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Recap: Training and Inference

Training: use data and a loss to obtain a model pθ(y|x):

• Pre-training (Lecture #6)
• Post-training

• Fine-tuning (Lecture #9)
• Reinforcement learning (Lecture #11)
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Recap: Training and Inference

Training scaling: improve performance with larger model and dataset

(Lecture #6)

Compute ∝ Model size × Data size
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Recap: Training and Inference

Inference: generate outputs with a model and algorithm g(pθ, x):

• Decoding algorithms (Lecture #7)
• Sampling
• Optimization (e.g., beam search)

• Basic prompting patterns (Lecture #8)
• Chain-of-thought
• Prompt chains

• Today: advanced inference strategies
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Training and Inference

Inference scaling: improve performance by generating more tokens

(This lecture)

Compute ∝ Model size × Generated tokens 4



Advanced inference strategies

1. Generate multiple times
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Advanced inference strategies

1. Generate multiple times
2. Generate longer outputs
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Advanced inference strategies

1. Generate multiple times
2. Generate longer outputs
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Today’s lecture: Advanced inference strategies

1. Part 1: Generate multiple times
• Meta-generation: chain, parallel, refinement, tree search

2. Part 2: Generate longer outputs
• Long chain-of-thought
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Today’s lecture: Advanced inference strategies

1. Part 1: Generate multiple times
• Meta-generation: chain, parallel, refinement, tree search

2. Part 2: Generate longer outputs
• Long chain-of-thought

10



Recap: generation and decoding algorithms

Generator: Generates a sequence with a language model.

• Example: calling an LLM API
• Decoding algorithms (Lecture #7)

• Greedy decoding
• Temperature sampling
• ...

y ∼ g(pθ, x;φ)
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Meta-Generation Algorithm

Meta-generator: Strategies for calling a generator multiple times

• Example: call API multiple times, select the best sequence with a
separate model

y ∼ G(x,g; Φ)

12
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Meta-generator: Strategies for calling a generator multiple times

• Example: call API multiple times, select the best sequence with a
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Meta-generators | outline

• Strategies
• Parallel
• Tree search
• Refinement/self-correction
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• Parallel
• Tree search
• Refinement/self-correction
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Meta-generators | parallel

• Generate candidates:

{y(1), . . . , y(N)} ∼ G(·|x)

• Aggregate:
y = h(y(1), . . . , y(N))
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Parallel | Best-of-N1

argmax
{y(1),...,y(N)}

v(y)︸︷︷︸
reward model

1[Stiennon et al., 2020, Nakano et al., 2022]
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Parallel | Best-of-N

Example: solve a math problem
17



Best-of-N

What if we had a perfect reward model v∗(y)?
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Parallel | Best-of-N

Learned reward model v(y) → [0, 1] ≈ R(y):

Train reward model with correct and incorrect examples.2

Terminology: Reward model ≈ evaluator ≈ critic ≈ verifier ≈ value ≈ scoring model

2E.g., [Cobbe et al., 2021]
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Parallel | Best-of-N

Learned reward model v(y) → [0, 1] ≈ R(y):

Train reward model with preference data.2

2E.g., [Stiennon et al., 2020]
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Parallel | Best-of-N

Why Best-of-N?

• Approximates maximum (true) reward:

Best-of-N = argmax
y∈{y(1),...,y(N)}

v(y)

≈ argmax
y

v(y) (1)

≈ argmax
y

R(y) (2)

(1) gets better as number of generations N increases!

(2) Suffers from imperfect reward model, aka “over-optimization”
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Parallel | Best-of-N3

3Plot adapted from Training Verifiers to Solve Math Word Problems [Cobbe et al., 2021] 21



Parallel | voting

Voting aggregation:4

argmax
a

N∑
i=1

1{y(i) = a},

4Also called self-consistency [Wang et al., 2023]
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Parallel | weighted voting5

Weighted Voting:

argmax
a

N∑
i=1

v(y(i))︸ ︷︷ ︸
reward model

·1{y(i) = a},

5[Li et al., 2023]
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Parallel | voting

Can outperform Best-of-N, e.g.:6

6[Sun et al., 2024] Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision.
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Parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...7

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z,a)g(z,a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Notation:

• (x, z, a): (input, solution, answer)
• M: number of test examples

7Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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As the number of candidates N→ ∞, voting accuracy converges to...7

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z,a)g(z,a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Takeaway 1: Will accuracy keep improving with more samples?

• No, it eventually converges to the accuracy shown above

7Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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As the number of candidates N→ ∞, voting accuracy converges to...7

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z,a)g(z,a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Takeaway 2: When is weighted voting better than voting?

• When v · g assigns more total mass to correct answers than g

7Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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Parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...7

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z,a)g(z,a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Takeaway 3: How do we improve performance further?

• Improve the reward model v
• Improve the generator g (better model and/or better algorithm)

7Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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Parallel

Improve the reward model:

Parallel generation in the reward model too8

Active area of research!

8[Zhang et al., 2024]
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Meta-generation strategies | parallel

Parallel

• Explores output space by generating full sequences
• Large performance gains in practice
• Bounded by the quality of the evaluator and generator

Insight: only uses the verifier at the end (on full sequences)

• Next: Can we better leverage intermediate evaluation?

27
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Strategies

• Strategies
• Parallel
• Tree search
• Refinement

28



Tree search | basic idea

Design choices:

• States s
• Transitions s→ s′

• Scores v(s)
• Strategy (breadth-first, depth-first, ...)
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• States s
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Tree search | example

1. Scores: “process reward model (PRM)”9

v(x, s1, s2, . . . , st) → [0, 1]

9[Uesato et al., 2022, Lightman et al., 2024, Wang et al., 2024a]
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Tree search | example (Rebase)

2. Reward Balanced Search (Rebase)10

explorei = Round
(
Budget exp (v(si)/τ)∑

j exp (v(sj)/τ)

)
, (3)

10[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.
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Tree search | example

Run tree search to get candidates for aggregation (e.g., voting).

• Key idea: Leverages scores on intermediate states
• Backtracking
• Exploration

32



Tree search | examples11

11[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference. 33



Tree search | examples

Formal theorem proving [Polu and Sutskever, 2020]
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Tree search | examples

Best-first search in formal theorem proving
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Tree search | examples

Best-first search in web agents [Koh et al., 2024]
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Meta-generation strategies | Tree search

Tree-search

• Can backtrack and explore using intermediate scores
• Requires a suitable environment and value function

• Decomposition into states
• Good reward signal

37



Strategies

• Strategies
• Parallel
• Tree search
• Refinement

38



Refinement / self-correction

Improve a generation

Repeat:

• y(i+1) ∼ g(x, y(i))
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Refinement / self-correction

Improve a generation using feedback

Repeat:

• y(i+1) ∼ g(x, y(i), F(y(i)))
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Refinement / self-correction

Improve a generation using feedback
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Meta-generators | refinement

In practice, the quality and source of feedback is crucial:

• Extrinsic: external information at inference time
• Intrinsic: no external information at inference time

40



Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Feedback: external program verifier12

12 [Aggarwal et al., 2024], AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.
41



Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.
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Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Several success cases:

• Verifiers [Aggarwal et al., 2024]

• Code interpreters [Chen et al., 2024]
• Retrievers [Asai et al., 2024]

• Tools + agent environment12

• ...

Intuition: adds new information, can detect and localize errors

12https://x.com/gneubig/status/1866172948991615177
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Meta-generators | refinement | intrinsic

2. Intrinsic: Re-prompt the same model:

Re-prompt a single LLM, e.g. [Madaan et al., 2023]
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Meta-generators | refinement | intrinsic

Mixed results:

• Easy to evaluate tasks: positive [Wang et al., 2024b]
• E.g., missing info [Asai et al., 2024]

• Mathematical reasoning: mixed13

13E.g., [Huang et al., 2024] Large Language Models Cannot Self-Correct Reasoning Yet
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Meta-generators | refinement | intrinsic

Takeaway: feedback is too noisy From [Huang et al., 2024]
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Meta-generators | refinement

Generate “TAYLORSWIFT”
• Generator:

• p(character)

• Feedback:
• Incorrect characters

• Corrector:
• Regenerate incorrect

43



Meta-generators | refinement / self-correction

Refinement / self-correction

• Extrinsic
• Positive results for environments that detect or localize errors

• Intrinsic
• Mixed results, depends on difficulty of verification
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Meta-generators | outline

• Strategies
• Parallel
• Tree search
• Refinement

• Inference scaling laws
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Pre-training scaling laws

Recap: pre-training scaling laws (Lecture #6)

1. (Model size, # training
tokens): blue

2. Compute optimal: black
3. Scaling law: orange

46



Inference scaling laws

Compute is a function of model size and number of generated tokens

47



Meta-generation | inference scaling laws

We can choose to increase model size or number of tokens

48



Meta-generation | inference scaling laws
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Meta-generation | how do we choose a meta-generator?

Using a smaller model and generating more is often best [Wu et al., 2024b]. 50



Inference scaling laws

Designing better strategies

• Example: design a better tree search [Wu et al., 2024b]
• Example: select inference strategy based on problem
difficulty [Snell et al., 2024]
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Inference scaling laws | recap

• When allocated optimally, performance improves with compute
• Best model size and strategy varies with the budget

• Sometimes smaller models are better!
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Meta-generation | recap

• Strategies for generating multiple sequences
• Parallel, tree search, refinement
• Choose methods based on task performance and cost
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Today’s lecture

1. Part 1: Generating multiple sequences

2. Part 2: Generating a single long sequence
• Long chain-of-thought
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Basic idea

• Train a model to generate a “thought” prior to a final output

pθ( y︸︷︷︸
“output”

, z︸︷︷︸
“thought”

|x)

• At inference time, just sample a thought+output
• In principle, the model can learn to try alternatives, perform
refinement, backtrack within the thought
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Training for long chain-of-thought

• Approach 1: reinforcement learning
• Policy: given a math problem x, generate a thought + answer
• Reward: is the answer correct
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Training for long chain-of-thought

Accuracy improves during training Response length increases to > 10,000
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Training for long chain-of-thought

Example response

58



Long chain-of-thought patterns Credits: Weihua Du

1. Uncertainty
• Wait... / Hold on...
• Wait–actually, does this formula apply here?

2. Branching, backtracking, retrying
• Alternatively, generating functions could model this problem...
• Revisiting...
• Wait, I’m overthinking. Let’s try again...

3. Verification
• Let’s check if we made an error. We should verify...
• This is a contradiction, so we must have made a mistake.
• Let’s test this with...

4. Key Points
• Key takeaway... / It’s worth noting...

5. Clarification
• In other words... / To clarify...

6. Synthesis
• Ultimately... / Putting it all together...
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Controlling the length: budget forcing [Muennighoff et al., 2025]

• Adhere to a length budget by
forcing the model to generate
“Wait” or “Final answer”

• Trade off tokens and
performance

[Muennighoff et al., 2025]
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Controlling the length: L1 [Aggarwal and Welleck, 2025]

• Train model with
reinforcement learning to
adhere to length constraints

• E.g. “use up to 2000 tokens”
provided in the prompt

• Reward: correctness and
length constraint penalty

[Aggarwal and Welleck, 2025]
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Long chain-of-thought | sequential vs. parallel

• Sequential: long
chain-of-thought

• Parallel: majority voting
(multiple long COTs)

[Aggarwal and Welleck, 2025]
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Part 2 recap

• Train a model to generate a long sequence, then use a simple
inference algorithm

• Internally can perform backtracking, self-correction, etc.
• Emerging area of research!
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Today’s lecture | recap

1. Inference strategies take a trained model and improve
performance by:

• Generating tokens according to a strategy
• Incorporate external information

• Reward models
• Environment feedback

2. Two complementary strategies
• Call a generator multiple times

• Meta-generation: parallel, tree search, refinement
• Call a generator once to generate a long output

• Long chain-of-thought

Very active and evolving research area!
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Appendix



Meta-generators | parallel | pairwise

Pairwise: Minimum Bayes Risk

MBR(g, v,N) = argmax
y∈{y(1),...,y(N)}

1
N

N∑
i=1

v(y, y(i))︸ ︷︷ ︸
≈Ey′∼p[v(y,y′)]

,

where {y(1), . . . , y(N)} ∼ g and v(y, y′) is a “utility” function.

Intuitively, selects the candidate with the highest “consensus” utility.
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Meta-generators | parallel | pairwise13

Utility: LLM(y, y(i)) → {1, 2, 3, 4, 5}:

Models
30

40

50

Al
pa
ca
Ev
al
2.0

w
in
ra
te
(%
) Beam Search

BoN (LLM utility)
MBR (Rouge)

MBR (LLM utility)

13Example from [Wu et al., 2024a] (Llama 3 70B). Utility: Prometheus 2 [Kim et al., 2024]. 66



Meta-generators | parallel | connecting MBR and voting

Weighted voting is an instance of Minimum Bayes Risk:14

v(y, y(i))︸ ︷︷ ︸
utility

= 1
[
a = a(i)

]
︸ ︷︷ ︸
same answer

· v(y(i))︸ ︷︷ ︸
sequence score

, (4)

where y = (z,a), y(i) = (z(i),a(i)).

14[Bertsch et al., 2023] It’s MBR All the Way Down: Modern Generation Techniques Through the Lens
of Minimum Bayes Risk. A. Bertsch, A. Xie, G. Neubig, M. Gormley.
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