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Generate a framed picture of Pittsburgh in an Impressionist style

Image created

Example: ChatGPT 40



25 huggingface.co/spaces/Junfeng5/Liquid_demo D o) -

@ Junfeng5/Liquid_demo T O like 28 » App = Filess @ Com

Liquid: Language Models are Scalable and Unified Multi-modal Generators
has been open-sourced on ® and ¥ . If you find Liquid useful, a like™ or a star¥ would be appreciated.

Liquid explores the potential of a single LLM as a multimodal generator and its scaling laws. It achieves the level of diffusion models in visual generation and discovers the mutual enhancement between
understanding and generation. More details can be found on the project and in the
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Enter a text prompt or simply try one of the examples below to generate 4 images at once. Click to display the full image. You can configure hyperparameters for image generation in the Advanced Settings.

1% Advanced Settings

Guidance Scale 7 temperature

o— o— o

& Chatbot A picture of Pittsburgh in an Impressionist style |«

-
<
h

= 2
1] Wit 5

| —

Example: Liguid


https://huggingface.co/spaces/Junfeng5/Liquid_demo

Today's lecture

1

Text Image

-

f Image Te%
!

1




Today's lecture

e Basic generative modeling
paradigms

1

Text Image

-

f Image Te%
!

1




Today's lecture

e Basic generative modeling f Image Te%
paradigms t

e Autoregressive modeling of
pixels

1

Text Image

- %




Today's lecture

e Basic generative modeling
paradigms

e Autoregressive modeling of
pixels

e Autoregressive modeling of
‘Image tokens”

1

Text Image

\_

( Image Te%
!

1




Today's lecture

Basic generative modeling
paradigms

Autoregressive modeling of
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Autoregressive modeling of
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Generative modeling paradigms
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Generative modeling paradigms

Po(x)
Train Generati\a

Model

L

Py(x)

Sample




Generative modeling paradigms

Autoregressive
Variational auto-encoder (VAE)
Generative adversarial networks (GAN)

Diffusion models



Autoregressive

I e

«

* (Generate one dimension (e.g., token, pixel) at a
time given the previous ones



Variational Auto-encoders (VAE)

* |earn to reconstruct the image by compressing it
iInto a vector and uncompressing it



Generative adversarial networks (GAN)

* Learn to generate an image by fooling a
discriminator that detects whether an image is fake



Diffusion models

radually add noise to an image,
en learn to de-noise



Generative modeling paradigms

Autoregressive

Diffusion
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Goal

* Image tokenizer

Done!

* Image “de-tokenizer”

Transformer Encoder

111

<s> Remove Dbridges </s>

* Single Transformer for
text and image
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Roadmap

* Attempt 1. use a standard auto-regressive model
* Jokenizer: individual pixels

* De-tokenizer: generate individual pixels, no de-
tokenizer needed

o Attempt 2: learn a discrete tokenizer / de-tokenizer
» Vector-quantized VAE (VQ-VAE)

* VQ-GAN
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Auto-regressive model

* Basic idea: treat an image as a seqguence of pixels
* Learn a language model over the pixel sequences

| HXxXWxC
¢+ Ximg ER = X|y eens X7

. x, € {1,2,...,256)

* (Given a dataset of sequences:

T
. LMLE = Z — log py(x, | x)

=1



Example: PixelRNN

[van den Oord 2016]

occluded completions original
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Figure 1. Image completions sampled from a PixelRNN.




Example: Pixel CNN

[van den Oord 2016]

Lhasa Apso (dog)



Example: Image Transformer

[Parmar et al 2018]
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- Key challenge: sequence length

Auto-regressive model

- 1024 x 1024 image with 3
channels (RGB) .

- 3 million tokens
Typically involved
alternative
memory-efficient
attention patterns



Roadmap

* Attempt 1: use a standard auto-regressive model
o Attempt 2: learn a discrete tokenizer / de-tokenizer
* Vector-quantized VAE (VQ-VAE)

* VQ-GAN
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» Learn a tokenizer that compactly < etokenor >
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sequence of discrete tokens. T
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» Learn a tokenizer that compactly < etokenor >
represents an image as a

sequence of discrete tokens. T
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* Vocabulary: 8,000 token ids T
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|dea

» Learn a tokenizer that compactly < etokenor >
represents an image as a

sequence of discrete tokens. T
ol ot et
* Vocabulary: 8,000 token ids T
* Image: sequence of 1024 < Tokenizer >
tokens

* Approach: VQ-VAE




VAE

* |earn to reconstruct the image by compressing it
iInto a vector and uncompressing it



VAE

.

z~ p2)

o After training, generate by sampling a latent vector
from the prior and passing it to the decoder



Standard VAE

[Kingma & Welling 2013]
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 Goal: learn to compress data (like images) into a low-
dimensional representation z, and then reconstruct or

generate new data with it
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Standard VAE

[Kingma & Welling 2013]

 Goal: learn to compress data (like images) into a low-
dimensional representation z, and then reconstruct or
generate new data with it

 Assume that data is generated as follows:
« First sample a latent variable z ~ p(2)

. Turn it into data x with a decoder, py(x|z)

. The encoder maps data x into a latent variable, g,(z | x)



Standard VAE

[Kingma & Welling 2013]
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* Jrain by balancing two goals:
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Standard VAE

[Kingma & Welling 2013]

* Jrain by balancing two goals:
- Reconstruct the input well:
Reconstruction loss: —log p(x | z)

- Keep 7 values well behaved:
Regularization: Dy (q(z | x)H/V(O,I))

Makes the encoder’s output distribution close to a
standard Gaussian



Standard VAE

[Kingma & Welling 2013]

e FInal loss:
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[Kingma & Welling 2013]

e FInal loss:
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Standard VAE

[Kingma & Welling 2013]

e FInal loss:

LyapX) = = E 1 [log p(x| 2)] + Dy (q(z| 0)1147(0,))

* Principled formulation and derivation based on
variational inference: see [Kingma & Welling 2013]



Standard VAE
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From continuous to
discrete

( Detokenizer )
T

1
T

( Tokenizer )




From continuous to
discrete

e Standard VAEs give us a way to < Detokenizer >

encode and decode images using t
a continuous vector T

[ ansformer Encod ]

< Tokenizer >




From continuous to
discrete

e Standard VAEs give us a way to < Detokenizer >

encode and decode images using t
a continuous vector T
e |dea: make a discrete VAE to let us: !

, HSTR12E5
* encode an image as a sequence dEEE
of discrete tokens Tokenizer >

* decode an image from a
sequence of discrete tokens




VQ-VAE

[van den Oord 2017]

— /,Encoder

~




. Encoder: g(z]| x)

VQ-VAE

[van den Oord 2017]
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. Encoder: g(z]| x)

° x—>Ze(X) = Rd

VQ-VAE

[van den Oord 2017]
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. Encoder: g(z]| x)
¢ X = Z,(X) € R4

. Quantizer: z,(x) — zq(x)

VQ-VAE

[van den Oord 2017]
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VQ-VAE

[van den Oord 2017] Codebook

Vec__tors
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VQ-VAE

[van den Oord 2017] Codebook

Vec__tors

| fEncoder - ﬁ

 Encoder: g(z| x)
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|
o Quantizer: Ze(X) —> Zq(-x) ]
. Compare z,(x) to a set of - ~ E

learned codebook vectors 4

) al— arg min ||Ze(X) — ej“2 K J

jell,.. K}

|
( Decoder )
|




VQ-VAE

[van den Oord 2017] Codebook

Vec__tors

 Encoder: g(z| x)

. x = z,(x) € R?

| fEncoder — \

_0
*}
¢
*
e |
,
+———

. Quantizer: z,(x) — zq(x)

« Compare z,(x) to a set of
learned codebook vectors

o Z,(X) = €, where

k¥ =arg min_|lz,(x) — ¢l
JE{L,....K}

1 k=k*

0 otherwise

. q(z=kIX)={




VQ-VAE

[van den Oord 2017] C\gdetbook
ectors
. Encoder: g(z]| x)
| ( Encoder f—\
rd —.
¢ X = Z,(X) € 1 5 s —
. Quantizer: z,(x) = z,(x) —1
- Compare z,(x) to a set of - JE
learned codebook vectors '
o Z,(X) = €, where
k* =arg min ||z,(x) — ¢, K J
FE(l. K] A
|k =k '
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 Decoder:
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VQ-VAE training
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VQ-VAE training

. Z =logp(x|z,(x)) + lIsglz(0)] — ell3 + Bllz,(x) — sglel|l3

N ' C Decoder ) s .
_>




VQ-VAE training

. Z =logp(x|z,(x)+ |Isg[z,(x)] - e||5 + Bllz(x) — sglelll;

Reconstruction

GI I

Decoder —
eIeC -




VQ-VAE training

. £ =logp(x|z,(x)) + |Isg[z,(x)] - e||5 + Bllz(x) — sglelll;
Update
Reconstruction codebook

embedding




VQ-VAE training

. £ =logp(x|z,(x)) + |Isg[z,(x)] - e||5 + Bllz.(x) — sglelll;

Update Make encoder
Reconstruction codebook ‘commit to” a
embedding codebook

embedding




VQ-VAE training

. Z =logp(x|z,(x) + |Isglz,(x)] — e||5 + Bllz.(x) — sglelll;

Update Make encoder

Reconstruction codebook ‘commit to” a
embedding codebook
embedding

* For reconstruction loss, use a straight-through gradient
estimator since the codebook lookup is non-differentiable

_»( Decoder ) — .
\./VOCZ

Copy
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Example

e DALL-E tokenizer

x_stats = dec(z).float()
x_rec = unmap_pixels(torch.sigmoid(x_stats[:, :3]))
x_rec = T.ToPILImage(mode="RGB') (x_rec[0])

import torch.nn.functional as F

display_markdown('Reconstructed image:"')
z_logits enc(x) display(x_rec)
z_tokens = torch.argmax(z_logits, axis=1)
z = F.one_hot(z_tokens, num_classes=enc.vocab_size).pe v 03s
z_tokens, z_tokens.shape

v 0.bs

(tensor([[[7522, 741, 119, ... 4695],
[ 782, 7459, 4762, ... 5887],
[1580, 4066, 5768, ... 2913],
ceey
[3990, 7130, 5047, ... 12121,
[4898, 5659, 6296, ... 63971,
[2757, 3243, 5504, ... 7261]111),
torch.Size([1, 32, 321))

https://github.com/openai/DALL-E



https://github.com/openai/DALL-E

VQ-GAN

[Esser et al 2021]

real/fake
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VQ-GAN

[Esser et al 2021]

real/fake

/COdEbOOk Z\ (Transformer I \ flr| f|r
,.I|||I 1B

0 EE—

1. . p(s) = Hi p(si[s<i)

CNN
Discriminator

N
N
N

. ~ CNN
argmill,. cz ”Z — % ” Decoder

>

quantization

* Modify VQ-VAE objective: use a GAN objective and perceptual loss



VQ-GAN

[Esser et al 2021]

real/fake
. " Codebook Z ) /" Transformer

I—'T;—_‘ I I II I f r f r
P e : S— . I I II 1 f | f|r|f

p(s) = 11; p(sils<i)

CNN
Discriminator
~
N
~
. ~ 4 CNN
arg ming, c z ”Z — % ” Decoder
>
quantization

* Modify VQ-VAE objective: use a GAN objective and perceptual loss

* Train an autoregressive transformer (“language model”) on the resulting discrete
tokenized images. Generate images with it.



VQ-GAN

[Esser et al 2021]

Training the encoder/decoder:
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Training the encoder/decoder:
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¢ X



VQ-GAN

[Esser et al 2021]

Training the encoder/decoder:

G(select(£(x))

¢ X

* (3: generator



VQ-GAN

[Esser et al 2021]

Training the encoder/decoder:

e X = G(select(E(x))
* (3: generator

e E: encoder



VQ-GAN

[Esser et al 2021]

Training the encoder/decoder:

e X = G(select(E(x))
* (3: generator

e E: encoder

o LaN = log D(x) + log(1 — D(x))



VQ-GAN

[Esser et al 2021]

Training the encoder/decoder:

G(select(£(x))

¢ X
* (3: generator

e E: encoder
o LaN = log D(x) + log(1 — D(x))

e D: discriminator



VQ-GAN

[Esser et al 2021

Training the transformer language moc

el:
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[Esser et al 2021]

Training the transformer language model:

* Tokenize lots of images using the tokenizer (encoder)

Ximg = (K15 X0« 05 X7)
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VQ-GAN

[Esser et al 2021]

Training the transformer language model:

* Tokenize lots of images using the tokenizer (encoder)

Ximg = (K15 X0« 05 X7)

* Train an autoregressive transtormer:

K =

ximg

T
[_ 10g Hp(xt ‘ )C<t)]
=1



VQ-GAN

[Esser et al 2021

Training the transformer language model:

* Tokenize lots of images using the tokenizer (encoder)

Ximg = (K15 X0« 05 X7)

* Train an autoregressive transtormer:

T
z =E, [-log]]pexlx,)
=1

« Example T: 32 x 32 = 1024



VQ-GAN

[Esser et al 2021]

Training the transformer language model:

* Tokenize lots of images using the tokenizer (encoder)

Ximg = (K15 X0« 05 X7)

* Train an autoregressive transtormer:

K =

X

img

T
[_ 10g Hp(xt ‘ )C<t)]
=1

« Example T: 32 x 32 = 1024

 Much less than modeling pixels (256x256 = 65,536)!



VQ-GAN

[Esser et al 2021]




VQ-GAN

[Esser et al 2021]

conditioning samples




Recap

 Tokenizer: VQ-VAE/NQ-GAN < | >
Detokenizer
encoder
T
. De-tokenizer: VQ-VAE/NQ-GAN 1

decoder [

Transformer Encoder ]

T

( Tokenizer )




Recap

 Tokenizer: VQ-VAE/NQ-GAN < | >
Detokenizer
encoder
T
« De-tokenizer: VQ-VAE/NQ-GAN 1
decoder [' I ]
e Next: T
* Add the tokens to a language |
, Tokenizer
model’s vocabulary

e Train / fine-tune the model on
both text and image tokens




Example: Chameleon

[Meta 2024]

 Train a VQ-GAN tokenizer/de-tokenizer

* [hen train a language model on 10T tokens



Example: Chameleon

[Meta 2024]

Prompt: <img> While chameleons are masters of camouflage in the natural
world, let’s see how they might fare in a man-made setting.

1. Analyze the colors, patterns, and textures in this image and identify the
most challenging spot for a chameleon to blend in.

2. Then generate an image of a chameleon with the optimal pattern to
camouflage itself.

3. Then, rate and explain how successful each attempt is on a scale from 1-10.

7. "7»7—\ )
NES

]

)

‘f

/

)

- %

1

\_

Response: The image is of a stop sign in a forested area, with some sunlight filtering through the trees.
The sign has a red octagonal shape with a white border and the word "STOP" written in white letters.
In the background, there are green leaves and trees.

Challenging Spot for a Chameleon: The stop sign would be the most challenging spot for a chameleon
to blend in due to its bright red color and bold white letters, which would stand out in the forested

environment.

Optimal Pattern for Camouflage: To camouflage itself on the stop sign, a chameleon would need
to have a pattern that would break up its outline and make it less conspicuous. A pattern with shades
of brown and red would help the chameleon blend in more effectively.
- Additionally, a mottled or dappled pattern would help to scatter
~  light and further reduce the chameleon’s visibility.
| <img>
Rating and Explanation: A rating of 2/10 would be given for
the chameleon’s ability to blend in on the stop sign. While the
chameleon’s green and brown pattern helps to break up its outline,
: the bright red color of the stop sign will still make it stand out in
- e the forested environment.
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image

BPE
tokenize

VQVAE
tokenize

Example: Liquid

[Wu et al 2024]

1 “Cheer” “ful”

1

' “snowman” “in”
—- |

1 .

1 “a”  “winter

1

I “wonderland”

Words vocabulary
—

Image codebook

Text discrete tokens
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Image discrete tokens

e VQ-GAN tokenizer

e Fine-tune LLMs

Unified Token Space

LLMs
p(s) = Il;p(sils<)

[32]54] 7 [782lesalsiy] 2 |
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BPE
detokenize

VQVAE
detokenize

“Cheerful snowman in
a winter wonderland.”




Other methods

* A big missing piece: diffusion!
e Many text-to-image models
e An extremely quick overview of

some early references (up to
early 2022)

Diffusion
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Denoising Diffusion Probabilistic Models
[Ho et al 2020}

Do (X¢— 1|Xt)
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Denoising Diffusion Probabilistic Models

Jonathan Ho AjayJain = Pieter Abbeel



Score-based generative models
Song & Ermon 2020

Generative Modeling by Estimating Gradients of the
Data Distribution

Yang Song Stefano Ermon
Stanford University Stanford University
yangsong@cs.stanford.edu ermon@cs.stanford.edu



Diffusion Models Beat GANSs
hariwal & Nichol 2021

Diffusion Models Beat GANs on Image Synthesis

Prafulla Dhariwal* Alex Nichol*
OpenAl OpenAl
prafulla@openai.com alex@openai.com



Text-Guided Diffusion Models
Nichol et al 2022

. ) A ‘ L 4 -+
“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small
calculator” and a purple party hat” vipassana retreat” cottage next to a lake”

GLIDE: Towards Photorealistic Image Generation and Editing with
Text-Guided Diffusion Models

Alex Nichol* Prafulla Dhariwal© Aditya Ramesh” Pranav Shyam Pamela Mishkin Bob McGrew
Ilya Sutskever Mark Chen



DALL-E 2
Ramesh et al 2022

vibrant portrait painting of Salvador Dali with a robotic half face a shiba inu wearing a beret and black turtleneck a close up of a handpalm with leaves growing from it

Hierarchical Text-Conditional
Image Generation with CLIP Latents

Aditya Ramesh* Prafulla Dhariwal* Alex Nichol*
OpenAl OpenAl OpenAl
aramesh@openai.com prafulla@openai.com alex@openai.com
Casey Chu* Mark Chen
OpenAl OpenAl

casey@openai.com mark@openai.com
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