Efficient Inference

Sean Welleck | CMU Advanced NLP
March 27 2025

Most slides by Hailey Schoelkopf from the NeurlPS 2024 LLM Inference Tutorial

https://haileyschoelkopf.github.io/
https://cmu-l3.github.io/neurips2024-inference-tutorial/

Efficient inference

@ 11-quen-1.5b-max v

You

Prove that if x is even, x + 125 is odd. Think for 200 tokens.

Assistant | 11-qwen-1.5b-max

Okay, so | need to prove that if x is even, then x + 125 is odd. Let me see... If x is even, it can be written as
x = 2k for some integer k. Then, x + 125 would be 2k + 125. Now, 125 is odd, so adding an even number
(2k) to an odd number (125) should result in an odd number. Because even + odd = odd. So, 2k is even,
plus 125 is odd. Therefore, x + 125 is odd. That makes sense.

| think that's the proof. Maybe | should check with an example. Let's say x = 2 (which is even). Then x +
125 =127, which is odd. Another example: x = 4, then 4 + 125 = 129, also odd. So it seems to hold.
Therefore, the proof is correct.

If is even, then & = 2k for some integer k. Thus, z + 125 = 2k + 125. Since 125 is odd and 2k is
even, their sum is odd. Therefore, + 125 is odd.

|z + 125 is odd

Using the L1 model on a Macbook with LM Studio

Efficient inference

oogle.com/prompts/new_chat

Google Al Studio Even Plus 125 Is Odd Proof ~/

&> Get APl ke .
~ System Instructions

Create Prompt
SU, J 1S @il nieyer.
, Stream Realtime

Starter Apps We have successfully shown that:
x + 125 7 - C
lpelaiiiors] Model Run Stats

& Library By the d¢ . 125 is odd.
Time to first token: S

(&, Enable chat history Tokens per second:
Therefor, .. . o
Prompt Gallery ,
7 GI 14.0s

APl documentation

Using a LLM API

Efficient inference

MATH (Learned Reward)

55
~— 45) . Smm— :
g
5 40
—
o 35
% 30 Majority Voting
wn —— Weighted Voting
257 "¢ —— Best-of-N
20

1 2 4 8 16 32 64 1282565121024
Number of generations

Running experiments involving a lot of inference

Efficient inference

what is the google ai summary

Al Videos |Images News Shortvideos Shopping Web i More

§ Al Overview

Google Al Overviews are a search feature using generative Al to provide
users with quick, comprehensive summaries of a topic by synthesizing
information from multiple sources, often appearing prominently above
traditional search results.

Here's a more detailed breakdown:

What they are:
Al Overviews are Google's way of using generative Al to provide users with concise,

Serving many customer requests

Efficiency | goals

Scope:

- Basics of efficient inference
- How can we make inference strategies faster?

- Which strategies are most efficient?

Recap: Inference

- Generate a single sequence, y ~ py(y|x)
* Y1~ po(-[x)
Y2~ po(:lyr,X)
Vs~ po(-yr,¥2,X)

Recap: Inference

- Generate a single sequence, y ~ py(y|x)
* Y1~ po(-[x)
Y2~ po(:lyr,X)
Vs~ po(-yr,¥2,X)

- Inference strategies that involve generating multiple sequences
- Best-of-N, voting
- Tree search
- Refinement

Efficiency | basics

How do we measure “efficiency”?

- Latency
- How long does a user wait for a response?

Efficiency | basics

How do we measure “efficiency”?

- Latency
- How long does a user wait for a response?

- Startup overhead
- Slow token generation

Efficiency | basics

How do we measure “efficiency”?

- Latency
- How long does a user wait for a response?

- Startup overhead
- Slow token generation

- Time to first token, time per request

Efficiency | basics

How do we measure “efficiency”?

- Latency
- How long does a user wait for a response?

- Startup overhead
- Slow token generation

- Time to first token, time per request
- Throughput
- How many requests are completed per second?

Efficiency | basics

How do we measure “efficiency”?

- Latency
- How long does a user wait for a response?
- Startup overhead
- Slow token generation
- Time to first token, time per request
- Throughput
- How many requests are completed per second?

- How well the GPU is utilized
- Parallelism (e.g, batching, multiple devices)

Efficiency | basics

How do we measure “efficiency”?

- Latency
- How long does a user wait for a response?

- Startup overhead
- Slow token generation

- Time to first token, time per request
- Throughput
- How many requests are completed per second?

- How well the GPU is utilized
- Parallelism (e.g, batching, multiple devices)

- Tokens per second, requests per second

Efficiency | basics

Quo\h‘tl/

Locte_nc,y -< >, Througkpu‘t

Latency, Throughput, and Quality often trade off at a given budget.

Example: queueing (waiting to be batched) can hurt latency

Basics | hardware

Key problem: efficiently execute operations on the given hardware

- Re-use computation
- Take advantage of unique hardware advantages
- Minimize bottlenecks

Basics | hardware

How do ML accelerator designs impact generation efficiency?

Basics | hardware

How do ML accelerator designs impact generation efficiency?

- How much data can we keep on-device?
- VRAM (GB): e.g., 80GB

Basics | hardware

How do ML accelerator designs impact generation efficiency?

- How much data can we keep on-device?
- VRAM (GB): e.g., 80GB

- How many operations/second can the device perform?
- FLOP/s: e.g., 1,979 teraFLOP/s

Basics | hardware

How do ML accelerator designs impact generation efficiency?

- How much data can we keep on-device?
- VRAM (GB): e.g., 80GB

- How many operations/second can the device perform?
- FLOP/s: e.g., 1,979 teraFLOP/s

- How long does it take to send operands from GPU memory
(HBM) to the processor?

- Memory Bandwidth (GB/s): e.g. 3.35 TB/s

Basics | bottlenecks

- Loading inputs (activations) from memory

1

Basics | bottlenecks

- Loading inputs (activations) from memory
- Memory Bandwidth

1

Basics | bottlenecks

- Loading inputs (activations) from memory
- Memory Bandwidth
- Loading weights from memory

1

Basics | bottlenecks

- Loading inputs (activations) from memory
- Memory Bandwidth

- Loading weights from memory
- Memory Bandwidth

1

Basics | bottlenecks

- Loading inputs (activations) from memory
- Memory Bandwidth

- Loading weights from memory
- Memory Bandwidth

- Performing computation

1

Basics | bottlenecks

- Loading inputs (activations) from memory
- Memory Bandwidth

- Loading weights from memory
- Memory Bandwidth

- Performing computation
- FLOP/s

1

Basics | bottlenecks

- Loading inputs (activations) from memory
- Memory Bandwidth

- Loading weights from memory
- Memory Bandwidth

- Performing computation
- FLOP/s

- Communicating across devices

1

Basics | bottlenecks

- Loading inputs (activations) from memory
- Memory Bandwidth
- Loading weights from memory
- Memory Bandwidth
- Performing computation
- FLOP/s
- Communicating across devices
- Communication Speeds (GB/s)

1

Basics | bottlenecks

- Loading inputs (activations) from memory
- Memory Bandwidth
- Loading weights from memory
- Memory Bandwidth
- Performing computation
- FLOP/s
- Communicating across devices
- Communication Speeds (GB/s)

1

Basics | bottlenecks

Time per operation can be modeled as’:

. (Operation FLOP Data Transferred (GB) >
Time = max

Device FLOP/s ' Memory Bandwidth (GB/s)

Operations are either “compute-bound” or “memory-bound”

[He, 2022]

Basics | stages and KV cache

Softmax(QK T)

Prefill Stage: process prompt all at
once. Keys and values retained and
initialize the “KV Cache”.

Basics | stages and KV cache

(e)

(e)

Softmax(QK T)

[]

(e)

(e)

(e)
Prefill Stage: process prompt all at Decode Stage: use cached KV values
once. Keys and values retained and to compute attention for current

initialize the “KV Cache”, timestep. Append new K, V to KV cache

Basics | stages and KV cache

Softmax(QK T) x

1xa

{ KV Cache

Softmax(QK T)

Prefill Stage: process prompt all at Decode Stage: use cached KV values
once. Keys and values retained and to compute attention for current
initialize the “KV Cache”, timestep. Append new K, V to KV cache

Size = (batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)

Basics | stages and KV cache

Softmax(QK T)

Prefill Stage: process prompt all at Decode Stage: use cached KV values
once. Keys and values retained and to compute attention for current
initialize the “KV Cache”, timestep. Append new K, V to KV cache

Size = (batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)

KV Cache storage can exceed the weights’ storage size, especially for
long-context and large batches! 13

Efficiency | KV cache

class Attention(nn.Module):
def forward(
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)

xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)

xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)

self.cache_k = self.cache_k.to(xq)
self.cache_v = self.cache_v.to(xq)

self.cache_k[:bsz, start_pos : start_pos + seqlen]
self.cache_v[:bsz, start_pos : start_pos + seqlen]

KV cache in Llama 3 inference code

14

Basics | batching

S 555 E x w =
1 x d_modlel d_model x d_FR
—————
x w =
b x d_wmodel d_model x d_FR

Inputs to a model can be batched together and computed simultaneously.

Basics | when does batching matter?

LLM APIs, batch inference, RL

- Combine multiple user
prompts into a batch

- Process many inputs at once
for evaluation or training

16

Basics | when does batching matter?

LLM APIs, batch inference, RL

- Combine multiple user
prompts into a batch

- Process many inputs at once
for evaluation or training

Throughput is a main concern

- Tokens per second across all
sequences

16

Basics | when does batching matter?

LLM APIs, batch inference, RL Single-user, interactive use
- Combine multiple user - Single-user chat
prompts into a batch - Streaming outputs
- Process many inputs at once - Batching can increase wait
for evaluation or training time before first token

Throughput is a main concern

- Tokens per second across all
sequences

16

Basics | when does batching matter?

LLM APIs, batch inference, RL Single-user, interactive use
- Combine multiple user - Single-user chat
prompts into a batch - Streaming outputs
- Process many inputs at once - Batching can increase wait
for evaluation or training time before first token
Throughput is a main concern Latency is a main concern
- Tokens per second across all - Time to first token

sequences - Time for a single sequence

16

Recap | basics

- Latency, throughput, quality

- Hardware constraints: storage, communication costs,
computation costs

- KV cache
- Batching

Efficient inference

- Generating a single token
- Generating a full sequence

- Generating multiple sequences

Efficient inference

- Generating a single token
- Generating a full sequence
- Generating multiple sequences

19

Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

20

Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

- Memory Bandwidth |: shrink the data we need to move

20

Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

- Memory Bandwidth |: shrink the data we need to move
- FLOP/s 1: better utilize the hardware

20

Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

- Memory Bandwidth |: shrink the data we need to move
- FLOP/s 1: better utilize the hardware
- FLOP |: use fewer operations

20

Efficiency | single-token

Memory Bandwidth |: reduce data transferred

- Quantize weights or activations

INT4 [o] (o] [] [o] (o] [¢] [] []

21

Efficiency | single-token

Memory Bandwidth |: reduce data transferred

- Quantize weights or activations

INT4 [o] [¢] [] [e] (o] [o] [][]
- Compress or distill model

(bytes per parameter) - (total parameters)

21

Efficiency | single-token

Memory Bandwidth |: reduce data transferred

Benchmarks run on an 8xA100-80GB, power limited to 330W with a hybrid cube mesh
topology. Note that all benchmarks are run at batch size=1, making the reported
tokens/s numbers equivalent to "tokens/sfuser". In addition, they are run with a very
small prompt length (just 5 tokens).

Model Technique Tokens/Second Memory Bandwidth (GB/s)
Llama-2-7B Base 104.9 1397.31
8-bit 165.58 1069.20
4-bit (G=32) 196.80 862.69
Llama-2-70B Base ooM

8-bit 19.13 1322.58

4-bit (G=32) 1097.66

gpt-fast benchmarks

22

https://github.com/pytorch-labs/gpt-fast

Efficiency | single-token

Memory Bandwidth |: reduce data transferred

The KV cache is a key source of memory bandwidth overhead

(batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)

Multi-head Grouped-query Multi-query

Valu

- 00000000 DO Q0 |

Architectural tweaks such as Grouped-Query Attention [Ainslie et al,, 2023] reduce the
number of Key + Value attention heads to shrink the required KV Cache size

23

Efficiency | single-token

Memory Bandwidth |: reduce data transferred
The KV cache is a key source of memory bandwidth overhead

(batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)

INT4 (o] (o] [] [e] [¢] [¢] [][]

As with model weights, elements of the KV cache can be quantized to reduce
memory overheads

24

Efficiency | single-token

FLOP/s 1: improve hardware utilization

(FLOP per second) - (total operation FLOP)

25

Efficiency | single-token

FLOP/s 1: improve hardware utilization

(FLOP per second) - (total operation FLOP)

: 19TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)

:12.8 GB/s
(>17B)

Memory Hierarchy with
Bandwidth & Memory Size

Outer Loop

—_—
K:dxN
Copy Block to
QNxd Outer Loop
: .

Inner Loop
—_—

.
Output to HBM

sm(QKV: Nxd

Inner Loop
FlashAttention

door euu

V:NXd

doot /man0

Time (ms)

Attention on GPT-2

T Matmul

Dropout

=)

Softmax

] Fused
|

Kernel
~—

0
PyTorch FlashAttention

Flash Attention [Dao et al, 2022] performs the same operations, but
optimizes the implementation to achieve far greater speed

25

Efficiency | single-token

prompt max length 4096 | new tokens : 1| generate: Fls | padcing ato: 0 prompt max length 4096 | new tokens : 1| generate: Fais | pading ratos 0
Comparing forwardbackward speecdup between native model vs Flash Attention 2 model - ran on NVIDIAALOD Comparing average nference tine between natve mode vs iash Attentin-2 made - an on AVIDIA AL0O
1925 forward-speedup 30 — Lama-2-7b-hf-native
. Liama-2-7b-hf-FA2
F25
1.915 P
£
1.910 520
2
1.905 I
&
15
1.900 °
&
4
1.895 210
1.890
0.5
1.885
1 2 4 1 2 4
Batch size Batch size

Flash attention 2 benchmarking
(https://huggingface.co/docs/transformers/v4.34.0/perf_imfer_gpu_one)

26

Efficiency | single-token

FLOP |: reduce operations required

(FLOP per second) - (total operation FLOP)

27

Efficiency | single-token

FLOP |: reduce operations required

(FLOP per second) - (total operation FLOP)

i EE%EED szEETEED
-7 — Add + Normalize
D ® & S
/ ;
p=oes T I : (p=EB
| Router Router
4 A
] s
Se'f"?"“"" —»[Add + Normalize]4—
x S Self-Attention
S ~ Positional Positional Ea
.~ embedding j embedding
x1 EEEEEEI x[TTTTT]
More Parameters

Mixture-of-Experts models use fewer FLOP per token than equi-parameter

dense models [Fedus et al.,, 2022] .

Efficient inference

- Generating a single token
- Generating a full sequence
- Generating multiple sequences

28

Efficiency | single-generation

Generation of long outputs is bottlenecked by sequential next-token
prediction. But not all tokens are created equal!

.. The cow jumped over the moon . <EOS>

How can we spend less time on “easier” tokens?

29

Efficiency | single-generation | speculative decoding

‘ ‘ A e A R
| SR SR SR [Verify in Parallel;
[S N

v

Autoregressive
Decoding A A A

£ L f .t | Efficiently Draftfd

\ \ \

o) ol ')
)

v O=0 X O0#0

Speculative decoding uses a smaller draft model to produce “guesses” for
the next N tokens cheaply, which are then “accepted” or “rejected” in parallel
by the main model [Xia et al., 2024]

30

Efficiency | single-generation | speculative decoding

1| def speculative_decode(tgt_m, drf_m, tok, inp: torch.Tensor, max_tok:
int, n_spec: int = 5, t: float = 1.0):

gen = inp; max_len = inp.shape[1] + max_tok

3 while gen.shape[1] < max_len:

4 tok_left = max_len - gen.shape[1]

spec_size = min(n_spec, tok_left - 1)

6 if spec_size > 0:

spec_id, spec_lprob = generate(drf_m, tok, gen, spec_size, t)
tgt_lprob = tgt_m(spec_id) # forwarding tgt model

rejs = compute_11_rejs(tgt_lprob, spec_lprob)

0 if len(rejs) > 0:

1 accepted = spec_id[:, :rejs[0]]

12 adj_probs = compute_adjusted_dist(tgt_lprob, spec_lprob)
3 next_tok = Categorical(adj_probs)

4 else:

15 accepted = spec_id

16 next_tok = Categorical(tgt_lprob.exp())

gen = torch.cat([gen, accepted, next_tok])

31

Efficiency | single-generation | speculative decoding

def compute_11_rejs(tgt_lprob: torch.Tensor, spec_lprob: torch.Tensor,
spec_tok_id: torch.Tensor) -> torch.Tensor:
1lrs = tgt_lprob[spec_tok_id] - spec_lprob[spec_tok_id]
uniform_lprobs = torch.log(torch.rand_like(llrs))
rej_idx = torch.nonzero((1llrs <= uniform_lprobs))
return rej_idx

def compute_adjusted_dist(tgt_lprob: torch.Tensor, spec_lprob:

torch.Tensor, rej_idx: torch.Tensor) -> torch.Tensor:

adj_dist = torch.clamp(
torch.exp(tgt_lprob[rej_idx]) - torch.exp(spec_lprob[rej_idx]),
min=0

)

adj_dist = torch.div(adj_dist, adj_dist.sum())

return adj_dist

32

Efficiency | single-generation | speculative decoding

Draft Acceptance Rate vs Number of Speculative Tokens
Task

—e— gsm - easy

—e— gsm - hard

Draft Acceptance Rate

25 5.0 75 10.0 125 15.0 175 20.0
Number of Speculative Tokens

Draft model acceptance rates are distribution-dependent?

Zhttps://github.com/cmu-13/neurips2024-inference-tutorial-code/tree/main/section3

33

Efficiency | single-generation | speculative decoding

= (Prefill=512)

= (Prefill=1024)

= (Prefill=2048)

(Prefill=4000)

6 (Prefill=8000)
= (Prefill=16000) =

.8

£

Throughput Ratio (SpecDec / Autoreg)

1.2
- . =

u= o

1 n
Lol - -
-
0.8 "
10.0 15.0 20.0 30.0 35.0

25.0
Avg. Tokenwise Latency (ms)

Speculative decoding can harm throughput at low context but improves both
throughput and latency at long context lengths [Chen et al,, 2024]

34

Efficient inference

- Generating a single token
- Generating a full sequence

- Generating multiple sequences

- Batched generation settings
- Meta-generation strategies: best-of-N, tree search, ...

35

Efficiency | meta-generators

Key idea:

- Leverage redundancy across generations to re-use computation

36

Efficiency | meta-generators | KV Cache reuse

Shared Prefix Unique Suffixes

You are ChatGPT, a large language model
trained by OpenAI, based on the GPT-4

architecture. [

Hi, can you write a

Knowledge cutoff: 2023-04 Tell me a funny...

Current date: 2023-11-16

Image input capabilities: Enabled

When you send a message containing
Python code to python, it will be
executed in a stateful Jupyter notebook
enrivonment. Python will respond... [Ignore all previous

Debug this Python..

Who is Alan Turing?]

Shared Prefix Setting

Common deployment and parallel generation scenarios have redundant
shared prefix content in prompts’

3Figure from [Juravsky et al., 2024]

37

Efficiency | meta-generators | KV Cache reuse

Physical KV blocks

Block 0
Ref count: 2 — 1
Sample Sample
Al 4Block years | ago our |mothers) A2

Logical KV blocks ‘," Block2 (Copy-on-write Logical KV blocks

Block 0 | Four | score | and | seven |/ .Block 3 years | ago our | fathers | \Block 0 | Four | score | and | seven

Block 1 | years | ago our |fathers { Block 4 Block 1 | years | ago our he

Block 5

Block 6

Block 7 | Four | score | and | seven

Block 8

PagedAttention [Kwon et al., 2023] prevents redundant storage costs by
mapping KV cache blocks to physical “pages” of VRAM

38

Efficiency | meta-generators | KV Cache reuse
Welcome to vLLM

/LLM

Easy, fast, and cheap LLM serving for everyone

VLLM is a fast and easy-to-use library for LLM inference and serving.

PagedAttention VLLM [Kwon et al., 2023]: fast inference library, originally
built for PagedAttention

39

Efficiency | meta-generators | KV cache reuse

KV Cache reuse is not limited to single-level shared prefixes!

)

Q1: Write a python
program that reads
from...

Q3: Write a python
program that
uses....

Al: x = int(input()) ...
Q2: Write a python

program that
calculates...

Q3: Write a python
program that
prints....

A2: def solve(): ...

—

Multiple levels of prefix sharing can arise frequently: for example, combining
a long few-shot prompt with Best-of-N generation”

40
“Figure from [Juravsky et al., 2024]

Efficiency | meta-generators | KV Cache reuse

@ @ @) @ 5

U

You are a helpful assistant.

You are a helpful assistant. You are a helpful assistant. You are a helpful assistant.
User: Hello! User: Hello!
Assistant: Hil Assistant: Hi!

User: What can you do?
Assistant: | can ...

User: Hello!
Assistant: Hi!

User: What can you do?
Assistant: | can ...

User: Hello!
Assistant: Hi!

User: Solve this problem ...
T sove thie
Assistant: Sure ... User: Write a story ...

Assistant: Sure! ...

User: Solve this question...
Assistant: Sure! ...

RadixAttention enables complex prefix sharing patterns [Zheng et al., 2024],
evicting least-recently-used KV cache blocks from memory when needed

41

Efficiency | meta-generators | KV Cache reuse

(6) @)

Question 1: ...
You are a helpful assistant. Answer 1: ...

Question 1: ...
You are a helpful assistant. Answer 1: ...

User: What can you do?
Assistant: | can ...

User: Hello!
Assistant: Hi!

User: What can you do? Question 3: ..
Assistant: | can ... Answer 3: ..

User: Hello!
Assistant: Hi!

User: Write a story ... How ...

User: Write a story ...
Assistant: Sure! ... Answer 3:... | Answer 3:...

Assistant: Sure! ...

RadixAttention enables complex prefix sharing patterns [Zheng et al., 2024],
evicting least-recently-used KV cache blocks from memory when needed

42

Efficiency | meta-generators | KV Cache reuse

8) 9)

Question 1: ... Question 1: ...
Answer 1: ... You are a helpful assistant. Answer 1: ...
Question 2: ... Question 2: ...
Answer 2:... Answer 2:...
Question 3: User: Hello! Question 3:
Assistant: Hil

User: Hello!
Assistant: Hil

What ...
How ... Answer 3:

J
X Thisis ... Letus... Wecan ... To solve ...

RadixAttention enables complex prefix sharing patterns [Zheng et al., 2024],
evicting least-recently-used KV cache blocks from memory when needed

User: Solve this question...

Assistant: Sure! ...
User: How about ..?
Assistant: Itisa ...

43

Efficiency | meta-generators | KV Cache reuse

- SGlLang . vLLM Wl Guidance . LMQL

)
-
o

©

Latency
(Normalized
oo oo
o N

MMLU ReAct Generative Tree of Skeleton LLM judge HellaSwag JSON Multi-Turn Multi-Turn DSPy RAG
Agents Agents Thought of Thought Decoding Chat(short) Chat(long) Pipeline

Figure 6: Normalized latency on Llama-7B models. Lower is better.

m SGlang mem vLLM

Throughput
(Normalized)
© oo ow
o oo

MMLU ReAct Generative Tree of Skeleton LLM judge HellaSwag JSON Multi-Turn Multi-Turn DSPy RAG
Agents Agents Thought of Thought Decoding Chat(short) Chat(long) Pipeline

Figure 7: Normalized throughput on Mixtral-8x7B models with tensor parallelism. Higher is better.

SGLang [Zheng et al., 2024] latency and throughput comparison.

I

Efficiency | meta-generators | KV Cache reuse

[7]:|@function
def tip_suggestion(s):
s += assistant(
"Here are two tips for staying healthy: "

. of "1. Balanced Diet. 2
Search K

A . Regular Exercise.\n\n"
3)

Installation forks = s.fork(2)

for f in enumerate(forks):
f += assistant
f"Now, expand tip {i+1} into a paragraph:\n"
+ gen("detailed_tip", max_tokens=256, stop="\n\n")
Backend Tutorial

DeepSeek Usage s += assistant("Tip 1:" + forks[@] ["detailed_tip"] + "\
s += assistant("Tip 2:" + forks[1]["detailed_tip"] + "\n")
ending Requests s += assistant(

~ e - the above two tips, I can say:\n" + gen("summary", max_tokens=512)
OpenA Completions)

OpenAl AP on

OpenAl Embedding Siis o mosollEsiia
print_highlight(state["sunmary"])

SGLang [Zheng et al., 2024]

45

Efficiency | meta-generators | recap

Which meta-generators are most efficient?

- Parallelizable: trajectories can be run in parallel; not
sequentially bottlenecked

- Prefix-shareable: long inputs are presented as identical shared
prefix content, whose KV Caches can be reused across many
model calls

Token budget is not the only indicator of meta-generator efficiency!

46

Efficient generation | recap

- Basics: latency, throughput, bottlenecks, KV cache and batching
- Speeding up:

- Single-token generation

- Full sequence generation

- Multi-sequence generation

Token budget is not the only indicator of inference cost!

47

Efficient inference | tools

- Using a LLM on your laptop

-+ LM Studio: https://lmstudio.ai/
- Ollama: https://ollama.com/

48

https://lmstudio.ai/
https://ollama.com/
https://llm.mlc.ai/
https://docs.vllm.ai/
https://docs.sglang.ai/

Efficient inference | tools

- Using a LLM on your laptop

-+ LM Studio: https://lmstudio.ai/
- Ollama: https://ollama.com/

- Writing code to call LLMs on many types of devices (phone, etc.)
+ MLC LLM: https://1lm.mlc.ai/

48

https://lmstudio.ai/
https://ollama.com/
https://llm.mlc.ai/
https://docs.vllm.ai/
https://docs.sglang.ai/

Efficient inference | tools

- Using a LLM on your laptop

-+ LM Studio: https://lmstudio.ai/
- Ollama: https://ollama.com/

- Writing code to call LLMs on many types of devices (phone, etc.)
+ MLC LLM: https://1lm.mlc.ai/

- Writing code to call LLMs on GPU(s)

- VLLM: https://docs.vllm.ai/
- SGlang: https://docs.sglang.ai/

48

https://lmstudio.ai/
https://ollama.com/
https://llm.mlc.ai/
https://docs.vllm.ai/
https://docs.sglang.ai/

References i

@ Ainslie, J., Lee-Thorp, J,, de Jong, M, Zemlyanskiy, Y., Lebron, F,
and Sanghai, S. (2023).
Gqa: Training generalized multi-query transformer models from
multi-head checkpoints.

@ Chen, J,, Tiwari, V.,, Sadhukhan, R., Chen, Z,, Shi, J., Yen, |I. E-H., and
Chen, B. (2024).
Magicdec: Breaking the latency-throughput tradeoff for long
context generation with speculative decoding.

3 Dao, T, Fu,D.Y, Ermon, S, Rudra, A, and Re, C. (2022).
Flashattention: Fast and memory-efficient exact attention with
io-awareness.

ArXiv preprint, abs/220514135.

49

References ii

[§ Fedus, W, Zoph, B., and Shazeer, N. (2022).
Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity.
[He, H. (2022).
Making deep learning go brrrr from first principles.
@ Juravsky, J., Brown, B., Ehrlich, R, Fu, D. Y, Ré, C, and Mirhoseini, A.
(2024).
Hydragen: High-throughput llm inference with shared prefixes.
@ Kwon, W.,, Li, Z, Zhuang, S., Sheng, Y,, Zheng, L., Yu, C. H., Gonzalez,
J. E, Zhang, H., and Stoica, I. (2023).
Efficient memory management for large language model serving
with pagedattention.

50

References iii

@ Xia, H, Yang, Z, Dong, Q., Wang, P, Li, Y, Ge, T, Liu, T, Li, W., and
Sui, Z. (2024).
Unlocking efficiency in large language model inference: A
comprehensive survey of speculative decoding.

@ Zheng, L, Yin, L, Xie, Z,, Sun, C, Huang, J., Yu, C. H,, Cao, S,,
Kozyrakis, C., Stoica, I., Gonzalez,). E., Barrett, C,, and Sheng, V.
(2024).

Sglang: Efficient execution of structured language model
programs.

51

