
Efficient Inference

Sean Welleck | CMU Advanced NLP
March 27, 2025

Most slides by Hailey Schoelkopf from the NeurIPS 2024 LLM Inference Tutorial

https://haileyschoelkopf.github.io/
https://cmu-l3.github.io/neurips2024-inference-tutorial/

Efficient inference

Using the L1 model on a Macbook with LM Studio

1

Efficient inference

Using a LLM API

2

Efficient inference

Running experiments involving a lot of inference

3

Efficient inference

Serving many customer requests

4

Efficiency | goals

Scope:

• Basics of efficient inference
• How can we make inference strategies faster?
• Which strategies are most efficient?

5

Recap: Inference

• Generate a single sequence, y ∼ pθ(y|x)
• y1 ∼ pθ(·|x)
• y2 ∼ pθ(·|y1, x)
• y3 ∼ pθ(·|y1, y2, x)
• ...

• Inference strategies that involve generating multiple sequences
• Best-of-N, voting
• Tree search
• Refinement
• ...

See decoding lecture (#7) and advanced inference (#21) lecture

6

Recap: Inference

• Generate a single sequence, y ∼ pθ(y|x)
• y1 ∼ pθ(·|x)
• y2 ∼ pθ(·|y1, x)
• y3 ∼ pθ(·|y1, y2, x)
• ...

• Inference strategies that involve generating multiple sequences
• Best-of-N, voting
• Tree search
• Refinement
• ...

See decoding lecture (#7) and advanced inference (#21) lecture

6

Efficiency | basics

How do we measure “efficiency”?

• Latency
• How long does a user wait for a response?

• Startup overhead
• Slow token generation

• Time to first token, time per request

• Throughput
• How many requests are completed per second?

• How well the GPU is utilized
• Parallelism (e.g., batching, multiple devices)

• Tokens per second, requests per second

7

Efficiency | basics

How do we measure “efficiency”?

• Latency
• How long does a user wait for a response?

• Startup overhead
• Slow token generation

• Time to first token, time per request

• Throughput
• How many requests are completed per second?

• How well the GPU is utilized
• Parallelism (e.g., batching, multiple devices)

• Tokens per second, requests per second

7

Efficiency | basics

How do we measure “efficiency”?

• Latency
• How long does a user wait for a response?

• Startup overhead
• Slow token generation

• Time to first token, time per request

• Throughput
• How many requests are completed per second?

• How well the GPU is utilized
• Parallelism (e.g., batching, multiple devices)

• Tokens per second, requests per second

7

Efficiency | basics

How do we measure “efficiency”?

• Latency
• How long does a user wait for a response?

• Startup overhead
• Slow token generation

• Time to first token, time per request

• Throughput
• How many requests are completed per second?

• How well the GPU is utilized
• Parallelism (e.g., batching, multiple devices)

• Tokens per second, requests per second

7

Efficiency | basics

How do we measure “efficiency”?

• Latency
• How long does a user wait for a response?

• Startup overhead
• Slow token generation

• Time to first token, time per request

• Throughput
• How many requests are completed per second?

• How well the GPU is utilized
• Parallelism (e.g., batching, multiple devices)

• Tokens per second, requests per second

7

Efficiency | basics

How do we measure “efficiency”?

• Latency
• How long does a user wait for a response?

• Startup overhead
• Slow token generation

• Time to first token, time per request

• Throughput
• How many requests are completed per second?

• How well the GPU is utilized
• Parallelism (e.g., batching, multiple devices)

• Tokens per second, requests per second

7

Efficiency | basics

Latency, Throughput, and Quality often trade off at a given budget.

Example: queueing (waiting to be batched) can hurt latency

8

Basics | hardware

Key problem: efficiently execute operations on the given hardware

• Re-use computation
• Take advantage of unique hardware advantages
• Minimize bottlenecks

9

Basics | hardware

How do ML accelerator designs impact generation efficiency?

• How much data can we keep on-device?
• VRAM (GB): e.g., 80GB

• How many operations/second can the device perform?
• FLOP/s: e.g., 1,979 teraFLOP/s

• How long does it take to send operands from GPU memory
(HBM) to the processor?

• Memory Bandwidth (GB/s): e.g. 3.35 TB/s

10

Basics | hardware

How do ML accelerator designs impact generation efficiency?

• How much data can we keep on-device?
• VRAM (GB): e.g., 80GB

• How many operations/second can the device perform?
• FLOP/s: e.g., 1,979 teraFLOP/s

• How long does it take to send operands from GPU memory
(HBM) to the processor?

• Memory Bandwidth (GB/s): e.g. 3.35 TB/s

10

Basics | hardware

How do ML accelerator designs impact generation efficiency?

• How much data can we keep on-device?
• VRAM (GB): e.g., 80GB

• How many operations/second can the device perform?
• FLOP/s: e.g., 1,979 teraFLOP/s

• How long does it take to send operands from GPU memory
(HBM) to the processor?

• Memory Bandwidth (GB/s): e.g. 3.35 TB/s

10

Basics | hardware

How do ML accelerator designs impact generation efficiency?

• How much data can we keep on-device?
• VRAM (GB): e.g., 80GB

• How many operations/second can the device perform?
• FLOP/s: e.g., 1,979 teraFLOP/s

• How long does it take to send operands from GPU memory
(HBM) to the processor?

• Memory Bandwidth (GB/s): e.g. 3.35 TB/s

10

Basics | bottlenecks

• Loading inputs (activations) from memory

• Memory Bandwidth

• Loading weights from memory

• Memory Bandwidth

• Performing computation

• FLOP/s

• Communicating across devices

• Communication Speeds (GB/s)

• ...

11

Basics | bottlenecks

• Loading inputs (activations) from memory
• Memory Bandwidth

• Loading weights from memory

• Memory Bandwidth

• Performing computation

• FLOP/s

• Communicating across devices

• Communication Speeds (GB/s)

• ...

11

Basics | bottlenecks

• Loading inputs (activations) from memory
• Memory Bandwidth

• Loading weights from memory

• Memory Bandwidth

• Performing computation

• FLOP/s

• Communicating across devices

• Communication Speeds (GB/s)

• ...

11

Basics | bottlenecks

• Loading inputs (activations) from memory
• Memory Bandwidth

• Loading weights from memory
• Memory Bandwidth

• Performing computation

• FLOP/s

• Communicating across devices

• Communication Speeds (GB/s)

• ...

11

Basics | bottlenecks

• Loading inputs (activations) from memory
• Memory Bandwidth

• Loading weights from memory
• Memory Bandwidth

• Performing computation

• FLOP/s

• Communicating across devices

• Communication Speeds (GB/s)

• ...

11

Basics | bottlenecks

• Loading inputs (activations) from memory
• Memory Bandwidth

• Loading weights from memory
• Memory Bandwidth

• Performing computation
• FLOP/s

• Communicating across devices

• Communication Speeds (GB/s)

• ...

11

Basics | bottlenecks

• Loading inputs (activations) from memory
• Memory Bandwidth

• Loading weights from memory
• Memory Bandwidth

• Performing computation
• FLOP/s

• Communicating across devices

• Communication Speeds (GB/s)

• ...

11

Basics | bottlenecks

• Loading inputs (activations) from memory
• Memory Bandwidth

• Loading weights from memory
• Memory Bandwidth

• Performing computation
• FLOP/s

• Communicating across devices
• Communication Speeds (GB/s)

• ...

11

Basics | bottlenecks

• Loading inputs (activations) from memory
• Memory Bandwidth

• Loading weights from memory
• Memory Bandwidth

• Performing computation
• FLOP/s

• Communicating across devices
• Communication Speeds (GB/s)

• ...

11

Basics | bottlenecks

Time per operation can be modeled as1:

Time = max
(

Operation FLOP
Device FLOP/s

,
Data Transferred (GB)

Memory Bandwidth (GB/s)

)

Operations are either “compute-bound” or “memory-bound”

1[He, 2022]

12

Basics | stages and KV cache

Prefill Stage: process prompt all at
once. Keys and values retained and
initialize the “KV Cache”.

Decode Stage: use cached KV values
to compute attention for current
timestep. Append new K, V to KV cache

Size = (batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

KV Cache storage can exceed the weights’ storage size, especially for
long-context and large batches!

13

Basics | stages and KV cache

Prefill Stage: process prompt all at
once. Keys and values retained and
initialize the “KV Cache”.

Decode Stage: use cached KV values
to compute attention for current
timestep. Append new K, V to KV cache

Size = (batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

KV Cache storage can exceed the weights’ storage size, especially for
long-context and large batches!

13

Basics | stages and KV cache

Prefill Stage: process prompt all at
once. Keys and values retained and
initialize the “KV Cache”.

Decode Stage: use cached KV values
to compute attention for current
timestep. Append new K, V to KV cache

Size = (batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

KV Cache storage can exceed the weights’ storage size, especially for
long-context and large batches!

13

Basics | stages and KV cache

Prefill Stage: process prompt all at
once. Keys and values retained and
initialize the “KV Cache”.

Decode Stage: use cached KV values
to compute attention for current
timestep. Append new K, V to KV cache

Size = (batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

KV Cache storage can exceed the weights’ storage size, especially for
long-context and large batches! 13

Efficiency | KV cache

KV cache in Llama 3 inference code

14

Basics | batching

Inputs to a model can be batched together and computed simultaneously.

15

Basics | when does batching matter?

LLM APIs, batch inference, RL
• Combine multiple user
prompts into a batch

• Process many inputs at once
for evaluation or training

Throughput is a main concern
• Tokens per second across all
sequences

Single-user, interactive use
• Single-user chat
• Streaming outputs

• Batching can increase wait
time before first token

Latency is a main concern
• Time to first token
• Time for a single sequence

16

Basics | when does batching matter?

LLM APIs, batch inference, RL
• Combine multiple user
prompts into a batch

• Process many inputs at once
for evaluation or training

Throughput is a main concern
• Tokens per second across all
sequences

Single-user, interactive use
• Single-user chat
• Streaming outputs

• Batching can increase wait
time before first token

Latency is a main concern
• Time to first token
• Time for a single sequence

16

Basics | when does batching matter?

LLM APIs, batch inference, RL
• Combine multiple user
prompts into a batch

• Process many inputs at once
for evaluation or training

Throughput is a main concern
• Tokens per second across all
sequences

Single-user, interactive use
• Single-user chat
• Streaming outputs

• Batching can increase wait
time before first token

Latency is a main concern
• Time to first token
• Time for a single sequence

16

Basics | when does batching matter?

LLM APIs, batch inference, RL
• Combine multiple user
prompts into a batch

• Process many inputs at once
for evaluation or training

Throughput is a main concern
• Tokens per second across all
sequences

Single-user, interactive use
• Single-user chat
• Streaming outputs

• Batching can increase wait
time before first token

Latency is a main concern
• Time to first token
• Time for a single sequence

16

Recap | basics

• Latency, throughput, quality
• Hardware constraints: storage, communication costs,
computation costs

• KV cache
• Batching

17

Outline

Efficient inference

• Generating a single token
• Generating a full sequence
• Generating multiple sequences

18

Outline

Efficient inference

• Generating a single token
• Generating a full sequence
• Generating multiple sequences

19

Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

• Memory Bandwidth ↓: shrink the data we need to move
• FLOP/s ↑: better utilize the hardware
• FLOP ↓: use fewer operations

20

Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

• Memory Bandwidth ↓: shrink the data we need to move

• FLOP/s ↑: better utilize the hardware
• FLOP ↓: use fewer operations

20

Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

• Memory Bandwidth ↓: shrink the data we need to move
• FLOP/s ↑: better utilize the hardware

• FLOP ↓: use fewer operations

20

Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

• Memory Bandwidth ↓: shrink the data we need to move
• FLOP/s ↑: better utilize the hardware
• FLOP ↓: use fewer operations

20

Efficiency | single-token

Memory Bandwidth ↓: reduce data transferred

• Quantize weights or activations

• Compress or distill model

(bytes per parameter) · (total parameters)

21

Efficiency | single-token

Memory Bandwidth ↓: reduce data transferred

• Quantize weights or activations

• Compress or distill model

(bytes per parameter) · (total parameters)

21

Efficiency | single-token

Memory Bandwidth ↓: reduce data transferred

gpt-fast benchmarks

22

https://github.com/pytorch-labs/gpt-fast

Efficiency | single-token

Memory Bandwidth ↓: reduce data transferred

The KV cache is a key source of memory bandwidth overhead

(batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

Architectural tweaks such as Grouped-Query Attention [Ainslie et al., 2023] reduce the
number of Key + Value attention heads to shrink the required KV Cache size

23

Efficiency | single-token

Memory Bandwidth ↓: reduce data transferred

The KV cache is a key source of memory bandwidth overhead

(batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

As with model weights, elements of the KV cache can be quantized to reduce
memory overheads

24

Efficiency | single-token

FLOP/s ↑: improve hardware utilization

(FLOP per second) · (total operation FLOP)

Flash Attention [Dao et al., 2022] performs the same operations, but
optimizes the implementation to achieve far greater speed

25

Efficiency | single-token

FLOP/s ↑: improve hardware utilization

(FLOP per second) · (total operation FLOP)

Flash Attention [Dao et al., 2022] performs the same operations, but
optimizes the implementation to achieve far greater speed

25

Efficiency | single-token

Flash attention 2 benchmarking
(https://huggingface.co/docs/transformers/v4.34.0/perf_infer_gpu_one)

26

Efficiency | single-token

FLOP ↓: reduce operations required

(FLOP per second) · (total operation FLOP)

Mixture-of-Experts models use fewer FLOP per token than equi-parameter
dense models [Fedus et al., 2022]

27

Efficiency | single-token

FLOP ↓: reduce operations required

(FLOP per second) · (total operation FLOP)

Mixture-of-Experts models use fewer FLOP per token than equi-parameter
dense models [Fedus et al., 2022] 27

Outline

Efficient inference

• Generating a single token
• Generating a full sequence
• Generating multiple sequences

28

Efficiency | single-generation

Generation of long outputs is bottlenecked by sequential next-token
prediction. But not all tokens are created equal!

... The cow jumped over the moon . <EOS>

How can we spend less time on “easier” tokens?

29

Efficiency | single-generation | speculative decoding

Speculative decoding uses a smaller draft model to produce “guesses” for
the next N tokens cheaply, which are then “accepted” or “rejected” in parallel
by the main model [Xia et al., 2024]

30

Efficiency | single-generation | speculative decoding

1 def speculative_decode(tgt_m, drf_m, tok, inp: torch.Tensor, max_tok:
int, n_spec: int = 5, t: float = 1.0):

2 gen = inp; max_len = inp.shape[1] + max_tok
3 while gen.shape[1] < max_len:
4 tok_left = max_len - gen.shape[1]
5 spec_size = min(n_spec, tok_left - 1)
6 if spec_size > 0:
7 spec_id, spec_lprob = generate(drf_m, tok, gen, spec_size, t)
8 tgt_lprob = tgt_m(spec_id) # forwarding tgt model
9 rejs = compute_ll_rejs(tgt_lprob, spec_lprob)
10 if len(rejs) > 0:
11 accepted = spec_id[:, :rejs[0]]
12 adj_probs = compute_adjusted_dist(tgt_lprob, spec_lprob)
13 next_tok = Categorical(adj_probs)
14 else:
15 accepted = spec_id
16 next_tok = Categorical(tgt_lprob.exp())
17 gen = torch.cat([gen, accepted, next_tok])

31

Efficiency | single-generation | speculative decoding

1 def compute_ll_rejs(tgt_lprob: torch.Tensor, spec_lprob: torch.Tensor,
spec_tok_id: torch.Tensor) -> torch.Tensor:

2 llrs = tgt_lprob[spec_tok_id] - spec_lprob[spec_tok_id]
3 uniform_lprobs = torch.log(torch.rand_like(llrs))
4 rej_idx = torch.nonzero((llrs <= uniform_lprobs))
5 return rej_idx
6

7 def compute_adjusted_dist(tgt_lprob: torch.Tensor, spec_lprob:
torch.Tensor, rej_idx: torch.Tensor) -> torch.Tensor:

8 adj_dist = torch.clamp(
9 torch.exp(tgt_lprob[rej_idx]) - torch.exp(spec_lprob[rej_idx]),
10 min=0
11)
12 adj_dist = torch.div(adj_dist, adj_dist.sum())
13 return adj_dist

32

Efficiency | single-generation | speculative decoding

Draft model acceptance rates are distribution-dependent2

2https://github.com/cmu-l3/neurips2024-inference-tutorial-code/tree/main/section3

33

Efficiency | single-generation | speculative decoding

Speculative decoding can harm throughput at low context but improves both
throughput and latency at long context lengths [Chen et al., 2024]

34

Outline

Efficient inference

• Generating a single token
• Generating a full sequence
• Generating multiple sequences

• Batched generation settings
• Meta-generation strategies: best-of-N, tree search, ...

35

Efficiency | meta-generators

Key idea:

• Leverage redundancy across generations to re-use computation

36

Efficiency | meta-generators | KV Cache reuse

Common deployment and parallel generation scenarios have redundant
shared prefix content in prompts3

3Figure from [Juravsky et al., 2024]

37

Efficiency | meta-generators | KV Cache reuse

PagedAttention [Kwon et al., 2023] prevents redundant storage costs by
mapping KV cache blocks to physical “pages” of VRAM

38

Efficiency | meta-generators | KV Cache reuse

PagedAttention VLLM [Kwon et al., 2023]: fast inference library, originally
built for PagedAttention

39

Efficiency | meta-generators | KV cache reuse

KV Cache reuse is not limited to single-level shared prefixes!

Multiple levels of prefix sharing can arise frequently: for example, combining
a long few-shot prompt with Best-of-N generation4

4Figure from [Juravsky et al., 2024]
40

Efficiency | meta-generators | KV Cache reuse

RadixAttention enables complex prefix sharing patterns [Zheng et al., 2024],
evicting least-recently-used KV cache blocks from memory when needed

41

Efficiency | meta-generators | KV Cache reuse

RadixAttention enables complex prefix sharing patterns [Zheng et al., 2024],
evicting least-recently-used KV cache blocks from memory when needed

42

Efficiency | meta-generators | KV Cache reuse

RadixAttention enables complex prefix sharing patterns [Zheng et al., 2024],
evicting least-recently-used KV cache blocks from memory when needed

43

Efficiency | meta-generators | KV Cache reuse

SGLang [Zheng et al., 2024] latency and throughput comparison.

44

Efficiency | meta-generators | KV Cache reuse

SGLang [Zheng et al., 2024]

45

Efficiency | meta-generators | recap

Which meta-generators are most efficient?

• Parallelizable: trajectories can be run in parallel; not
sequentially bottlenecked

• Prefix-shareable: long inputs are presented as identical shared
prefix content, whose KV Caches can be reused across many
model calls

Token budget is not the only indicator of meta-generator efficiency!

46

Efficient generation | recap

• Basics: latency, throughput, bottlenecks, KV cache and batching
• Speeding up:

• Single-token generation
• Full sequence generation
• Multi-sequence generation

Token budget is not the only indicator of inference cost!

47

Efficient inference | tools

• Using a LLM on your laptop
• LM Studio: https://lmstudio.ai/
• Ollama: https://ollama.com/

• Writing code to call LLMs on many types of devices (phone, etc.)
• MLC LLM: https://llm.mlc.ai/

• Writing code to call LLMs on GPU(s)
• VLLM: https://docs.vllm.ai/
• SGLang: https://docs.sglang.ai/

48

https://lmstudio.ai/
https://ollama.com/
https://llm.mlc.ai/
https://docs.vllm.ai/
https://docs.sglang.ai/

Efficient inference | tools

• Using a LLM on your laptop
• LM Studio: https://lmstudio.ai/
• Ollama: https://ollama.com/

• Writing code to call LLMs on many types of devices (phone, etc.)
• MLC LLM: https://llm.mlc.ai/

• Writing code to call LLMs on GPU(s)
• VLLM: https://docs.vllm.ai/
• SGLang: https://docs.sglang.ai/

48

https://lmstudio.ai/
https://ollama.com/
https://llm.mlc.ai/
https://docs.vllm.ai/
https://docs.sglang.ai/

Efficient inference | tools

• Using a LLM on your laptop
• LM Studio: https://lmstudio.ai/
• Ollama: https://ollama.com/

• Writing code to call LLMs on many types of devices (phone, etc.)
• MLC LLM: https://llm.mlc.ai/

• Writing code to call LLMs on GPU(s)
• VLLM: https://docs.vllm.ai/
• SGLang: https://docs.sglang.ai/

48

https://lmstudio.ai/
https://ollama.com/
https://llm.mlc.ai/
https://docs.vllm.ai/
https://docs.sglang.ai/

References i

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebrón, F.,
and Sanghai, S. (2023).
Gqa: Training generalized multi-query transformer models from
multi-head checkpoints.

Chen, J., Tiwari, V., Sadhukhan, R., Chen, Z., Shi, J., Yen, I. E.-H., and
Chen, B. (2024).
Magicdec: Breaking the latency-throughput tradeoff for long
context generation with speculative decoding.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and R’e, C. (2022).
Flashattention: Fast and memory-efficient exact attention with
io-awareness.
ArXiv preprint, abs/2205.14135.

49

References ii

Fedus, W., Zoph, B., and Shazeer, N. (2022).
Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity.

He, H. (2022).
Making deep learning go brrrr from first principles.

Juravsky, J., Brown, B., Ehrlich, R., Fu, D. Y., Ré, C., and Mirhoseini, A.
(2024).
Hydragen: High-throughput llm inference with shared prefixes.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez,
J. E., Zhang, H., and Stoica, I. (2023).
Efficient memory management for large language model serving
with pagedattention.

50

References iii

Xia, H., Yang, Z., Dong, Q., Wang, P., Li, Y., Ge, T., Liu, T., Li, W., and
Sui, Z. (2024).
Unlocking efficiency in large language model inference: A
comprehensive survey of speculative decoding.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H., Cao, S.,
Kozyrakis, C., Stoica, I., Gonzalez, J. E., Barrett, C., and Sheng, Y.
(2024).
Sglang: Efficient execution of structured language model
programs.

51

