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Efficient inference

Using the L1 model on a Macbook with LM Studio
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Efficient inference

Using a LLM API
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Efficient inference

Running experiments involving a lot of inference

3



Efficient inference

Serving many customer requests
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Efficiency | goals

Scope:

• Basics of efficient inference
• How can we make inference strategies faster?
• Which strategies are most efficient?
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Recap: Inference

• Generate a single sequence, y ∼ pθ(y|x)
• y1 ∼ pθ(·|x)
• y2 ∼ pθ(·|y1, x)
• y3 ∼ pθ(·|y1, y2, x)
• ...

• Inference strategies that involve generating multiple sequences
• Best-of-N, voting
• Tree search
• Refinement
• ...

See decoding lecture (#7) and advanced inference (#21) lecture
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Efficiency | basics

How do we measure “efficiency”?

• Latency
• How long does a user wait for a response?

• Startup overhead
• Slow token generation

• Time to first token, time per request

• Throughput
• How many requests are completed per second?

• How well the GPU is utilized
• Parallelism (e.g., batching, multiple devices)

• Tokens per second, requests per second
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Efficiency | basics

Latency, Throughput, and Quality often trade off at a given budget.

Example: queueing (waiting to be batched) can hurt latency
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Basics | hardware

Key problem: efficiently execute operations on the given hardware

• Re-use computation
• Take advantage of unique hardware advantages
• Minimize bottlenecks
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Basics | hardware

How do ML accelerator designs impact generation efficiency?

• How much data can we keep on-device?
• VRAM (GB): e.g., 80GB

• How many operations/second can the device perform?
• FLOP/s: e.g., 1,979 teraFLOP/s

• How long does it take to send operands from GPU memory
(HBM) to the processor?

• Memory Bandwidth (GB/s): e.g. 3.35 TB/s
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Basics | bottlenecks

• Loading inputs (activations) from memory

• Memory Bandwidth

• Loading weights from memory

• Memory Bandwidth

• Performing computation

• FLOP/s

• Communicating across devices

• Communication Speeds (GB/s)

• ...
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Basics | bottlenecks

Time per operation can be modeled as1:

Time = max
(

Operation FLOP
Device FLOP/s

,
Data Transferred (GB)

Memory Bandwidth (GB/s)

)

Operations are either “compute-bound” or “memory-bound”

1[He, 2022]
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Basics | stages and KV cache

Prefill Stage: process prompt all at
once. Keys and values retained and
initialize the “KV Cache”.

Decode Stage: use cached KV values
to compute attention for current
timestep. Append new K, V to KV cache

Size = (batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

KV Cache storage can exceed the weights’ storage size, especially for
long-context and large batches!
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Efficiency | KV cache

KV cache in Llama 3 inference code
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Basics | batching

Inputs to a model can be batched together and computed simultaneously.
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Basics | when does batching matter?

LLM APIs, batch inference, RL
• Combine multiple user
prompts into a batch

• Process many inputs at once
for evaluation or training

Throughput is a main concern
• Tokens per second across all
sequences

Single-user, interactive use
• Single-user chat
• Streaming outputs

• Batching can increase wait
time before first token

Latency is a main concern
• Time to first token
• Time for a single sequence
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Recap | basics

• Latency, throughput, quality
• Hardware constraints: storage, communication costs,
computation costs

• KV cache
• Batching
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Outline

Efficient inference

• Generating a single token
• Generating a full sequence
• Generating multiple sequences
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Outline

Efficient inference
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Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

• Memory Bandwidth ↓: shrink the data we need to move
• FLOP/s ↑: better utilize the hardware
• FLOP ↓: use fewer operations

20
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Efficiency | single-token

Memory Bandwidth ↓: reduce data transferred

• Quantize weights or activations

• Compress or distill model

(bytes per parameter) · (total parameters)
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Efficiency | single-token

Memory Bandwidth ↓: reduce data transferred

gpt-fast benchmarks

22

https://github.com/pytorch-labs/gpt-fast


Efficiency | single-token

Memory Bandwidth ↓: reduce data transferred

The KV cache is a key source of memory bandwidth overhead

(batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

Architectural tweaks such as Grouped-Query Attention [Ainslie et al., 2023] reduce the
number of Key + Value attention heads to shrink the required KV Cache size
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Efficiency | single-token

Memory Bandwidth ↓: reduce data transferred

The KV cache is a key source of memory bandwidth overhead

(batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

As with model weights, elements of the KV cache can be quantized to reduce
memory overheads
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Efficiency | single-token

FLOP/s ↑: improve hardware utilization

(FLOP per second) · (total operation FLOP)

Flash Attention [Dao et al., 2022] performs the same operations, but
optimizes the implementation to achieve far greater speed
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Efficiency | single-token

Flash attention 2 benchmarking
(https://huggingface.co/docs/transformers/v4.34.0/perf_infer_gpu_one)
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Efficiency | single-token

FLOP ↓: reduce operations required

(FLOP per second) · (total operation FLOP)

Mixture-of-Experts models use fewer FLOP per token than equi-parameter
dense models [Fedus et al., 2022]
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Efficiency | single-token
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Outline

Efficient inference

• Generating a single token
• Generating a full sequence
• Generating multiple sequences
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Efficiency | single-generation

Generation of long outputs is bottlenecked by sequential next-token
prediction. But not all tokens are created equal!

... The cow jumped over the moon . <EOS>

How can we spend less time on “easier” tokens?
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Efficiency | single-generation | speculative decoding

Speculative decoding uses a smaller draft model to produce “guesses” for
the next N tokens cheaply, which are then “accepted” or “rejected” in parallel
by the main model [Xia et al., 2024]
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Efficiency | single-generation | speculative decoding

1 def speculative_decode(tgt_m, drf_m, tok, inp: torch.Tensor, max_tok:
int, n_spec: int = 5, t: float = 1.0):

2 gen = inp; max_len = inp.shape[1] + max_tok
3 while gen.shape[1] < max_len:
4 tok_left = max_len - gen.shape[1]
5 spec_size = min(n_spec, tok_left - 1)
6 if spec_size > 0:
7 spec_id, spec_lprob = generate(drf_m, tok, gen, spec_size, t)
8 tgt_lprob = tgt_m(spec_id) # forwarding tgt model
9 rejs = compute_ll_rejs(tgt_lprob, spec_lprob)
10 if len(rejs) > 0:
11 accepted = spec_id[:, :rejs[0]]
12 adj_probs = compute_adjusted_dist(tgt_lprob, spec_lprob)
13 next_tok = Categorical(adj_probs)
14 else:
15 accepted = spec_id
16 next_tok = Categorical(tgt_lprob.exp())
17 gen = torch.cat([gen, accepted, next_tok])
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Efficiency | single-generation | speculative decoding

1 def compute_ll_rejs(tgt_lprob: torch.Tensor, spec_lprob: torch.Tensor,
spec_tok_id: torch.Tensor) -> torch.Tensor:

2 llrs = tgt_lprob[spec_tok_id] - spec_lprob[spec_tok_id]
3 uniform_lprobs = torch.log(torch.rand_like(llrs))
4 rej_idx = torch.nonzero((llrs <= uniform_lprobs))
5 return rej_idx
6

7 def compute_adjusted_dist(tgt_lprob: torch.Tensor, spec_lprob:
torch.Tensor, rej_idx: torch.Tensor) -> torch.Tensor:

8 adj_dist = torch.clamp(
9 torch.exp(tgt_lprob[rej_idx]) - torch.exp(spec_lprob[rej_idx]),
10 min=0
11 )
12 adj_dist = torch.div(adj_dist, adj_dist.sum())
13 return adj_dist
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Efficiency | single-generation | speculative decoding

Draft model acceptance rates are distribution-dependent2

2https://github.com/cmu-l3/neurips2024-inference-tutorial-code/tree/main/section3
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Efficiency | single-generation | speculative decoding

Speculative decoding can harm throughput at low context but improves both
throughput and latency at long context lengths [Chen et al., 2024]
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Outline

Efficient inference

• Generating a single token
• Generating a full sequence
• Generating multiple sequences

• Batched generation settings
• Meta-generation strategies: best-of-N, tree search, ...
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Efficiency | meta-generators

Key idea:

• Leverage redundancy across generations to re-use computation

36



Efficiency | meta-generators | KV Cache reuse

Common deployment and parallel generation scenarios have redundant
shared prefix content in prompts3

3Figure from [Juravsky et al., 2024]
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Efficiency | meta-generators | KV Cache reuse

PagedAttention [Kwon et al., 2023] prevents redundant storage costs by
mapping KV cache blocks to physical “pages” of VRAM
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Efficiency | meta-generators | KV Cache reuse

PagedAttention VLLM [Kwon et al., 2023]: fast inference library, originally
built for PagedAttention
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Efficiency | meta-generators | KV cache reuse

KV Cache reuse is not limited to single-level shared prefixes!

Multiple levels of prefix sharing can arise frequently: for example, combining
a long few-shot prompt with Best-of-N generation4

4Figure from [Juravsky et al., 2024]
40



Efficiency | meta-generators | KV Cache reuse

RadixAttention enables complex prefix sharing patterns [Zheng et al., 2024],
evicting least-recently-used KV cache blocks from memory when needed
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Efficiency | meta-generators | KV Cache reuse

SGLang [Zheng et al., 2024] latency and throughput comparison.
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Efficiency | meta-generators | KV Cache reuse

SGLang [Zheng et al., 2024]
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Efficiency | meta-generators | recap

Which meta-generators are most efficient?

• Parallelizable: trajectories can be run in parallel; not
sequentially bottlenecked

• Prefix-shareable: long inputs are presented as identical shared
prefix content, whose KV Caches can be reused across many
model calls

Token budget is not the only indicator of meta-generator efficiency!
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Efficient generation | recap

• Basics: latency, throughput, bottlenecks, KV cache and batching
• Speeding up:

• Single-token generation
• Full sequence generation
• Multi-sequence generation

Token budget is not the only indicator of inference cost!
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Efficient inference | tools

• Using a LLM on your laptop
• LM Studio: https://lmstudio.ai/
• Ollama: https://ollama.com/

• Writing code to call LLMs on many types of devices (phone, etc.)
• MLC LLM: https://llm.mlc.ai/

• Writing code to call LLMs on GPU(s)
• VLLM: https://docs.vllm.ai/
• SGLang: https://docs.sglang.ai/

48
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