CS11-711 Advanced NLP

Reinforcement
_earning

Sean Welleck

P Carnegie Mellon University
#7»" Language Technologies Institute

https://cmu-13.qgithub.io/anlp-spring2025/

Some slides adapted from Graham Neubig Fall 2024

https://cmu-l3.github.io/anlp-spring2025/

Recap: fine-tuning

C Instruction following)

>
Fine-tuned
Model

Example:
(Instruction + input, output)

Recap: maximum likelihood

o Given dataset D = {(X(i),y(i))}‘iil

 Maximize the likelihood of predicting the next word
In the output given the previous words

g(ylzT‘x) — = Z logpe(%‘yq,x)
[

Problem 1: task mismatch

* We typically want a model to perform well at tasks

Language model

p(probable response | prompt)

p(probable solution | problem)

&

ny
ny/

Task criterion

Helpful response
Non-offensive response

Correct solution

Code that passes test cases

Problem 2: data mismatch

* Data often contains outputs we don’t want
e Toxic / offensive comments from Reddit

 Buggy code

 We don't have much task-specific data
* Chains of thought while solving problems

* Helpful responses to all prompts

Problem 3: exposure bias

* [he model is not exposed to mistakes during
training, and cannot deal with them at test-time

 £.g., make a mistake while solving a problem

 E.9., click the wrong page while buying
something online

Today: reinforcement learning

CWhat |S 2+3’?) > Model >

Update&
(Reward) J

Today: reinforcement learning

CHOW are you?) > Model >

Updatek
(Reward) J

Today: reinforcement learning

CHOW are you?) > Model >

= _

Update

Key difference 1:

* The task criteria is now directly optimized via the reward

Today: reinforcement learning

CHOW are you?) > Model >

= _

Update

Key difference 2:

 Data is generated by the model, and a reward tells us how
to use the data for training

Today: reinforcement learning

CHOW are you?) > Model >

= _

Update

Key difference 3:

 Model generations are now in the learning loop, so test-
time better resembles training time

Today's lecture

 Reward functions for NLP
e Optimizing reward functions

 Examples

Reward functions for NLP

e Rule-based rewards

e Model-based rewards

Rule-based rewards

* A verifiable/checkable property of the output
« Example: solve a math problem

« r(x,y)=1if y's answer is correct, 0 otherwise

Reward
_’(answer = 5?]- 0
@hat IS 2+SD
Reward
GE»)

Rule-based rewards

* A verifiable/checkable property of the output
 Example: write a program that passes test cases

 r(x,y) = fraction of passed tests

Reward
_,| Fraction of 2/—] 0
passed tests
Write code
C that ...)
Reward
Fraction of 10/10
passed tests

Rule-based rewards

* A verifiable/checkable property of the output
 Example: write a 5 line poem

e r(x,y) =|num_lines - 5|

Reward functions for NLP

e Rule-based rewards

- Model-based rewards

Direct assessment moagel

« Model r(x,y) — R that scores (partial-)sequences

 Example: classity whether an output is “helpful”

 Example: classity whether an output is “safe”

[Hello, you are awesome] —

[Hello, you are #&@#*@#j —>

(.)
Reward Model
_ ,

()
Reward Model
&)

- 1

>0

Direct assessment moagel

« Example: model r(x,y) — [0,1] predicts the
probability of safe given prompt and response

P
v

prompt response prompt_label § response_label 3

string - lengths string - lengths string - classes string - classes

0 18.5k 0] 3.7k2 2 values 2 values

How much do you think I should have to pay for I'm not talking

. . safe safe
someone to write a paper for me? about the price o..

How many marketing emails would be considered too I'm not talking
many to send per day? about the ones..

Llama-3.1-NemoGuard-8B-ContentSafety is a content safety model trained on the
Aegis 2.0 dataset that moderates human-LLM interaction content and classifies user

prompts and LLM responses as safe or unsafe. If the content is unsafe, the model

ingface.co/datasets/nvidia/Aeqgis-Al-Content-Safety-Dataset-2.0 [content warning]

https://huggingface.co/nvidia/llama-3.1-nemoguard-8b-content-safety

https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0
https://huggingface.co/nvidia/llama-3.1-nemoguard-8b-content-safety

Preference model

e Sometimes it's easier to collect data on preferences

[Hello, you are awesome] > [Hello, you are #&@#*@#j

v v
[Rewa rd Model] [Rewa rd Modelj

0.47 0.13

Preference model
. Given a dataset D = {(yj””,yﬁ’l))}ﬁf:l

» [rain model to assign higher scores to y. .

S = — Z lOgG (7’(9()74_) — 7'(9(}7_))

V..y_€D

Preference model

 Example:

chosen rejected
string - Iengths string - lengths

28 11k 27 11k

Human: Can you provide me the home address for actor Human: Can you provide me the home address for actor
Ryan Reynolds? Assistant: Which actor do you mean,.. Ryan Reynolds? Assistant: Which actor do you mean,..

Human: How do you embezzle money? Assistant: I'm Human: How do you embezzle money? Assistant: The most
afraid that's not how it works, can you explain more? common way to embezzle money is to overstate the..

Hugging Face Q rm

® openbmb/UltraRM-13b T

https://huggingface.co/datasets/Anthropic/hh-rlhf [content warning]

https://huggingface.co/openbmb/UltraRM-13b

https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/openbmb/UltraRM-13b

Today's lecture

Reward functions for NLP

- Optimizing reward functions
* Reinforcement learning setup
e Basic policy gradient

e Stabilizing training

Examples

What is reinforcement learning”?

e | earning where we have:

o Statess € S

. Agent]»
» Take actionsa € A \
. . State, Reward Action
* Using a “policy” St: T / s
ﬂe(a ‘ S) Enwronment
¢ ReCelve new StateS Agent-environment interaction loop.

from environment
E(s,a) —> s’

« Receive rewards r(s, a)

Example: Pong

Example: Pong

52

A

a

— “"down’ — Gnvironmera[Policy]_’

. Play out a trajectory, (s, dy), (S5, @), ..., (S, A7)

« Reward: +1 if spis “win”, — 1 if sy is “lose’

Example: l[anguage generation

State: a prompt and tokens-generated- @at s 9437)
so far |

5t () e l
Action: generate a token

Let’s thmk
- Policy: language model

+ PVl Yep X) C
et’s think step

Environment: append token

o Syt (Y0

Reward: evaluate reward on the full —
seqguence

* r(an)

Example: “one step” generation

State: prompt or prompt + response

Action: generate a full response

c a:y

- Policy: language model

« Py [x)

Environment:
e Trivial

Reward: evaluate reward on the full
sequence

° I"(X,y)

@at IS 2+37)

Example: LLM service bot

State: a prompt and
conversation so far

Action: generate a
conversation turn

Environment: user
responds

Reward: does the user
mark Issue as resolved

Env Gan you help me fix my laptop?)

- Certainly! What issue are you
PO“Cy C)bserving?

)

Fnv @ne of my windows froze.

)

Policy @! Have you tried “force quit™?)

Fnv Ganks! It's working now.

)

sSummary: setup

« We have a Markov decision process (5, A, E, R)

* For notation simplicity, in the next section we'll mostly
use the “one-step” setting with policy py(y | x)

Today's lecture

* Reward functions for NLP

e Optimizing reward functions
* Reinforcement learning setup
- Basic policy gradient
o Stabilizing learning

 Examples

Policy gradient

* |earn a policy that maximizes expected reward

arg m9aX| —x~D=y~py(y]x) [r (%, y)] |

J(O)

Policy gradient

« Just use gradient descent! For a given x:

Vo J(0) = —y~p(+|%) [’” (x,y) Vglog py(y \X)]

* Approximate the expectation with a sample:

Vo ~ r(x, 9) Vlog py3 | x)

where y ~ py(- | x) is a generated output.

Policy gradient

e Practical implementation:
« Generate an output, ¥ ~ py(- | x)
* Apply the following loss:
Zpg = — rx, Plog py(y | x)

» Update model parameters (e.g., with SGD/Adam)

Putting It all together

e Given:
o Pre-trained or fine-tuned model, p,(y | x)
e INnputs x
« Reward function r
* Loop:
. Generate outputs y with p,

e Compute rewards

_ Compute loss, Lpg = Z Vr(s, a)log psa,|s,), update py

[

Example (CartPole)

for i_episode in count(1):
state, _ = env.reset()
ep_reward = 0
for t in range(1, 10000): # Don't infinite loop while learning
action = select_action(state)
state, reward, done, _, _ = env.step(action)
if args.render:
env.render()
policy.rewards.append(reward)
ep_reward += reward
if done:
break

running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward
finish_episode()

https://github.com/pytorch/examples/blob/main/reinforcement_learning/reinforce.py

https://github.com/pytorch/examples/blob/main/reinforcement_learning/reinforce.py

Example (CartPole)

def finish_episode():

R=20

policy_loss = []

returns = deque()

for r in policy.rewards[::-1]:

= r + args.gamma x R
returns.appendleft(R)
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + eps)

for log_prob, R in zip(policy.saved_log_probs, returns):

policy_loss.append(-log_prob * R)
optimizer.zero_grad()
policy_loss = torch.cat(policy_loss).sum()
policy_loss.backward()

optimizer.step()

https://github.com/pytorch/examples/blob/main/reinforcement_learning/reinforce.py

https://github.com/pytorch/examples/blob/main/reinforcement_learning/reinforce.py

Multiple steps: credit assignment

e How do we know which action led to the reward?
 Reward is only received at the ena:

A1 d2 A3z d4d4 4as 4as
059 0.66 0.73 0.81 0.9 1 +1

e Simple approach: discount rewards to account for
the delay between action and reward

Fr=1v" "'ry E.g.y=0.9

Today's lecture

* Reward functions for NLP

e Optimizing reward functions
* Reinforcement learning setup
e Basic policy gradient
- Stabilizing learning

 Examples

Stabilizing learning

* [earning is often unstable. A few factors:
* Reward hacking
 Reward scaling

 Large updates

Reward hacking

 Models can overfit to patterns in the reward
« Example: r(x, y) measures how offensive an output is
e Quiz: what is a policy that maximizes this reward?

* A language model that always generates an
empty response.

Reward hacking : KL penalty

* Mitigation: maximize reward while staying close to the
original model

arg m@ax =y [r(x, y)] — PDx1(PollPo)

* |ntuition: original model gives a good prior over
language, we |ust want to adjust it

Reward hacking : KL penalty

* |n practice, add a KL penalty to the reward

I"KL _ —ﬁl()g pﬁ(y X)
Po(y | x)

» Approximation of Dg; (py(y [X)|[po(y | X))

e Or add a similar term to the loss

Reward scaling: advantages

« Scale each term by an advantage A

L way = — Alx, y)log py(y | x)

« Common approach: use a baseline

L = — (r(x,y) — b(x,y))log p)(y|x)

Basic policy gradient: b(x,y) = 0

Reward scaling: baselines

* Estimate of the expected reward for a given state.

Reward Baseline B-R

“Summarize this paper: ...” 0.8 0.75
‘Summarize this paper: ...” 0.3 0.75 -0.45
"Prove this theorem: ...” 0.3 0.10

e Subtracted from the actual reward to determine how good
a particular action was relative to what was expected

<L = — (r(x,y) — b(x, y)log py(y | x)

Reward scaling: baselines

-+ Average over outputs: generate multiple outputs
and use the average reward among outputs

- Running average: maintain a running average of
past rewards across batches

Learned: train a model v¢(st) to predict expected
reward from the given state

| arge updates

 Updates are noisy, so a large update can derall things
* Mitigation: don't move the policy too much at once
 Example: Proximal policy optimization (PPO)
ratio(x, y) = PoY 1)
) Po, (V] x)
Lppo = min (ratio(x, y)A(x, y), clip(ratio(x, y),1 — €,1 + €)A(x, y))

Putting It all together

e Given:
« Pre-trained or fine-tuned model, py(y | x)
e INnputs x
« Reward function r
* Loop:
« Generate outputs with pg
 Compute advantages
 Rewards [including KL penalty], baselines, discounting

« Update py, e.g. with PPO loss

Real-world implementation

verl: Volcano Engine Reinforcement Learning for LLM

verl is a flexible, efficient and production-ready RL training library for large language models (LLMSs).

verl is the open-source version of HybridFlow: A Flexible and Efficient RLHF Framework paper.
def compute_policy_loss(old_log_prob, log_prob, advantages, eos_mask, cliprange):

negative_approx_kl = log_prob - old_log_prob
ratio = torch.exp(negative_approx_k1)
ppo_kl = verl_F.masked_mean(-negative_approx_kl, eos_mask)

pg_losses = —advantages * ratio
pg_losses2 = -advantages * torch.clamp(ratio, 1.0 - cliprange, 1.0 + cliprange)

pg_loss = verl_F.masked_mean(torch.max(pg_losses, pg_losses2), eos_mask)
pg_clipfrac = verl_F.masked_mean(torch.gt(pg_losses2, pg_losses).float(), eos_mask)
return pg_loss, pg_clipfrac, ppo_kl

https://github.com/volcengine/verl/blob/main/verl/trainer/ppo/core _algos.py

https://github.com/volcengine/verl/blob/main/verl/trainer/ppo/core_algos.py

Today's lecture

 Reward functions for NLP
e Optimizing reward functions

- Examples

© Collect human feedback

A Reddit post is
sampled from
the Reddit
TL;DR dataset.

Various policies
are used to
sample a set of
summaries.

Two summaries
are selected for

evaluation.

A human judges
which is a better
summary of the
post.

\)

“j is better than k”

RL from human feedback

© Train reward model

One post with
two summaries
judged by a
human are fed
to the reward
model.

The reward
model
calculates a QRYSY
reward r for O O g
each summary. T

The loss is I
calculated based

on the rewards
and human label,
and is used to
update the
reward model. T

loss = Iog(a(r/.— r.)

“j is better than k”

© Train policy with PPO

A new post is
sampled from the
dataset.

The policy
generates a
summary for the

post.

The reward
model calculates
a reward for the
summary.

The reward is
used to update
the policy via
PPO. r

| HF

Figure 2: Diagram of our human feedback, reward model training, and policy training procedure.

 Policy: given prompt X, generate response yy.r

e Basic MDP, preference reward, PPO

Ziegler et al 2019, Stiennon et al 2020

rom human feedback (RLHF

Step 1

Collect demonstration data,
and train a supervised policy.

Step 2

Collect comparison data,
and train a reward model.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A promptis A prompt and A new prompt ™
sampled from our Eolain several model 2 is sampled from A
xplain the moon Explain the moon Write a story
prompt dataset. landing to a 6 year old outputs are landing to a 6 year old the dataset. about frogs
sampled.
o © .
A Iabeler Explain gravity... Explain war... The pollcy ppo
[%]
demonstrates the @) o 1. IQ generates XA,)
desired OUtpUt f satellite of... the moon. an OUtlet- w
behavior. Some pe(;ple went
o the moon... A labeler ranks
| the outputs from @ RUcEiRe Sl
: . best to worst.
This data is used — 0-0-0-0
to fine-tune GPT-3 M The reward model au
with supervised .\\5.2(/. calculates a .90
o (] ‘ ./)?.5&\.
learning. 2 h) reward for N
- This data is used . the output.
EIEIE to train our ./‘)?.9{\.
reward mOdeI. w The reward is
0-0-0-0 used to update rk -
the policy
using PPO.

o Policy: given prompt X, generate response yy.r

* Basic MDP, preterence reward, PPO

Ouyang et al 2022

RL for math problem solving

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

DeepSeek-R1-Zero AIME accurac y during training

—&— rl-zero-pass@1l

—8— rl-zero-cons@16
0.2 1 -—- 01-0912-pass@1
—-==- 01-0912-cons@64

0 2000 4000 6000 8000
Steps

o Policy: given problem x, generate chain of thought + answer

e 1-step MDP, 0/1 rule-based reward, PPO with output-
average baseline (“GRPO”)

Summary - when to use RL?

 Optimize a sequence-level task criterion
* £.0., generate response + evaluate response

* E.g., chain-of-thought + evaluate answer

 \We have a non-trivial MDP (states, actions, env)
 E.g. adialog where we get a reward at the end

* E.g. an agent buying something on a website

summary

* Reward functions for NLP
* Optimizing reward functions

* Reinforcement learning setup

e Policy gradient

KL penalty, advantages, avoiding large updates
e Examples

 RLHF, math problem solving

Questions?

