
Advanced Inference Strategies

Sean Welleck | CMU Advanced NLP
March 25, 2025

Recap: Training and Inference

Training: use data and a loss to obtain a model pθ(y|x):

• Pre-training (Lecture #6)
• Post-training

• Fine-tuning (Lecture #9)
• Reinforcement learning (Lecture #11)

1

Recap: Training and Inference

Training scaling: improve performance with larger model and dataset

(Lecture #6)

Compute ∝ Model size × Data size

2

Recap: Training and Inference

Inference: generate outputs with a model and algorithm g(pθ, x):

• Decoding algorithms (Lecture #7)
• Sampling
• Optimization (e.g., beam search)

• Basic prompting patterns (Lecture #8)
• Chain-of-thought
• Prompt chains

• Today: advanced inference strategies

3

Recap: Training and Inference

Inference: generate outputs with a model and algorithm g(pθ, x):

• Decoding algorithms (Lecture #7)
• Sampling
• Optimization (e.g., beam search)

• Basic prompting patterns (Lecture #8)
• Chain-of-thought
• Prompt chains

• Today: advanced inference strategies

3

Recap: Training and Inference

Inference: generate outputs with a model and algorithm g(pθ, x):

• Decoding algorithms (Lecture #7)
• Sampling
• Optimization (e.g., beam search)

• Basic prompting patterns (Lecture #8)
• Chain-of-thought
• Prompt chains

• Today: advanced inference strategies

3

Training and Inference

Inference scaling: improve performance by generating more tokens

(This lecture)

Compute ∝ Model size × Generated tokens 4

Advanced inference strategies

1. Generate multiple times

5

Advanced inference strategies

1. Generate multiple times

6

Advanced inference strategies

1. Generate multiple times
2. Generate longer outputs

7

Advanced inference strategies

1. Generate multiple times
2. Generate longer outputs

8

Today’s lecture: Advanced inference strategies

1. Part 1: Generate multiple times
• Meta-generation: chain, parallel, refinement, tree search

2. Part 2: Generate longer outputs
• Long chain-of-thought

9

Today’s lecture: Advanced inference strategies

1. Part 1: Generate multiple times
• Meta-generation: chain, parallel, refinement, tree search

2. Part 2: Generate longer outputs
• Long chain-of-thought

10

Recap: generation and decoding algorithms

Generator: Generates a sequence with a language model.

• Example: calling an LLM API
• Decoding algorithms (Lecture #7)

• Greedy decoding
• Temperature sampling
• ...

y ∼ g(pθ, x;φ)

11

Meta-Generation Algorithm

Meta-generator: Strategies for calling a generator multiple times

• Example: call API multiple times, select the best sequence with a
separate model

y ∼ G(x,g; Φ)

12

Meta-Generation Algorithm

Meta-generator: Strategies for calling a generator multiple times

• Example: call API multiple times, select the best sequence with a
separate model

y ∼ G(x,g; Φ)

12

Meta-generators | outline

• Strategies
• Parallel
• Tree search
• Refinement/self-correction

13

Meta-generators | outline

• Strategies
• Parallel
• Tree search
• Refinement/self-correction

14

Meta-generators | parallel

• Generate candidates:

{y(1), . . . , y(N)} ∼ G(·|x)

• Aggregate:
y = h(y(1), . . . , y(N))

15

Parallel | Best-of-N1

argmax
{y(1),...,y(N)}

v(y)︸︷︷︸
reward model

1[Stiennon et al., 2020, Nakano et al., 2022]

16

Parallel | Best-of-N

Example: solve a math problem
17

Best-of-N

What if we had a perfect reward model v∗(y)?

18

Parallel | Best-of-N

Learned reward model v(y) → [0, 1] ≈ R(y):

Train reward model with correct and incorrect examples.2

Terminology: Reward model ≈ evaluator ≈ critic ≈ verifier ≈ value ≈ scoring model

2E.g., [Cobbe et al., 2021]

19

Parallel | Best-of-N

Learned reward model v(y) → [0, 1] ≈ R(y):

Train reward model with correct and incorrect examples.2

Terminology: Reward model ≈ evaluator ≈ critic ≈ verifier ≈ value ≈ scoring model

2E.g., [Cobbe et al., 2021]

19

Parallel | Best-of-N

Learned reward model v(y) → [0, 1] ≈ R(y):

Train reward model with preference data.2

2E.g., [Stiennon et al., 2020]

19

Parallel | Best-of-N

Why Best-of-N?

• Approximates maximum (true) reward:

Best-of-N = argmax
y∈{y(1),...,y(N)}

v(y)

≈ argmax
y

v(y) (1)

≈ argmax
y

R(y) (2)

(1) gets better as number of generations N increases!

(2) Suffers from imperfect reward model, aka “over-optimization”

20

Parallel | Best-of-N

Why Best-of-N?

• Approximates maximum (true) reward:

Best-of-N = argmax
y∈{y(1),...,y(N)}

v(y)

≈ argmax
y

v(y) (1)

≈ argmax
y

R(y) (2)

(1) gets better as number of generations N increases!

(2) Suffers from imperfect reward model, aka “over-optimization”

20

Parallel | Best-of-N

Why Best-of-N?

• Approximates maximum (true) reward:

Best-of-N = argmax
y∈{y(1),...,y(N)}

v(y)

≈ argmax
y

v(y) (1)

≈ argmax
y

R(y) (2)

(1) gets better as number of generations N increases!

(2) Suffers from imperfect reward model, aka “over-optimization”

20

Parallel | Best-of-N3

3Plot adapted from Training Verifiers to Solve Math Word Problems [Cobbe et al., 2021] 21

Parallel | voting

Voting aggregation:4

argmax
a

N∑
i=1

1{y(i) = a},

4Also called self-consistency [Wang et al., 2023]

22

Parallel | weighted voting5

Weighted Voting:

argmax
a

N∑
i=1

v(y(i))︸ ︷︷ ︸
reward model

·1{y(i) = a},

5[Li et al., 2023]

23

Parallel | voting

Can outperform Best-of-N, e.g.:6

6[Sun et al., 2024] Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision.

24

Parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...7

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z,a)g(z,a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Notation:

• (x, z, a): (input, solution, answer)
• M: number of test examples

7Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.

25

Parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...7

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z,a)g(z,a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Takeaway 1: Will accuracy keep improving with more samples?

• No, it eventually converges to the accuracy shown above

7Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.

25

Parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...7

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z,a)g(z,a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Takeaway 2: When is weighted voting better than voting?

• When v · g assigns more total mass to correct answers than g

7Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.

25

Parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...7

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z,a)g(z,a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Takeaway 3: How do we improve performance further?

• Improve the reward model v
• Improve the generator g (better model and/or better algorithm)

7Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.

25

Parallel

Improve the reward model:

Parallel generation in the reward model too8

Active area of research!

8[Zhang et al., 2024]

26

Meta-generation strategies | parallel

Parallel

• Explores output space by generating full sequences
• Large performance gains in practice
• Bounded by the quality of the evaluator and generator

Insight: only uses the verifier at the end (on full sequences)

• Next: Can we better leverage intermediate evaluation?

27

Meta-generation strategies | parallel

Parallel

• Explores output space by generating full sequences
• Large performance gains in practice
• Bounded by the quality of the evaluator and generator

Insight: only uses the verifier at the end (on full sequences)

• Next: Can we better leverage intermediate evaluation?

27

Strategies

• Strategies
• Parallel
• Tree search
• Refinement

28

Tree search | basic idea

Design choices:

• States s
• Transitions s→ s′

• Scores v(s)
• Strategy (breadth-first, depth-first, ...)

29

Tree search | basic idea

Design choices:

• States s
• Transitions s→ s′

• Scores v(s)
• Strategy (breadth-first, depth-first, ...)

29

Tree search | example

1. Scores: “process reward model (PRM)”9

v(x, s1, s2, . . . , st) → [0, 1]

9[Uesato et al., 2022, Lightman et al., 2024, Wang et al., 2024a]

30

Tree search | example (Rebase)

2. Reward Balanced Search (Rebase)10

explorei = Round
(
Budget exp (v(si)/τ)∑

j exp (v(sj)/τ)

)
, (3)

10[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.

31

Tree search | example

Run tree search to get candidates for aggregation (e.g., voting).

• Key idea: Leverages scores on intermediate states
• Backtracking
• Exploration

32

Tree search | examples11

11[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference. 33

Tree search | examples

Formal theorem proving [Polu and Sutskever, 2020]

34

Tree search | examples

Best-first search in formal theorem proving

35

Tree search | examples

Best-first search in web agents [Koh et al., 2024]

36

Meta-generation strategies | Tree search

Tree-search

• Can backtrack and explore using intermediate scores
• Requires a suitable environment and value function

• Decomposition into states
• Good reward signal

37

Strategies

• Strategies
• Parallel
• Tree search
• Refinement

38

Refinement / self-correction

Improve a generation

Repeat:

• y(i+1) ∼ g(x, y(i))

39

Refinement / self-correction

Improve a generation using feedback

Repeat:

• y(i+1) ∼ g(x, y(i), F(y(i)))

39

Refinement / self-correction

Improve a generation using feedback

39

Meta-generators | refinement

In practice, the quality and source of feedback is crucial:

• Extrinsic: external information at inference time
• Intrinsic: no external information at inference time

40

Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Feedback: external program verifier12

12 [Aggarwal et al., 2024], AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.
41

Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.

41

Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Several success cases:

• Verifiers [Aggarwal et al., 2024]

• Code interpreters [Chen et al., 2024]
• Retrievers [Asai et al., 2024]

• Tools + agent environment12

• ...

Intuition: adds new information, can detect and localize errors

12https://x.com/gneubig/status/1866172948991615177

41

https://x.com/gneubig/status/1866172948991615177

Meta-generators | refinement | intrinsic

2. Intrinsic: Re-prompt the same model:

Re-prompt a single LLM, e.g. [Madaan et al., 2023]

42

Meta-generators | refinement | intrinsic

Mixed results:

• Easy to evaluate tasks: positive [Wang et al., 2024b]
• E.g., missing info [Asai et al., 2024]

• Mathematical reasoning: mixed13

13E.g., [Huang et al., 2024] Large Language Models Cannot Self-Correct Reasoning Yet

42

Meta-generators | refinement | intrinsic

Takeaway: feedback is too noisy From [Huang et al., 2024]

42

Meta-generators | refinement

Generate “TAYLORSWIFT”
• Generator:

• p(character)

• Feedback:
• Incorrect characters

• Corrector:
• Regenerate incorrect

43

Meta-generators | refinement / self-correction

Refinement / self-correction

• Extrinsic
• Positive results for environments that detect or localize errors

• Intrinsic
• Mixed results, depends on difficulty of verification

44

Meta-generators | outline

• Strategies
• Parallel
• Tree search
• Refinement

• Inference scaling laws

45

Pre-training scaling laws

Recap: pre-training scaling laws (Lecture #6)

1. (Model size, # training
tokens): blue

2. Compute optimal: black
3. Scaling law: orange

46

Inference scaling laws

Compute is a function of model size and number of generated tokens

47

Meta-generation | inference scaling laws

We can choose to increase model size or number of tokens

48

Meta-generation | inference scaling laws

49

Meta-generation | how do we choose a meta-generator?

Using a smaller model and generating more is often best [Wu et al., 2024b]. 50

Inference scaling laws

Designing better strategies

• Example: design a better tree search [Wu et al., 2024b]
• Example: select inference strategy based on problem
difficulty [Snell et al., 2024]

51

Inference scaling laws | recap

• When allocated optimally, performance improves with compute
• Best model size and strategy varies with the budget

• Sometimes smaller models are better!

52

Meta-generation | recap

• Strategies for generating multiple sequences
• Parallel, tree search, refinement
• Choose methods based on task performance and cost

53

Today’s lecture

1. Part 1: Generating multiple sequences

2. Part 2: Generating a single long sequence
• Long chain-of-thought

54

Basic idea

• Train a model to generate a “thought” prior to a final output

pθ(y︸︷︷︸
“output”

, z︸︷︷︸
“thought”

|x)

• At inference time, just sample a thought+output
• In principle, the model can learn to try alternatives, perform
refinement, backtrack within the thought

55

Training for long chain-of-thought

• Approach 1: reinforcement learning
• Policy: given a math problem x, generate a thought + answer
• Reward: is the answer correct

56

Training for long chain-of-thought

Accuracy improves during training Response length increases to > 10,000

57

Training for long chain-of-thought

Example response

58

Long chain-of-thought patterns Credits: Weihua Du

1. Uncertainty
• Wait... / Hold on...
• Wait–actually, does this formula apply here?

2. Branching, backtracking, retrying
• Alternatively, generating functions could model this problem...
• Revisiting...
• Wait, I’m overthinking. Let’s try again...

3. Verification
• Let’s check if we made an error. We should verify...
• This is a contradiction, so we must have made a mistake.
• Let’s test this with...

4. Key Points
• Key takeaway... / It’s worth noting...

5. Clarification
• In other words... / To clarify...

6. Synthesis
• Ultimately... / Putting it all together...

59

Controlling the length: budget forcing [Muennighoff et al., 2025]

• Adhere to a length budget by
forcing the model to generate
“Wait” or “Final answer”

• Trade off tokens and
performance

[Muennighoff et al., 2025]

60

Controlling the length: L1 [Aggarwal and Welleck, 2025]

• Train model with
reinforcement learning to
adhere to length constraints

• E.g. “use up to 2000 tokens”
provided in the prompt

• Reward: correctness and
length constraint penalty

[Aggarwal and Welleck, 2025]

61

Long chain-of-thought | sequential vs. parallel

• Sequential: long
chain-of-thought

• Parallel: majority voting
(multiple long COTs)

[Aggarwal and Welleck, 2025]

62

Part 2 recap

• Train a model to generate a long sequence, then use a simple
inference algorithm

• Internally can perform backtracking, self-correction, etc.
• Emerging area of research!

63

Today’s lecture | recap

1. Inference strategies take a trained model and improve
performance by:

• Generating tokens according to a strategy
• Incorporate external information

• Reward models
• Environment feedback

2. Two complementary strategies
• Call a generator multiple times

• Meta-generation: parallel, tree search, refinement
• Call a generator once to generate a long output

• Long chain-of-thought

Very active and evolving research area!

64

Today’s lecture | recap

1. Inference strategies take a trained model and improve
performance by:

• Generating tokens according to a strategy
• Incorporate external information

• Reward models
• Environment feedback

2. Two complementary strategies
• Call a generator multiple times

• Meta-generation: parallel, tree search, refinement
• Call a generator once to generate a long output

• Long chain-of-thought

Very active and evolving research area!

64

Appendix

Meta-generators | parallel | pairwise

Pairwise: Minimum Bayes Risk

MBR(g, v,N) = argmax
y∈{y(1),...,y(N)}

1
N

N∑
i=1

v(y, y(i))︸ ︷︷ ︸
≈Ey′∼p[v(y,y′)]

,

where {y(1), . . . , y(N)} ∼ g and v(y, y′) is a “utility” function.

Intuitively, selects the candidate with the highest “consensus” utility.

65

Meta-generators | parallel | pairwise

Pairwise: Minimum Bayes Risk

MBR(g, v,N) = argmax
y∈{y(1),...,y(N)}

1
N

N∑
i=1

v(y, y(i))︸ ︷︷ ︸
≈Ey′∼p[v(y,y′)]

,

where {y(1), . . . , y(N)} ∼ g and v(y, y′) is a “utility” function.

Intuitively, selects the candidate with the highest “consensus” utility.

65

Meta-generators | parallel | pairwise13

Utility: LLM(y, y(i)) → {1, 2, 3, 4, 5}:

Models
30

40

50

Al
pa
ca
Ev
al
2.0

w
in
ra
te
(%
) Beam Search

BoN (LLM utility)
MBR (Rouge)

MBR (LLM utility)

13Example from [Wu et al., 2024a] (Llama 3 70B). Utility: Prometheus 2 [Kim et al., 2024]. 66

Meta-generators | parallel | connecting MBR and voting

Weighted voting is an instance of Minimum Bayes Risk:14

v(y, y(i))︸ ︷︷ ︸
utility

= 1
[
a = a(i)

]
︸ ︷︷ ︸
same answer

· v(y(i))︸ ︷︷ ︸
sequence score

, (4)

where y = (z,a), y(i) = (z(i),a(i)).

14[Bertsch et al., 2023] It’s MBR All the Way Down: Modern Generation Techniques Through the Lens
of Minimum Bayes Risk. A. Bertsch, A. Xie, G. Neubig, M. Gormley.

67

References i

Aggarwal, P., Parno, B., and Welleck, S. (2024).
Alphaverus: Bootstrapping formally verified code generation
through self-improving translation and treefinement.
https://arxiv.org/abs/2412.06176.

Aggarwal, P. and Welleck, S. (2025).
L1: Controlling how long a reasoning model thinks with
reinforcement learning.
https://arxiv.org/abs/2503.04697.

68

https://arxiv.org/abs/2412.06176
https://arxiv.org/abs/2503.04697

References ii

Asai, A., He*, J., Shao*, R., Shi, W., Singh, A., Chang, J. C., Lo, K.,
Soldaini, L., Feldman, Tian, S., Mike, D., Wadden, D., Latzke, M.,
Minyang, Ji, P., Liu, S., Tong, H., Wu, B., Xiong, Y., Zettlemoyer, L.,
Weld, D., Neubig, G., Downey, D., Yih, W.-t., Koh, P. W., and
Hajishirzi, H. (2024).
OpenScholar: Synthesizing scientific literature with
retrieval-augmented language models.
Arxiv.
Bertsch, A., Xie, A., Neubig, G., and Gormley, M. (2023).
It’s MBR all the way down: Modern generation techniques
through the lens of minimum Bayes risk.
In Elazar, Y., Ettinger, A., Kassner, N., Ruder, S., and A. Smith, N.,
editors, Proceedings of the Big Picture Workshop, pages 108–122,
Singapore. Association for Computational Linguistics.

69

References iii

Chen, X., Lin, M., Schärli, N., and Zhou, D. (2024).
Teaching large language models to self-debug.
In The Twelfth International Conference on Learning
Representations.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L.,
Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., and
Schulman, J. (2021).
Training verifiers to solve math word problems.
https://arxiv.org/abs/2110.14168.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu, A. W., Song, X., and
Zhou, D. (2024).
Large language models cannot self-correct reasoning yet.
In The Twelfth International Conference on Learning
Representations.

70

https://arxiv.org/abs/2110.14168

References iv

Kim, S., Suk, J., Longpre, S., Lin, B. Y., Shin, J., Welleck, S., Neubig, G.,
Lee, M., Lee, K., and Seo, M. (2024).
Prometheus 2: An open source language model specialized in
evaluating other language models.
https://arxiv.org/abs/2405.01535.

Koh, J. Y., McAleer, S., Fried, D., and Salakhutdinov, R. (2024).
Tree search for language model agents.
arXiv preprint arXiv:2407.01476.

Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., and Chen, W.
(2023).
Making language models better reasoners with step-aware
verifier.
In Rogers, A., Boyd-Graber, J., and Okazaki, N., editors,
Proceedings of the 61st Annual Meeting of the Association for

71

https://arxiv.org/abs/2405.01535

References v

Computational Linguistics (Volume 1: Long Papers), pages
5315–5333, Toronto, Canada. Association for Computational
Linguistics.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T.,
Leike, J., Schulman, J., Sutskever, I., and Cobbe, K. (2024).
Let’s verify step by step.
In The Twelfth International Conference on Learning
Representations.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe,
S., Alon, U., Dziri, N., Prabhumoye, S., Yang, Y., Gupta, S., Majumder,
B. P., Hermann, K., Welleck, S., Yazdanbakhsh, A., and Clark, P.
(2023).
Self-refine: Iterative refinement with self-feedback.

72

References vi

In Thirty-seventh Conference on Neural Information Processing
Systems.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L., Hajishirzi, H.,
Zettlemoyer, L., Liang, P., Candès, E., and Hashimoto, T. (2025).
s1: Simple test-time scaling.
https://arxiv.org/abs/2501.19393.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C.,
Jain, S., Kosaraju, V., Saunders, W., Jiang, X., Cobbe, K., Eloundou,
T., Krueger, G., Button, K., Knight, M., Chess, B., and Schulman, J.
(2022).
Webgpt: Browser-assisted question-answering with human
feedback.
https://arxiv.org/abs/2112.09332.

73

https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2112.09332

References vii

Polu, S. and Sutskever, I. (2020).
Generative language modeling for automated theorem proving.

Snell, C., Lee, J., Xu, K., and Kumar, A. (2024).
Scaling llm test-time compute optimally can be more effective
than scaling model parameters.
https://arxiv.org/abs/2408.03314.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R., Voss, C.,
Radford, A., Amodei, D., and Christiano, P. F. (2020).
Learning to summarize with human feedback.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.,
editors, Advances in Neural Information Processing Systems,
volume 33, pages 3008–3021. Curran Associates, Inc.

74

https://arxiv.org/abs/2408.03314

References viii

Sun, Z., Yu, L., Shen, Y., Liu, W., Yang, Y., Welleck, S., and Gan, C.
(2024).
Easy-to-hard generalization: Scalable alignment beyond human
supervision.
In The Thirty-eighth Annual Conference on Neural Information
Processing Systems.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N., Wang, L.,
Creswell, A., Irving, G., and Higgins, I. (2022).
Solving math word problems with process- and outcome-based
feedback.

75

References ix

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D., Wu, Y., and
Sui, Z. (2024a).
Math-shepherd: Verify and reinforce LLMs step-by-step without
human annotations.
In Ku, L.-W., Martins, A., and Srikumar, V., editors, Proceedings of
the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9426–9439, Bangkok,
Thailand. Association for Computational Linguistics.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi, E. H., Narang, S.,
Chowdhery, A., and Zhou, D. (2023).
Self-consistency improves chain of thought reasoning in
language models.
In The Eleventh International Conference on Learning
Representations.

76

References x

Wang, Y., Wu, Y., Wei, Z., Jegelka, S., and Wang, Y. (2024b).
A theoretical understanding of self-correction through
in-context alignment.
https://arxiv.org/abs/2405.18634.

Wu, I., Fernandes, P., Bertsch, A., Kim, S., Pakazad, S., and Neubig,
G. (2024a).
Better instruction-following through minimum bayes risk.
https://arxiv.org/abs/2410.02902.

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. (2024b).
Inference scaling laws: An empirical analysis of
compute-optimal inference for problem-solving with language
models.
https://arxiv.org/abs/2408.00724.

77

https://arxiv.org/abs/2405.18634
https://arxiv.org/abs/2410.02902
https://arxiv.org/abs/2408.00724

References xi

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Kumar, A., and
Agarwal, R. (2024).
Generative verifiers: Reward modeling as next-token prediction.

78

	Appendix

