards
• A verifiable/checkable property of the output 

• Example: solve a math problem 

•  = 1 if ’s answer is correct, 0 otherwiser(x, y) y

Let’s think step by step.  
2 + 3 = 23.

Reward

What is 2+3?

Let’s think step by step.  
2 + 3 = 5.

Reward

answer = 5?

answer = 5?

0

1



Rule-based rewards
• A verifiable/checkable property of the output 

• Example: write a program that passes test cases 

•  = fraction of passed testsr(x, y)

Buggy program
Reward

Write code 
that …

Good program
Reward

Fraction of  
passed tests

Fraction of  
passed tests

2/10

10/10



Rule-based rewards
• A verifiable/checkable property of the output 

• Example: write a 5 line poem 

•  = |num_lines - 5|r(x, y)



Reward functions for NLP

• Rule-based rewards 

• Model-based rewards



Direct assessment model
• Model  that scores (partial-)sequences 

• Example: classify whether an output is “helpful” 

• Example: classify whether an output is “safe”

r(x, y) → ℝ



Direct assessment model
• Example: model  predicts the 

probability of  given prompt and response
r(x, y) → [0,1]

safe

https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0 [content warning]

https://huggingface.co/nvidia/llama-3.1-nemoguard-8b-content-safety 

https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0
https://huggingface.co/nvidia/llama-3.1-nemoguard-8b-content-safety


Preference model
• Sometimes it’s easier to collect data on preferences



Preference model
• Given a dataset  

• Train model to assign higher scores to : 

 

D = {(y(n)
+ , y(n)

− )}N
n=1

y+

ℒ = − ∑
y+,y−∈D

log σ (rθ(y+) − rθ(y−))



Preference model
• Example:

https://huggingface.co/datasets/Anthropic/hh-rlhf [content warning] 

https://huggingface.co/openbmb/UltraRM-13b 

https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/openbmb/UltraRM-13b


Today’s lecture

• Reward functions for NLP 

• Optimizing reward functions

• Reinforcement learning setup 

• Basic policy gradient 

• Stabilizing training 

• Examples



What is reinforcement learning?

• Learning where we have: 

• States  

• Take actions  

• Using a “policy”
 

• Receive new states 
from environment 

 

• Receive rewards 

s ∈ S
a ∈ A

πθ(a |s)

E(s, a) → s′￼

r(s, a)



Example: Pong



Example: Pong

• Play out a trajectory,  

• Reward:  if  is “win”,  if  is “lose”

(s1, a1), (s2, a2), …, (sT, aT)
+1 sT −1 sT

s1

a1

Model 
(“Policy”)

Environment

s2

“down” Policy …

…



Example: language generation

• State: a prompt and tokens-generated-
so far 

•  

• Action: generate a token 

•  

• Policy: language model 

•

• Environment: append token 

•  

• Reward: evaluate reward on the full 
sequence 

•

st : (x, y<t)

at : yt

pθ(yt |y<t, x)

st+1 : (x, y<t ∘ yt)

r(x, y)

Let’s

What is 2+3?

Let’s think

Let’s think step

Let’s think step by step. 2 + 3 = 23.

…



Example: “one step” generation
• State: prompt or prompt + response 
• Action: generate a full response 

•  

• Policy: language model 

•

• Environment:  
• Trivial 

• Reward: evaluate reward on the full 
sequence 

•

a : y

pθ(y |x)

r(x, y)

What is 2+3?

Let’s think step by step. 2 + 3 = 23.



Example: LLM service bot

• State: a prompt and 
conversation so far 

• Action: generate a 
conversation turn 

• Environment: user 
responds 

• Reward: does the user 
mark issue as resolved

Certainly! What issue are you 
observing?

Can you help me fix my laptop?

One of my windows froze.

Ok! Have you tried “force quit”?

Thanks! It’s working now.

…

Env

Policy

Env

Policy

Env



Summary: setup

• We have a Markov decision process  

• For notation simplicity, in the next section we’ll mostly 
use the “one-step” setting with policy 

(S, A, E, R)

pθ(y |x)



Today’s lecture

• Reward functions for NLP 

• Optimizing reward functions 

• Reinforcement learning setup 

• Basic policy gradient

• Stabilizing learning 

• Examples



Policy gradient

• Learn a policy that maximizes expected reward 

arg max
θ

𝔼x∼D𝔼y∼pθ(y|x) [r(x, y)]
J(θ)



Policy gradient

• Just use gradient descent! For a given : 

 

• Approximate the expectation with a sample: 

 

where  is a generated output.

x

∇θJ(θ) = 𝔼y∼pθ(⋅|x) [r(x, y)∇θlog pθ(y |x)]

∇θ ≈ r(x, ̂y)∇θlog pθ( ̂y |x)

̂y ∼ pθ( ⋅ |x)



Policy gradient

• Practical implementation: 

• Generate an output,  

• Apply the following loss: 

 

• Update model parameters (e.g., with SGD/Adam)

̂y ∼ pθ( ⋅ |x)

ℒPG = − r(x, ̂y)log pθ( ̂y |x)



Putting it all together
• Given: 

• Pre-trained or fine-tuned model,  

• Inputs  

• Reward function  

• Loop: 

• Generate outputs  with  

• Compute rewards 

•
Compute loss, , update 

pθ(y |x)
x

r

̂y pθ

LPG = ∑
t

∇θr(st, at)log pθ(at |st) pθ



Example (CartPole)

https://github.com/pytorch/examples/blob/main/reinforcement_learning/reinforce.py 

https://github.com/pytorch/examples/blob/main/reinforcement_learning/reinforce.py


Example (CartPole)

https://github.com/pytorch/examples/blob/main/reinforcement_learning/reinforce.py 

https://github.com/pytorch/examples/blob/main/reinforcement_learning/reinforce.py


Multiple steps: credit assignment

• How do we know which action led to the reward? 
• Reward is only received at the end: 

 
 

• Simple approach: discount rewards to account for 
the delay between action and reward

a1 a2 a3 a4 a5 a6
+1

E.g. γ = 0.9̂rT = γT−trT

10.90.810.730.660.59



Today’s lecture

• Reward functions for NLP 

• Optimizing reward functions 

• Reinforcement learning setup 

• Basic policy gradient 

• Stabilizing learning

• Examples



Stabilizing learning

• Learning is often unstable. A few factors: 
• Reward hacking 
• Reward scaling 
• Large updates



Reward hacking

• Models can overfit to patterns in the reward 

• Example:  measures how offensive an output is 

• Quiz: what is a policy that maximizes this reward? 
• A language model that always generates an 

empty response.

r(x, y)



Reward hacking : KL penalty

• Mitigation: maximize reward while staying close to the 
original model  
 
 
 

• Intuition: original model gives a good prior over 
language, we just want to adjust it

arg max
θ

𝔼x,y [r(x, y)] − βDKL(pθ∥p0)



Reward hacking : KL penalty
• In practice, add a KL penalty to the reward 

 

• Approximation of  

• Or add a similar term to the loss

rKL = − β log
pθ(y |x)
p0(y |x)

DKL(pθ(y |x)∥p0(y |x))



Reward scaling: advantages
• Scale each term by an advantage  

 

• Common approach: use a baseline 

 

Basic policy gradient: 

A
ℒadv = − A(x, y)log pθ(y |x)

ℒ = − (r(x, y) − b(x, y))log pθ(y |x)

b(x, y) = 0



Reward scaling: baselines
• Estimate of the expected reward for a given state. 

Reward
0.8
0.3

0.75
Baseline

0.75

B - R
0.05
-0.45

“Summarize this paper: …”
“Summarize this paper: …”

• Subtracted from the actual reward to determine how good 
a particular action was relative to what was expected

“Prove this theorem: …” 0.3 0.10 0.20

ℒ = − (r(x, y) − b(x, y))log pθ(y |x)



• Average over outputs: generate multiple outputs 
and use the average reward among outputs 

• Running average: maintain a running average of 
past rewards across batches 

• Learned: train a model  to predict expected 
reward from the given state

vϕ(st)

Reward scaling: baselines



Large updates

• Updates are noisy, so a large update can derail things 
• Mitigation: don’t move the policy too much at once 

• Example: Proximal policy optimization (PPO) 

•
 

 

ratio(x, y) =
pθ(y |x)

pθold
(y |x)

LPPO = min (ratio(x, y)A(x, y), clip(ratio(x, y),1 − ϵ,1 + ϵ)A(x, y))



Putting it all together
• Given: 

• Pre-trained or fine-tuned model,  

• Inputs  

• Reward function  

• Loop: 

• Generate outputs with  

• Compute advantages  
• Rewards [including KL penalty], baselines, discounting 

• Update , e.g. with PPO loss

pθ(y |x)
x

r

pθ

pθ



Real-world implementation

https://github.com/volcengine/verl/blob/main/verl/trainer/ppo/core_algos.py 

https://github.com/volcengine/verl/blob/main/verl/trainer/ppo/core_algos.py


Today’s lecture

• Reward functions for NLP 

• Optimizing reward functions 

• Examples



RL from human feedback (RLHF)

• Basic MDP, preference reward, PPO
• Policy: given prompt , generate response x y1:T

Ziegler et al 2019, Stiennon et al 2020



RL from human feedback (RLHF)

• Basic MDP, preference reward, PPO
• Policy: given prompt , generate response x y1:T

Ouyang et al 2022



RL for math problem solving

• 1-step MDP, 0/1 rule-based reward, PPO with output-
average baseline (“GRPO”)

• Policy: given problem , generate chain of thought + answerx



Summary - when to use RL?

• Optimize a sequence-level task criterion 
• E.g., generate response + evaluate response 
• E.g., chain-of-thought + evaluate answer 

• We have a non-trivial MDP (states, actions, env) 
• E.g. a dialog where we get a reward at the end 
• E.g. an agent buying something on a website 



Summary
• Reward functions for NLP 

• Optimizing reward functions 

• Reinforcement learning setup 

• Policy gradient 

• KL penalty, advantages, avoiding large updates 

• Examples 

• RLHF, math problem solving



Questions?


