CS11-711 Advanced NLP Long-Context Models

Sean Welleck

Carnegie Mellon University Language Technologies Institute

https://cmu-I3.github.io/anlp-spring2025/

Many slides by Graham Neubig from Fall 2024

How Long are Sequences?

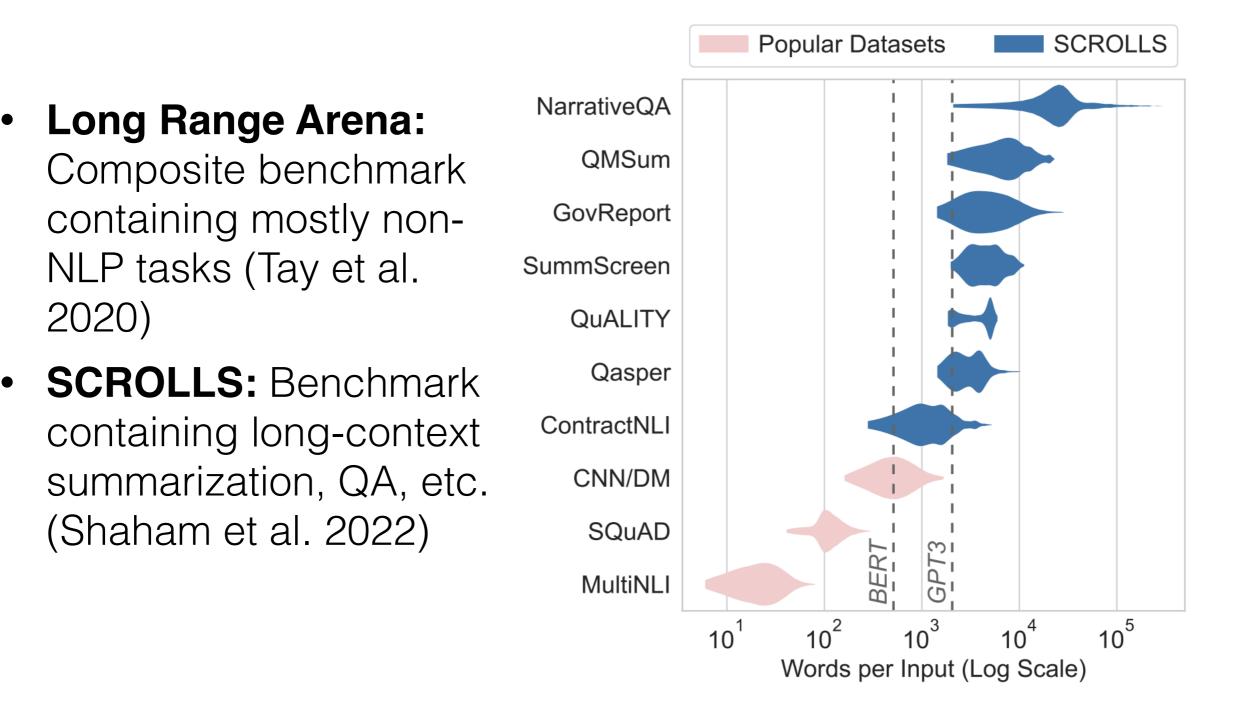
- One sentence: ~20 tokens
- One document: 100-10k tokens
- One book: 50k-300k tokens
- One video: 1.5k-1M tokens (~300/sec)
- One codebase: 20k-1B tokens
- One genome: 3B nucleotides

Why is Modeling Long Sequences Hard?

- Memory Complexity: Transformer models scale quadratically in memory
- Compute Complexity: Transformer models scale
 quadratically in computation
- **Training:** Data is lacking, training signal is weak, training on long sequences is costly

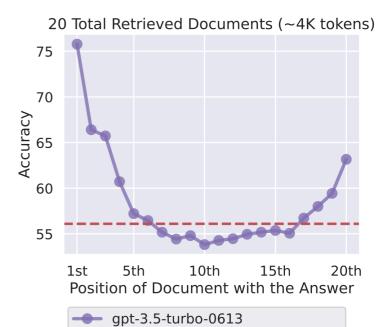
Long-context Use Cases and Evaluation

Benchmarks for Long-context Models

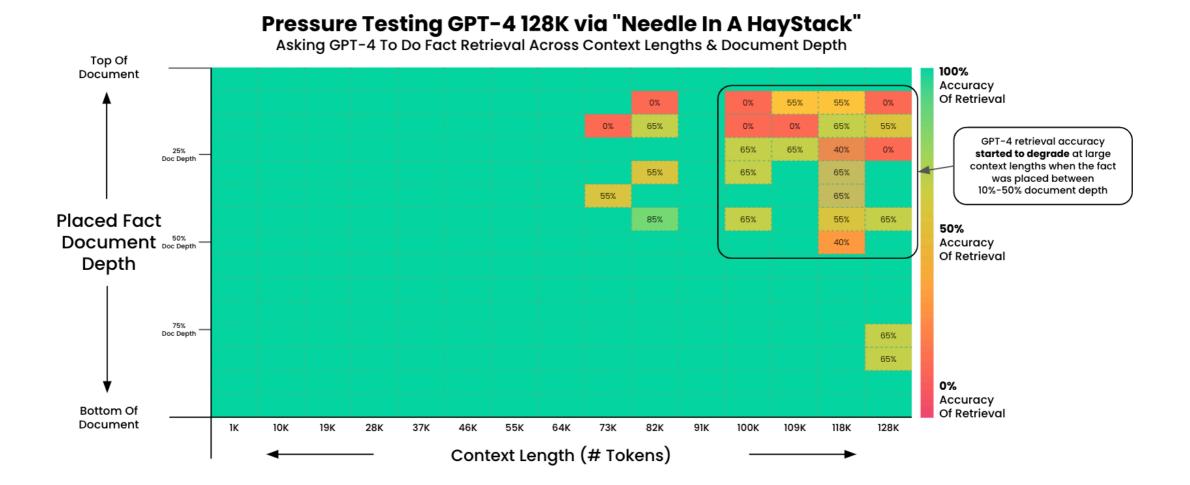


Targeted Analysis Tools

- "lost-in-the-middle" (Liu et al. 2023) demonstrates that models pay less attention to things in middle context
- "needle in a haystack" tests (Kamradt 2023) test across document length/position
- RULER (Hsieh et al. 2024) compiles a number of different NIAH tasks

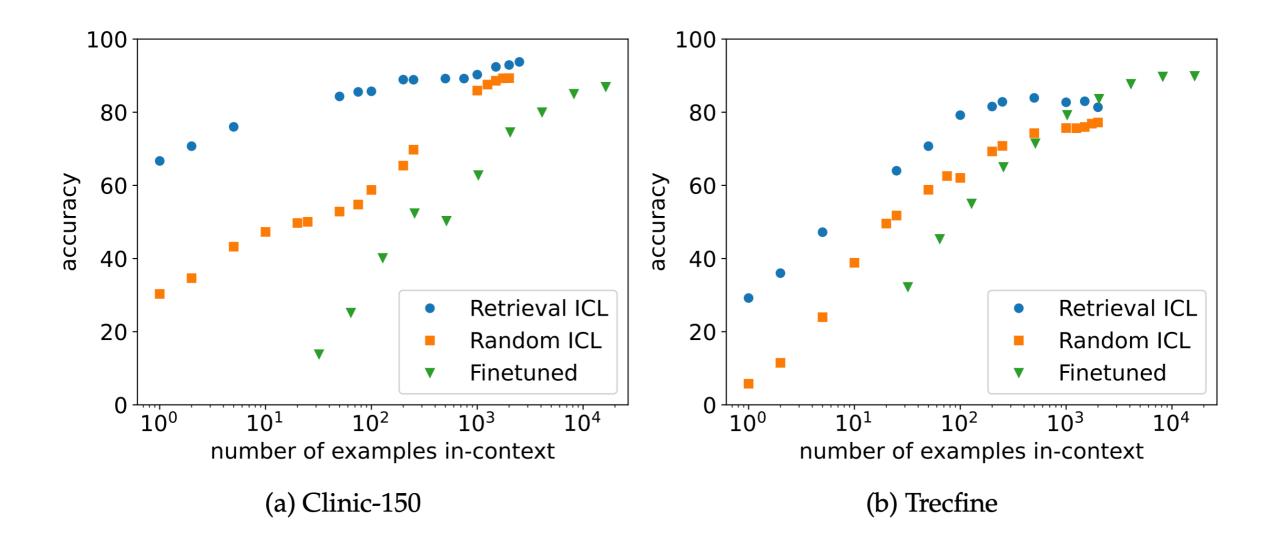


gpt-3.5-turbo-0613 (closed-book)



Long-context In-context Learning

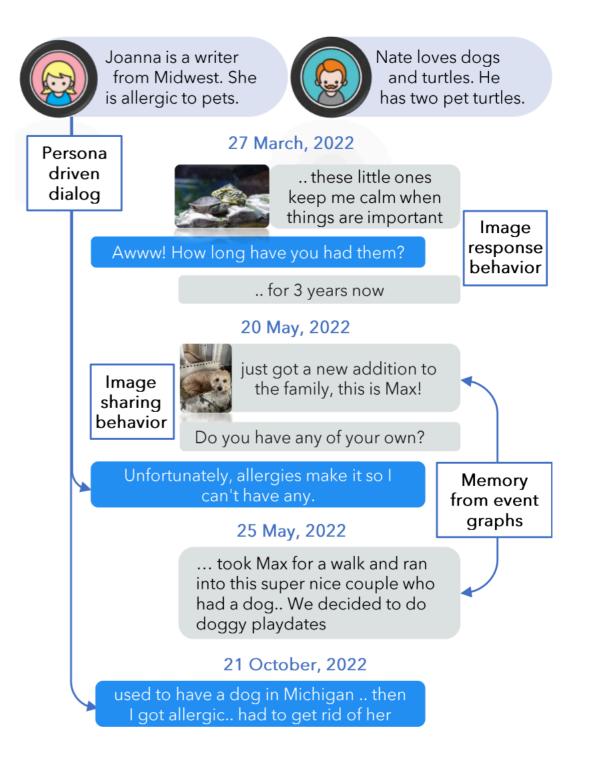
(Bertsch et al. 2024)



 When many in-context examples are provided, it can be better than fine-tuning

Long-context Dialog

- Chatbots that maintain long-term conversational context
- E.g., Locomo corpus (Maharana et al. 2024)
- Evaluate with question answering, summarization, response generation



Today's lecture

- Long sequence modeling
- Improving transformers
 - Memory-efficient computation
 - Extrapolation
 - Transformer modifications
- Transformer alternatives

Vanilla Attention Complexity

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

$$A = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)$$

 $\operatorname{Attention}(Q, K, V) = AV$

Compute: $O(bs^2d)$ for QK^T

Compute: *O*(*bs*²*d*) for *AV*

Memory: *O(bs²)* for all ops

Memory: O(bsd)

b: batch size, s: sequence length, d: dimension

Multi-head Attention Complexity

- Multi-head attention splits attention heads
- No effect on compute complexity, but effect on memory

Compute: $O(bs^2d)$ for QK^T

Compute: *O*(*bs*²*d*) for *AV*

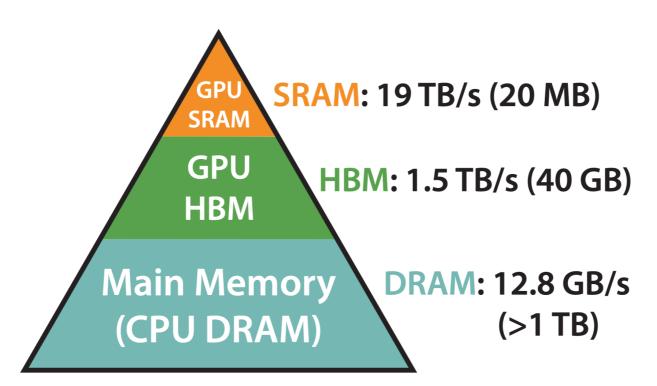
Memory: O(bs²h) for all ops

Memory: O(bsd)

b: batch size, s: sequence length, d: dimension, h: heads

Memory bottlenecks

 Accelerators (e.g., CUDA GPU) have limited memory capacity and bandwidth



Memory Hierarchy with Bandwidth & Memory Size

 $O(bs^2h)$ memory means many slow SRAM \leftrightarrow HBM transfers

Image: FlashAttention [Dao et al 2022]

Memory bottlenecks

- Implications:
 - Expensive to (pre-)train with a long context length
 - Expensive to **generate** (inference)

- Expensive can mean:
 - Slow: bandwidth leads to transfers
 - Infeasible: simply run out of memory

(Jang 2019, Rabe and Staats 2021)

 Insight: you can compute softmax "online" to avoid materializing the s² matrices

Attention
$$(Q, K, V) = V^*/S^*$$
Memory: $O(bsd)$ softmax numerator * Vsoftmax denominator $V^* = \exp\left(\frac{QK^T}{\sqrt{d_k}}\right)V$ $S^* = \sup\left(\exp\left(\frac{QK^T}{\sqrt{d_k}}\right)\right)$ Memory: $O(bsd)$ Memory: $O(bsh)$

(Jang 2019, Rabe and Staats 2021)

• Online softmax

For each query q: For i = 1, ..., s:¹

$$W'_{i} = \operatorname{dot}(q, k_{i})$$
$$V^{*} \leftarrow V^{*} + V_{i} \exp(W'_{i})$$
$$S^{*} \leftarrow S^{*} + \exp(W'_{i})$$

At the end, Attention $(q) = v^*/s^*$.

¹In general, segment into "chunks" (aka "blocks" / "tiles").

						~ 1 million tokens		
Sequence length	$n = 2^8$	2^{10}	2^{12}	2^{14}	2^{16}	2^{18}	2^{20}	
Size of inputs and outputs	160KB	640KB	2.5MB	10MB	40MB	160MB	640MB	
Memory overhead of standard attention	270KB	4.0MB	64MB	1GB	OOM	OOM	OOM	
Memory overhead of memory-eff. attn.	270KB	4.0MB	16MB	17MB	21MB	64MB	256MB	
Compute time on TPUv3	0.06ms	0.11ms	0.7ms	11.3ms	177ms	2.82s	45.2s	
Relative compute speed	±5%	$\pm 5\%$	-8±2%	-13±2%	-	-	-	

Table 2: Memory and time requirements of self-attention during inference.

Inference benchmarking from [Rabe and Staats 2021]

Analogous improvements for training

- Transformer attention [Rabe & Staats 2021]
- FlashAttention: incorporate online softmax into a new CUDA kernel [Dao et al 2022]
- *Ring Attention*: distribute online computation across multiple devices [Liu et al 2023]

Ring Attention (Liu et al. 2023)

Context parallelism

- Split sequence into blocks across devices
- Each host holds one query block, and key-value blocks traverse through a ring
- Different strategies for splitting: contiguous blocks, clever interleaving

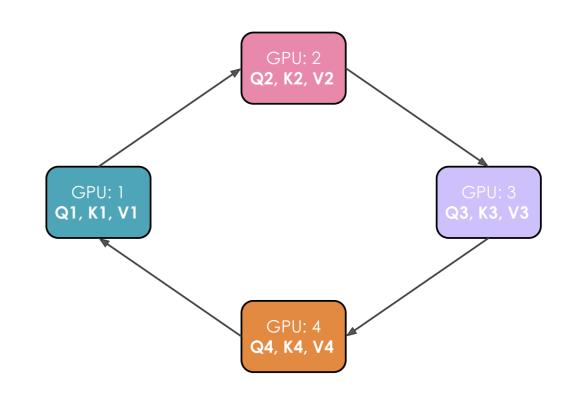


Image: The Ultra-Scale Playbook [Tazi et al 2025]

Ring attention / context parallelism

No Parallelism TP=2 CP=1 TP=2 CP=4 140 120 Memory Usage (GB) Model Parameters 100 Gradients 80-**Optimizer States** 60 **Activations** 40 20 0 1024 1024 4096 1024 65536 4096 131072 131072 4096 16384 131072 16384 65536 16384 65536 Sequence Length Sequence Length Sequence Length

Memory Usage for 8B Model

Image: The Ultra-Scale Playbook [Tazi et al 2025]

Today's lecture

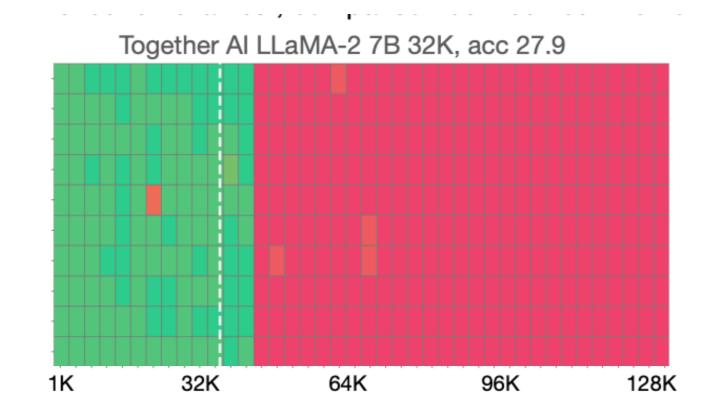
- Long sequence modeling
- Improving transformers
 - Memory-efficient computation
 - Extrapolation
 - Transformer modifications
- Transformer alternatives

Trained Models Fail to Extrapolate

- Most transformer models are trained on shorter sequences (4k)
 - If a document is longer than the limit, truncate or chunk
- This poses problems for positional encodings:
 - Learned absolute encodings: impossible to extrapolate
 - Fixed absolute encodings: move models out of distribution, very bad
 - **Relative encodings:** should extrapolate better in theory, but not really in practice

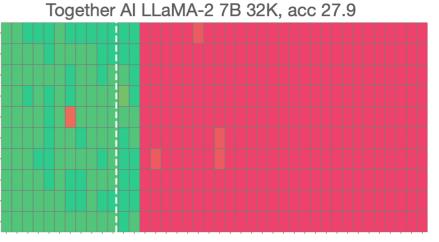
An Example of Failed Extrapolation (Fu et al. 2024)

 Llama-2 w/ 32k context (RoPE) can answer questions about sequences up to about 40k, but not beyond

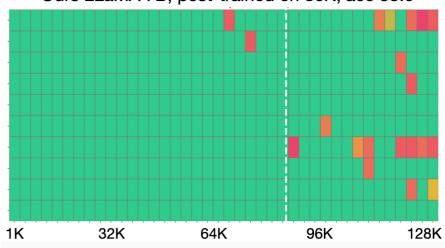


Training with Long Context (Fu et al. 2024)

- A solution: continually train on longer documents
 - Upsample longer documents
 - Maintain domain mixture, and upsample long docs in each domain



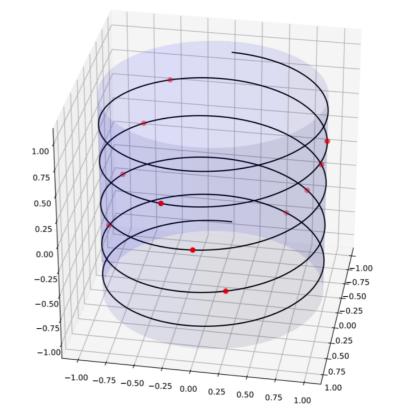
Ours LLaMA 7B, post-trained on 80K, acc 88.0



RoPE Scaling

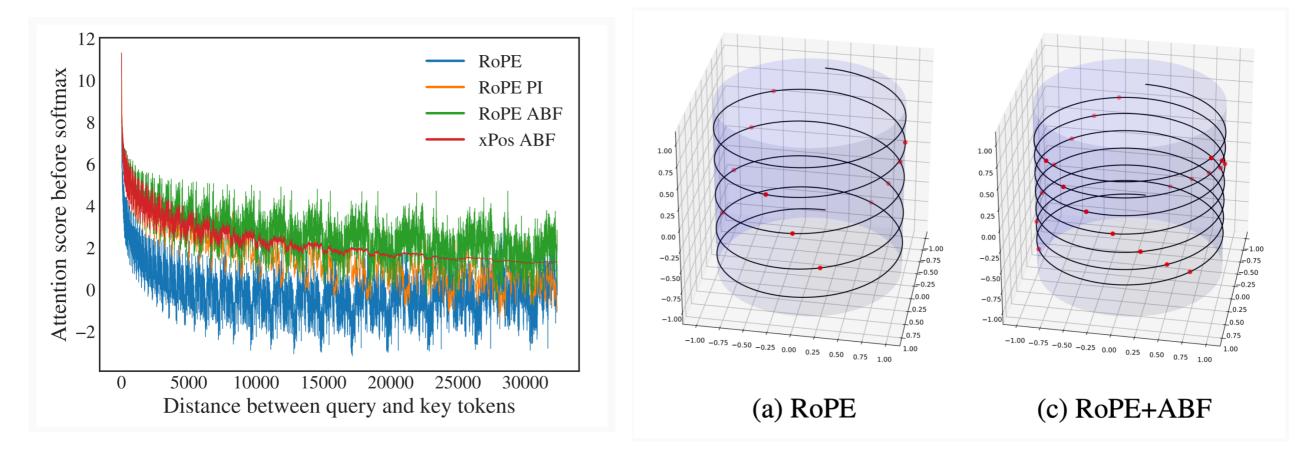
$$\mathbf{R}(\boldsymbol{\theta}, i) = \begin{pmatrix} \cos i\theta_1 & -\sin i\theta_1 & \cdots & 0 & 0\\ \sin i\theta_1 & \cos i\theta_1 & \cdots & 0 & 0\\ \vdots & & & \\ 0 & 0 & \cdots & \cos i\theta_{\frac{d_k}{2}} & -\sin i\theta_{\frac{d_k}{2}} \\ 0 & 0 & \cdots & \sin i\theta_{\frac{d_k}{2}} & \cos i\theta_{\frac{d_k}{2}} \end{pmatrix}$$
e embeddings have a

- RoP periodic structure
- Parameter θ impacts the period, e.g., $\theta_j = b^{-\frac{2j}{d_k}}$ with b = 10000



RoPE Scaling

- Vanilla RoPE naturally decays as *s* increases
 - *Rope ABF:* Increase base frequency
 - Position Interpolation: Multiply period by a constant



Today's lecture

- Long sequence modeling
- Improving transformers
 - Memory-efficient computation
 - Extrapolation
 - Transformer modifications
- Transformer alternatives

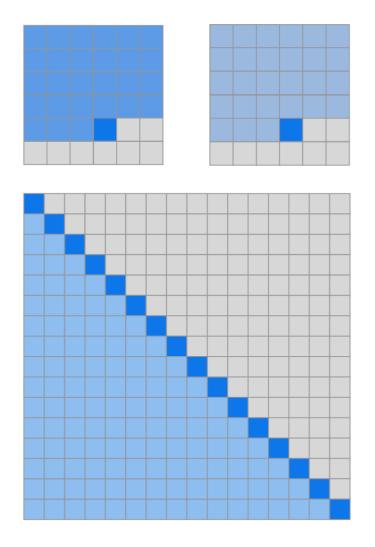
Transformer modifications

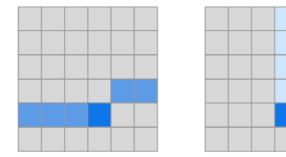
Skipped in lecture due to time

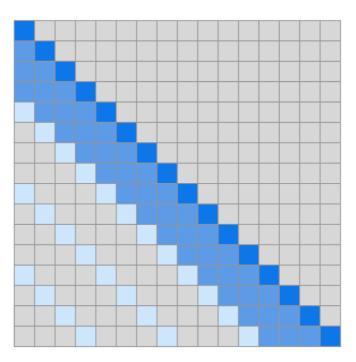
- Sparse Attention
- Sliding Window Attention
- Compression
- Low-rank Approximation

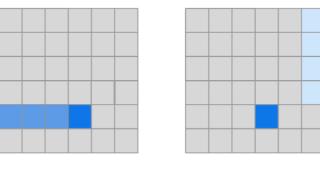
Skipped in lecture due to time Sparse Transformers (Child et al. 2019)

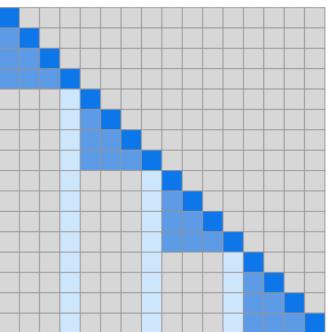
Add "stride", only attending to every n previous states









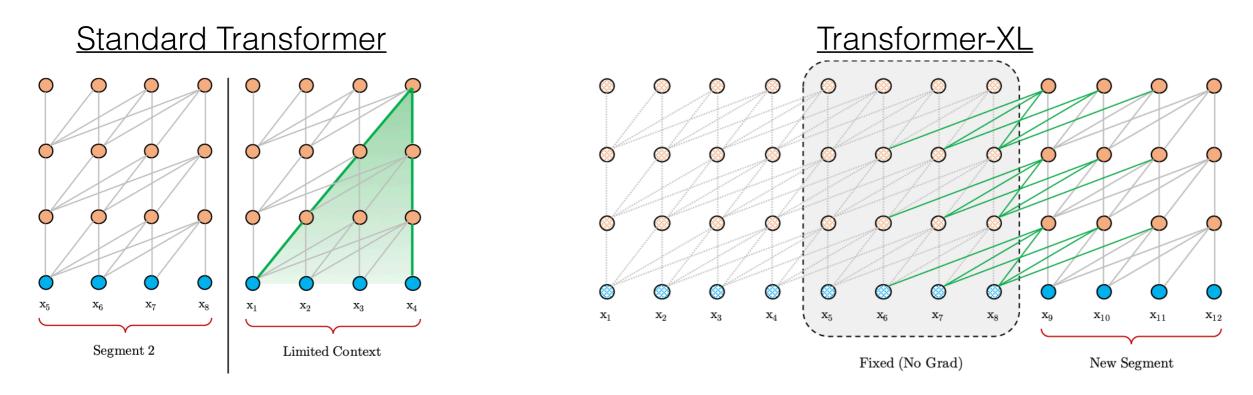


(a) Transformer

(b) Sparse Transformer (strided)

Skipped in lecture due to time Truncated BPTT+Transformer

 Transformer-XL (Dai et al. 2019) attends to fixed vectors from the previous sentence

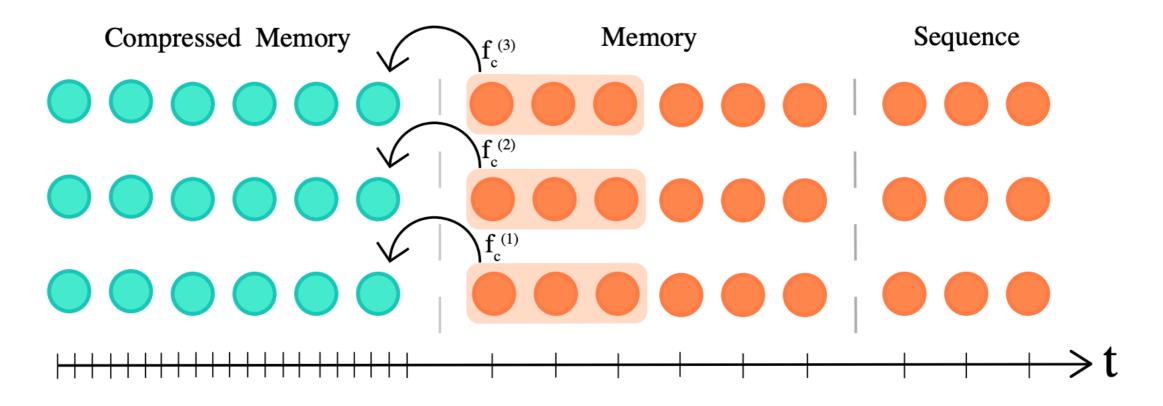


- Like truncated backprop through time for RNNs; can use previous states, but not backprop into them
- See also Mistral's (Jiang et al. 2023) sliding window attention

Skipped in lecture due to time

Compressing Previous States

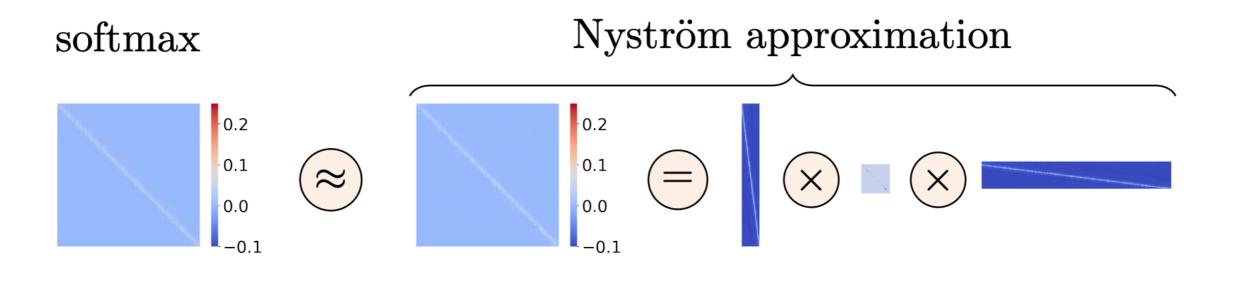
 Add a "strided" compression step over previous states (Rae et al. 2019)



Skipped in lecture due to time

Low-rank Approximation

- Calculating the attention matrix is expensive, can it be predicted with a low-rank matrix?
- Linformer: Add low-rank linear projections into model (Wang et al. 2020)
- Nystromformer: Approximate using the Nystrom method, sampling "landmark" points (Xiong et al. 2021)

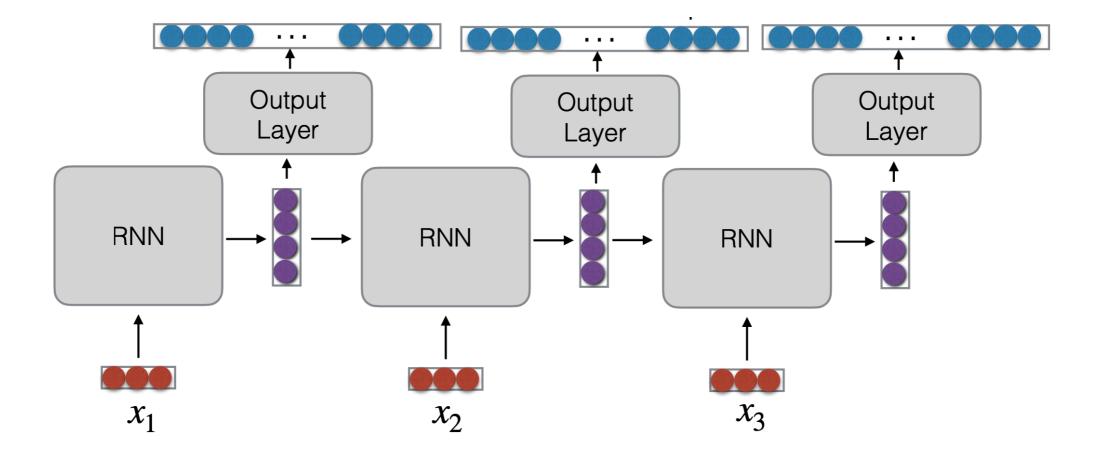


Today's lecture

- Long sequence modeling
- Improving transformers
- Transformer alternatives
 - State-space models

Reminder: RNNs

Lecture 4

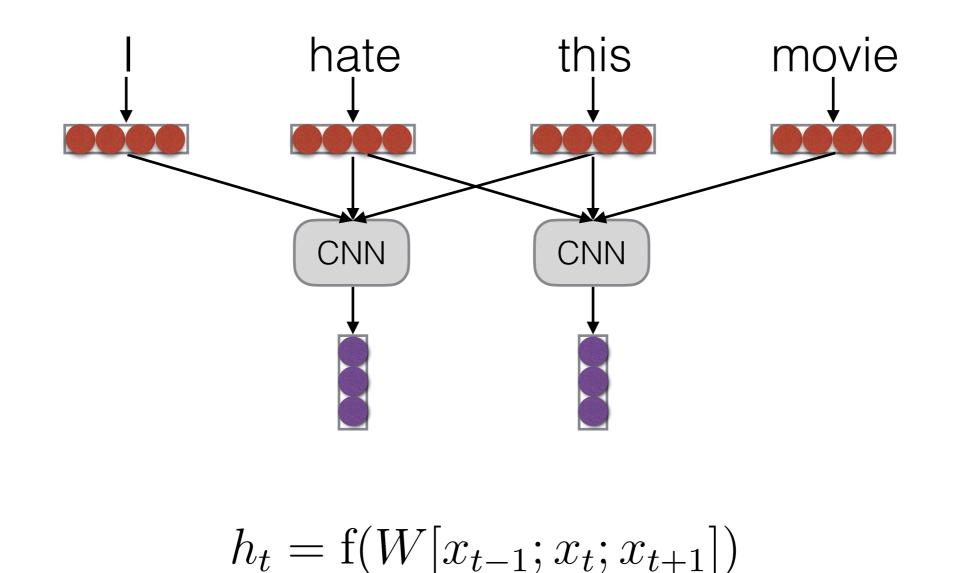


- Infinite context
- Memory-efficient inference (single hidden state)

• Hard to parallelize training

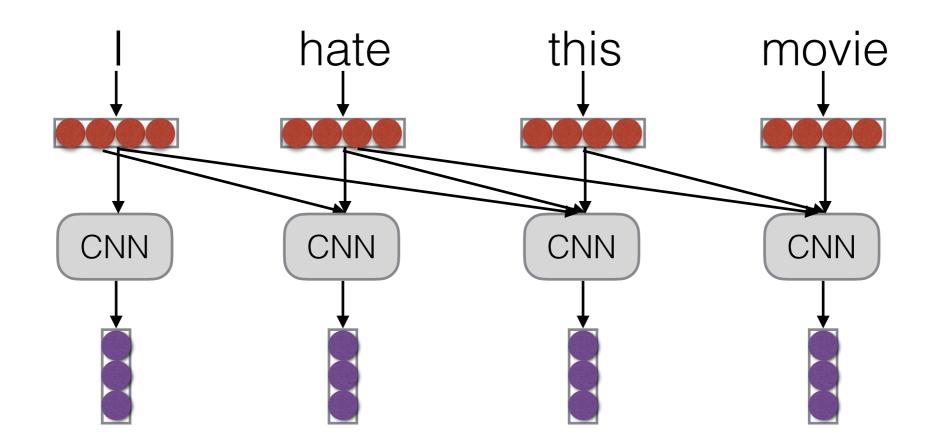
Convolution

Calculate based on local context



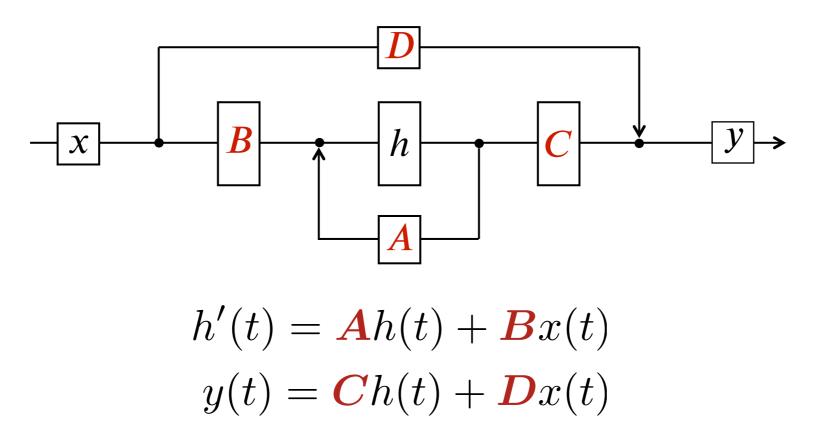
Convolution for Auto-regressive Models

• Functionally identical, just consider previous context



Structured State Space Models (Gu et al. 2021)

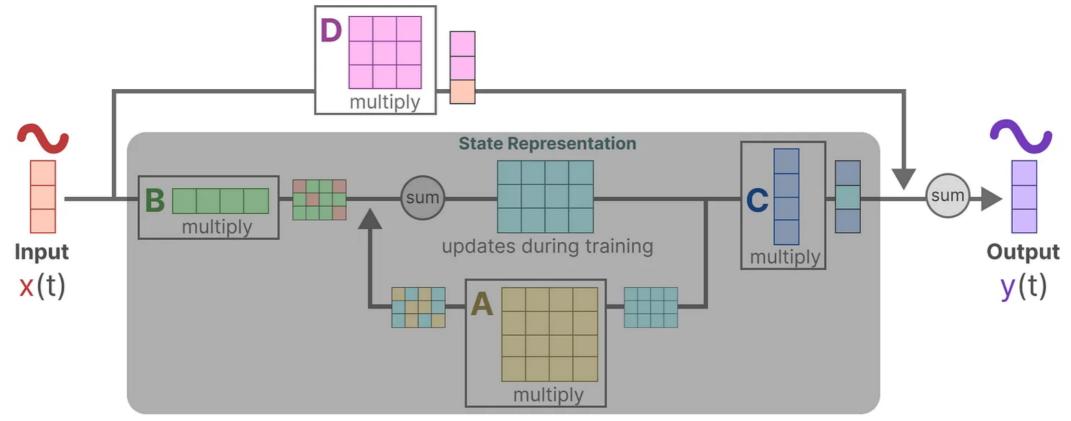
• Models that take a form like the following



 Key idea: we can compute h(t) in parallel (fast training), or compute h(t) like in an RNN (fast inference)

Slide Credit: Albert Gu

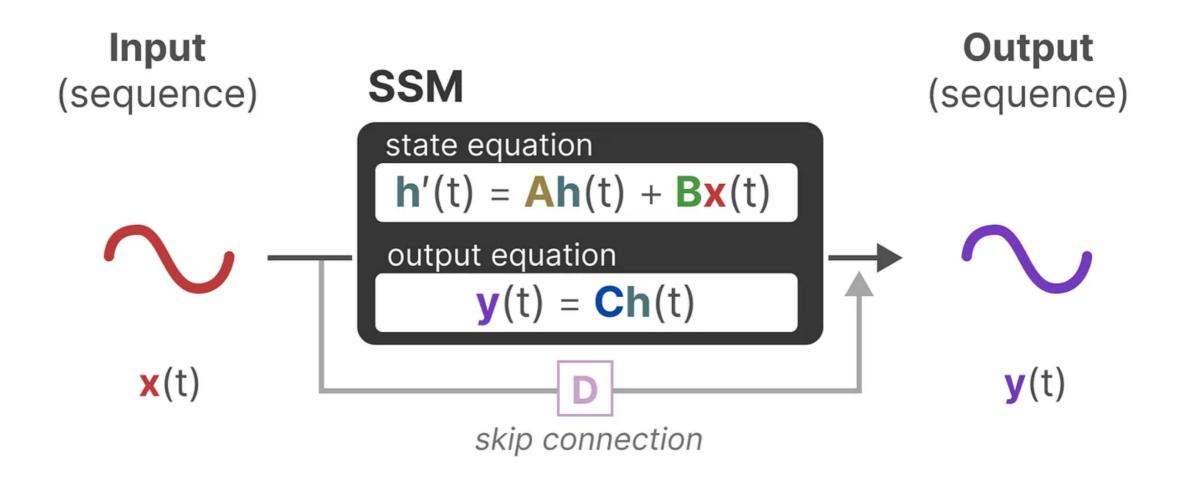
Structured State Space Models



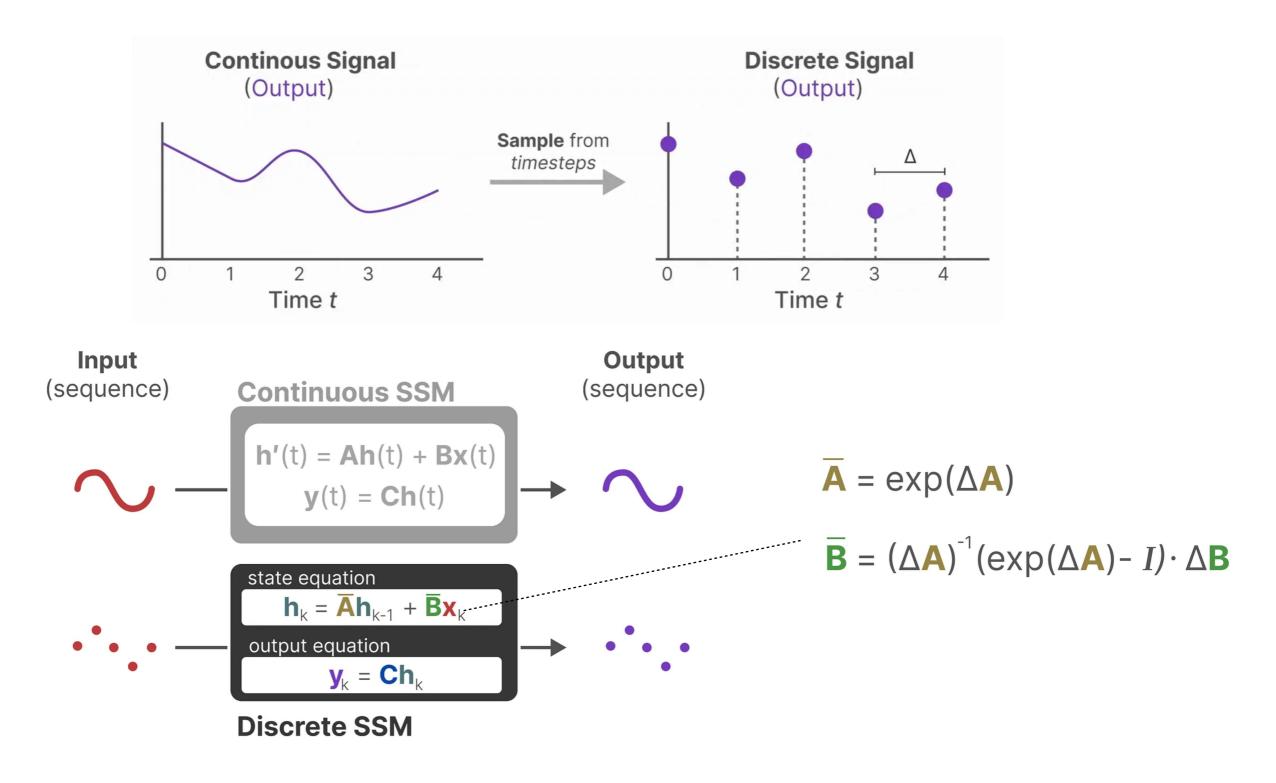
State Space Model

$$h'(t) = \mathbf{A}h(t) + \mathbf{B}x(t)$$
$$y(t) = \mathbf{C}h(t) + \mathbf{D}x(t)$$

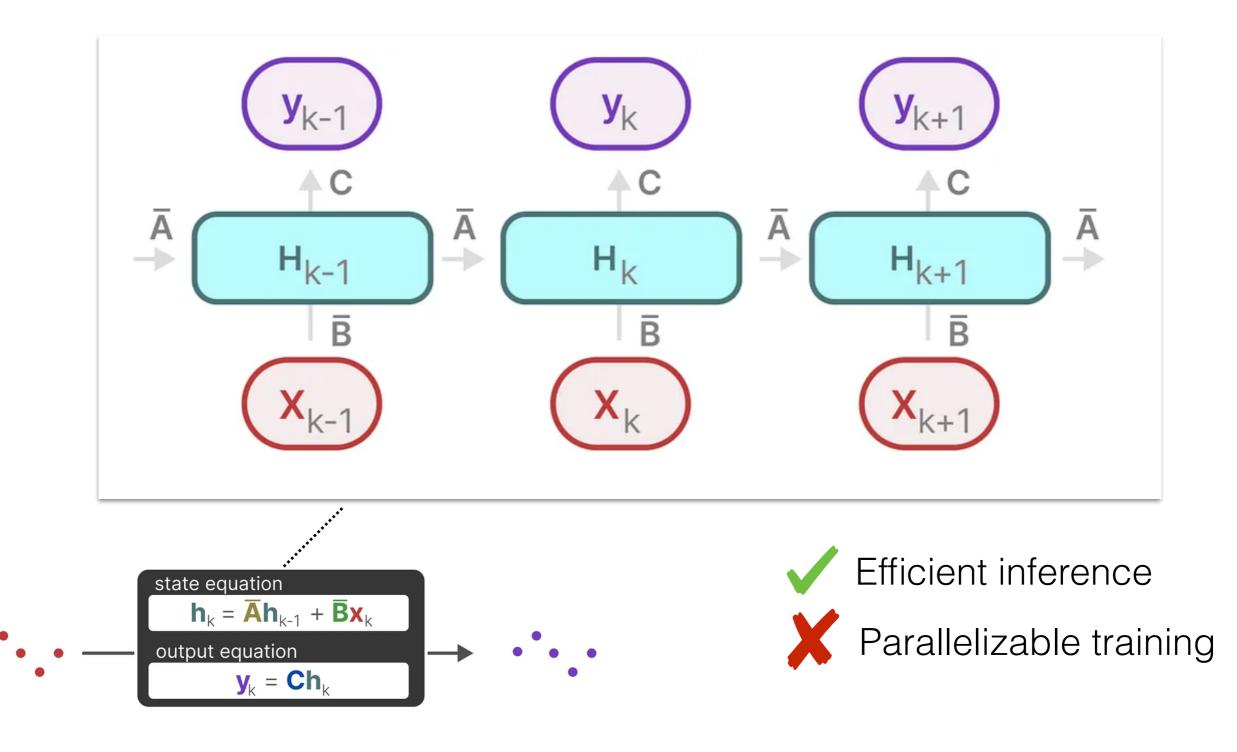
Structured State Space Models



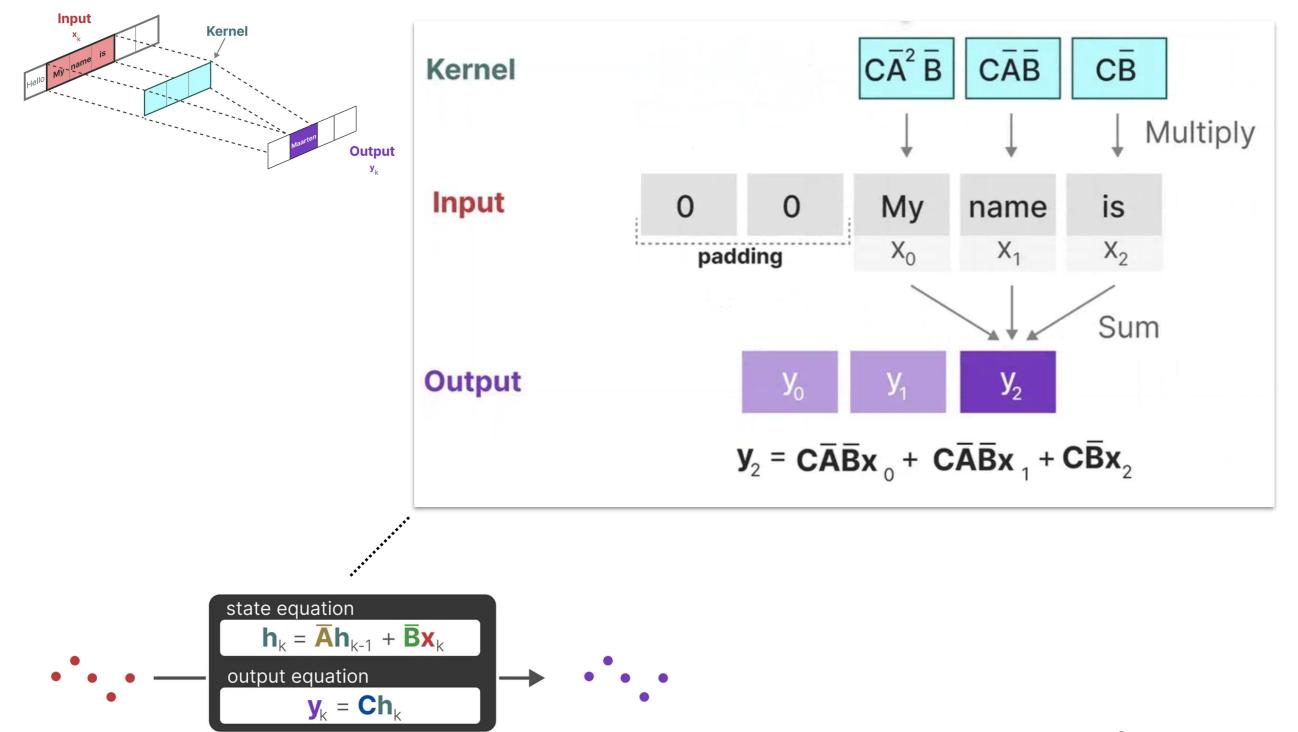
SSMs: Discretization



SSMs: Recurrent View



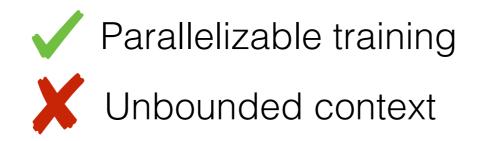
SSM: Convolution View



SSM: Convolution View

kernel
$$\rightarrow \overline{K} = (\overline{CB}, \overline{CAB}, ..., \overline{CAB}, ...)$$

 $y = x * \overline{K}$
output input kernel



SSM Variants

S4: Discrete SSM with a structured form of the recurrent update matrix *A* ("HiPPO") for better memory retention

•

•

Efficiently Modeling Long Sequences with Structured State Spaces

Albert Gu, Karan Goel, and Christopher Ré

Department of Computer Science, Stanford University

 ${\tt albertgu,krng} {\tt @stanford.edu, chrismre@cs.stanford.edu}$

Mamba: S4 + *selectively* retain information

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Albert Gu^{*^1} and Tri Dao^{*^2}

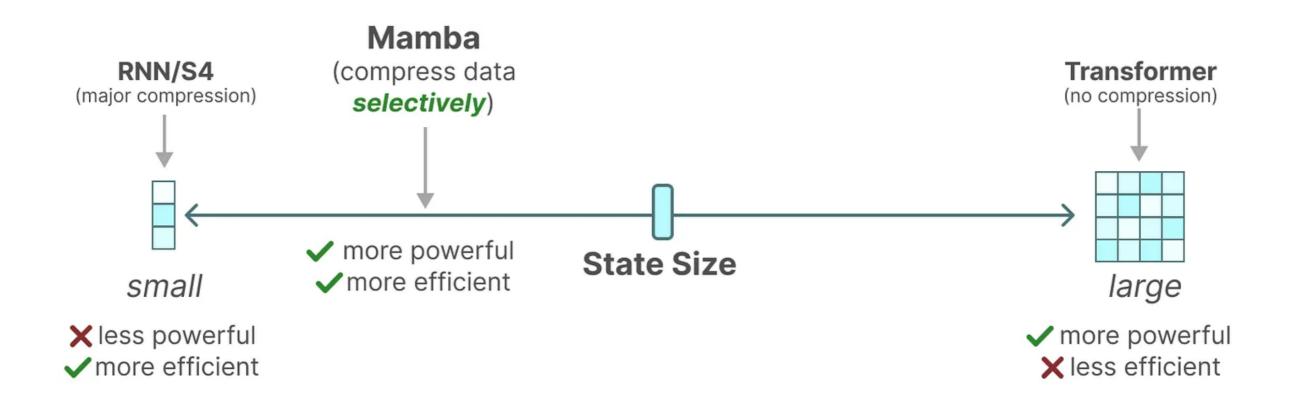
¹Machine Learning Department, Carnegie Mellon University ²Department of Computer Science, Princeton University agu@cs.cmu.edu, tri@tridao.me

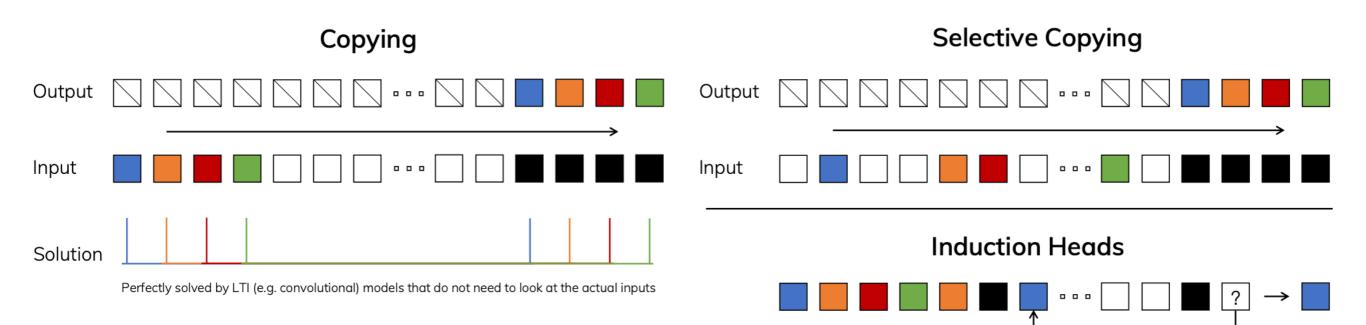
S4: SSM + Structured Matrix

S4: Discrete SSM with a structured form of the recurrent update matrix *A* ("HiPPO") for better memory retention

•

Algorithm 1 SSM (S4)Input: x : (B, L, D)Output: y : (B, L, D)1: $A : (D, N) \leftarrow$ Parameter> Represents structured $N \times N$ matrix2: $B : (D, N) \leftarrow$ Parameter3: $C : (D, N) \leftarrow$ Parameter3: $C : (D, N) \leftarrow$ Parameter4: $\Delta : (D) \leftarrow \tau_{\Delta}(Parameter)$ 5: $\overline{A}, \overline{B} : (D, N) \leftarrow$ discretize(Δ, A, B)6: $y \leftarrow$ SSM($\overline{A}, \overline{B}, C$)(x)> Time-invariant: recurrence or convolution7: return y





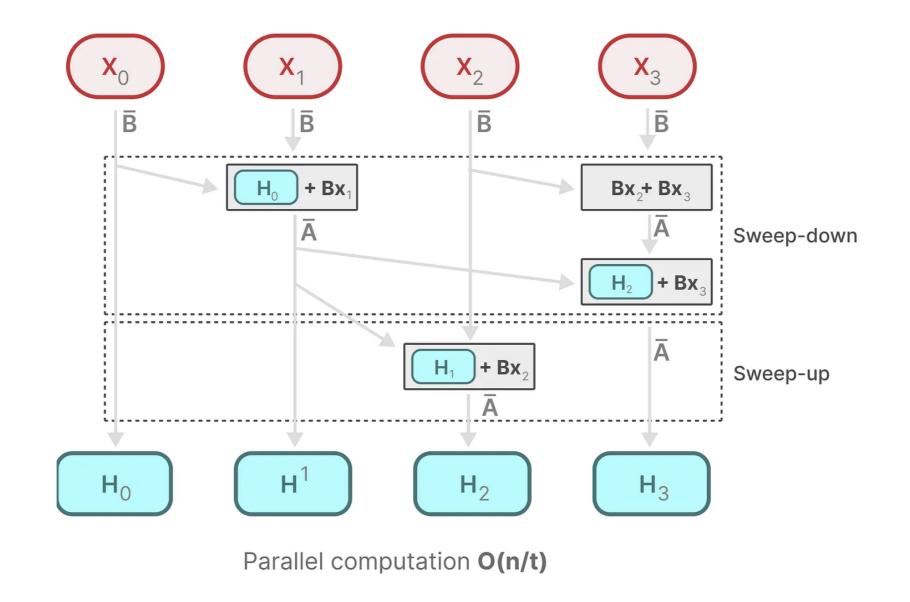
S6: S4 with time-varying parameters (B, C, Δ)

Algorithm 2 SSM + Selection (S6)

•

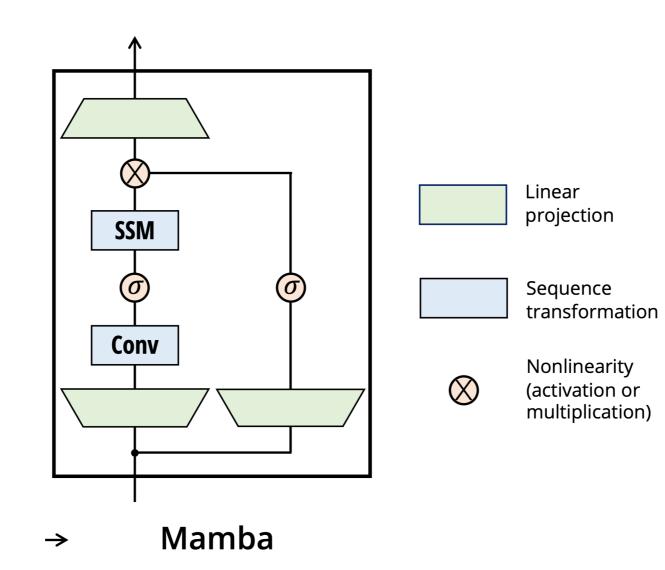
Input: x : (B, L, D)Output: y : (B, L, D)1: $A : (D, N) \leftarrow Parameter$ \triangleright Represents structured $N \times N$ matrix 2: $B : (B, L, N) \leftarrow s_B(x)$ 3: $C : (B, L, N) \leftarrow s_C(x)$ 4: $\Delta : (B, L, D) \leftarrow \tau_{\Delta}(Parameter + s_{\Delta}(x))$ 5: $\overline{A}, \overline{B} : (B, L, D, N) \leftarrow discretize(\Delta, A, B)$ 6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$ \triangleright Time-varying: recurrence (*scan*) only 7: return y

• Parallel scan algorithm due to sequential computation

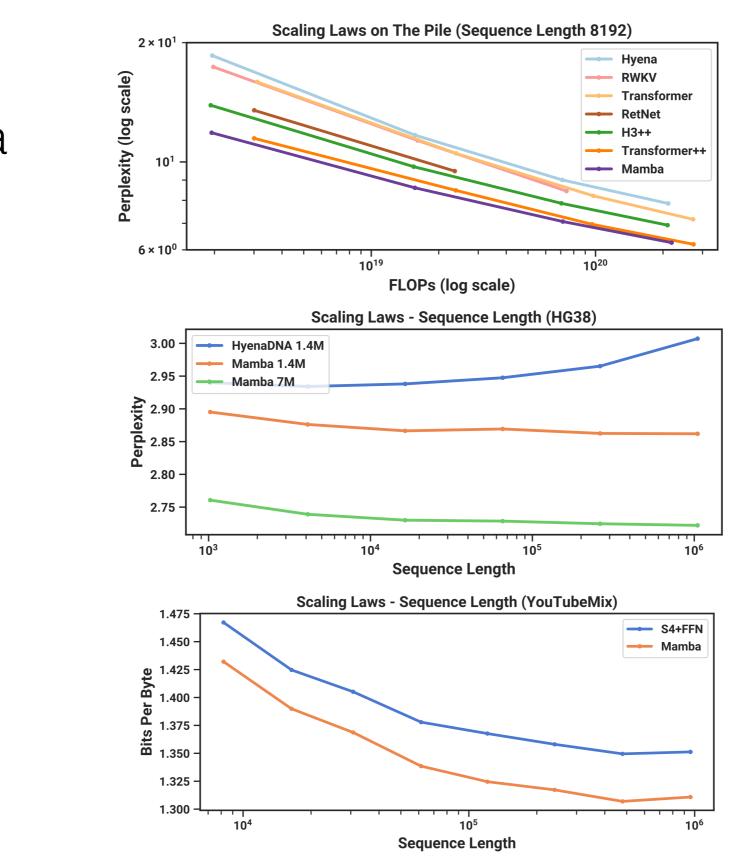


Mamba

• Block/layer that incorporates S6



Mamba



Text Data

Recap: SSMs

- Combine insights from recurrent models and convolutional models
 - Enables efficient training and inference
 - Scales linearly in sequence length

Recap: long context models

- Long sequence modeling
- Improving transformers
 - Memory efficient computation
 - Extrapolation: training and embeddings
- Transformer alternatives
 - State-space models

Questions?