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Recap: pre-training
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Post-training

• Post-training: keep training a base model 

• Fine-tuning (e.g., instruction tuning) 

• Reinforcement learning 

• Other learning algorithms 

• Goal: make the model better for downstream use 

• As a chat model, as a problem solving model, …



Today’s lecture

• Language model reinforcement learning pipeline 

• Example: RLHF 

• Supervised fine-tuning 

• Reward modeling  

• Reinforcement learning 

• Direct preference optimization



Recap: reinforcement learning

Let’s think step by step. 2 + 3 = 23.

Reward

ModelWhat is 2+3?

Generate

Update
Let’s think step by step. 2 + 3 = 5.



Key idea: keep training using feedback

• Example feedback: reward function 

• Example algorithm: policy gradient



Preference Feedback
• Sometimes it’s easier to collect data on preferences



RL from Human Feedback (RLHF)
1. Supervised fine-tuning (SFT): Fine-tune a language model using a 

dataset . 

• Example:  is a prompt,  is a human-written response 

2. Reward modeling: Train a reward model  using preference data 
 

• Example:  is a prompt,  is a model-generated response 

3. Reinforcement learning (RL): Further fine-tune the language model from 
step 1 (call it ) using a reinforcement learning algorithm: 

 

• Example:  is a prompt, PPO is the RL algorithm

DSFT = {(x(n), y(n))}N
n=1

x y

rϕ(x, y)
DPref = {(x, y(n)

+ , y(n)
− )}N′ 

n=1

x y

p0

pθ = RL(p0, rϕ, {x(n)}N′ ′ 
n=1)

x



RL from Human Feedback (RLHF)

Ouyang et al 2022



Step 1: SFT
1. Supervised fine-tuning (SFT): 

Fine-tune a language model 
using a dataset 

. 

• Example data: 

• Alpaca [Taori et al 2023]: 
52,000 model-generated 
(prompt, response) examples 

• Any technique from the 
instruction-tuning lecture!  
(see Lecture 9) 

DSFT = {(x(n), y(n))}N
n=1



Large-scale example (AI2 Tulu 3)
• 900k prompts: 

• 57%: open-source data 

• 43%: generate additional 
prompts for instruction 
following, math, and code. 
Generate responses using 
proprietary models 

• Skill-specific mixtures: keep the 
mixtures that led to the best 
performance on individual skills



Step 2: Reward modeling
2. Reward modeling: Train a reward model 

 using preference data 
 

• Prompts : re-use SFT dataset prompts and/
or introduce new ones 

• Example: AlpacaFarm [Dubois et al 2024]: 
reserved out 10k of the 52k Alpaca data 
for generating  

• Responses : generate with SFT model or 
other models

• Need: (i) preference ratings, (ii) method to 
train the reward model 

rϕ(x, y)
DPref = {(x, y(n)

+ , y(n)
− )}N′ 

n=1

x

Dpref

y



Gathering preference ratings
• Given , determine which response 

is better (or rank > 2 responses) 

• Approach 1: use human labelers 

• E.g. Open AI, Meta, hire them 

• Approach 2: use a strong language 
model 

• E.g. AlpacaFarm [Dubois et al 2024]: 
used a GPT model to rate responses 
generated by Llama

x, y1, y2



Large-scale example (AI2 Tulu 3)



Training the reward model
• Given a dataset  

• Train model to assign higher scores to : 

 

D = {(y(n)
+ , y(n)

− )}N
n=1

y+

ℒ = − ∑
y+,y−∈D

log σ (rθ(y+) − rθ(y−))

Where does this come from?



Reward model objective

• Bradley-Terry model (1952): A probability model 
for the outcome of pairwise comparisons 

• Given items , it estimates the probability that the 
pairwise comparison  is true as, 

i, j
i > j

Pr(i > j) =
pi

pi + pj



Reward model objective
• Define : 

 

                 

                 

                

pi = exp (rθ(yi))

p(yi ≻ yj) =
exp(rθ(yi))

exp(rθ(yi)) + exp(rθ(yj))

=
1

1 + (exp(rθ(yj))/exp(rθ(yi)))

=
1

1 + exp (−[rθ(yi) − rθ(yj)])
= σ (rθ(yi) − rθ(yj))

Sigmoid function 
σ(z) = 1

1 + exp(−z)

Divide by  
exp(rθ(yi))



Reward model objective
• Likelihood of observing all preferences in the dataset: 

 

• Maximize likelihood (minimize negative log-likelihood) 
via the loss: 

ℒ(θ) = ∏
(yi,yj)∈𝒟

σ(rθ(yi) − rθ(yj))

ℒNLL(θ) = − log ℒ(θ)

= − ∑
(yi,yj)∈𝒟

log σ (rθ(yi) − rθ(yj))



Step 3: Reinforcement learning
3. Reinforcement learning (RL): 

Further fine-tune the language 
model from step 1 (call it ) using a 
reinforcement learning algorithm: 

 

• Important in practice (next slides): 

• Prevent the model  from moving 
too far from the original model  

• “Catastrophic forgetting”, reward 
hacking

p0

pθ = RL(p0, rϕ, {x(n)}N′ ′ 

n=1)

pθ
p0



KL Divergence constraint
• Maximize expected reward subject to a KL divergence penalty: 

 

• Higher : more pressure to stay close to the original model 

• Lower : more freedom to maximize reward 

• Common approach: introduce through a modified reward: 

 

Requires keeping around a copy of the original model  (“reference policy”)!

arg max
θ

𝔼x,y [r(x, y)] − βDKL(pθ∥p0)

β

β

rKL = − β log
pθ(y |x)
p0(y |x)

p0



KL Divergence constraint

This reward approximates the KL divergence: 

 

                                         

                  

where , i.e. a single-sample Monte-Carlo approximation.  

DKL (pθ(y |x)∥p0(y |x)) = ∑
y

pθ(y |x)log
pθ(y |x)
p0(y |x)

= 𝔼y∼pθ
log

pθ(y |x)
p0(y |x)

≈ log
pθ( ̂y |x)
p0( ̂y |x)

̂y ∼ pθ( ⋅ |x)



KL Divergence constraint
In summary, we add a reward penalty so that we optimize: 

 

The policy that maximizes this objective is: 

 

See Korbak et al 2022 or Rafailov et al 2023 for the derivation

arg max
θ

𝔼x,y [r(x, y)] − βDKL(pθ∥p0)

pθ(y |x) =
1

Z(x)
p0(y |x)exp ( 1

β
r(x, y))



Algorithm variants
Policy gradient (REINFORCE) 

 

=> gradient =  

 
Proximal policy optimization (PPO)

 

LPG = Wt log pθ(yt |y<t, x)

Wt ∇θlog pθ(yt |y<t, x)

LPPO = min ( pθ(yt |y<t, x)
pθold

(yt |y<t, x)
Wt, clip ( pθ(yt |y<t, x)

pθold
(yt |y<t, x)

(x, y),1 − ϵ,1 + ϵ) Wt)
Next: different choices for weights Wt



Weighting variants
Different ways to weight each gradient update based on the rewards: 

• Option 1: use discounted cumulative rewards  

•
  

• Option 2: use a baseline: 

•   

• Common baseline: learn a state-value function: 

Wt : Rt = ∑
k=t+1

γk−trk

Wt : (Rt − b(st))

V(st)



Weighting variants
State-value function: predicts how good the state is 

 

In practice, add a scalar output head to the transformer, collect 
states and rewards, and minimize an L2 loss: 

 

When used as a baseline, the observed return needs to be better 
than average in order to result in a positive gradient update: 

V(st) = 𝔼[Rt]

LVF = ∥vϕ(st) − Rt∥

Wt = (Rt − vϕ(st))



General view: advantages
We can define the advantage of state and action: 

 

 
  

Advantage is positive when the action  is better than average 

We can set  if we have a way to estimate the 
advantage

A(st, at) = Q(st, at) − V(st)

V(st) = 𝔼[Rt]
Q(st, at) = 𝔼[Rt |at]

at

Wt = A(st, at)



Estimating advantages
 

Several estimates do not add additional bias when used in 
place of the true advantage [Schulman et al 2016]: 

•  (Option 1, discounted return) 

•  (Option 2, with baseline) 

•  (Temporal-Difference (TD) Error)

A(st, at) = Q(st, at) − V(st)

Rt

Rt − b(st)

rt + γV(st+1) − V(st)



Estimating advantages
Generalized advantage estimation (GAE) [Schulman 2016] 
generalizes TD error, allowing for trading off bias and variance: 

•  (Temporal-Difference (TD) Error) 

•
 

•  

•

δt = rt + γV(st+1) − V(st)

GAEt(γ, λ) =
T

∑
t′ =t

(γλ)ℓδt′ 

GAEt(γ,0) = δt = rt + γV(st+1) − V(st)

GAEt(γ,1) = Rt − V(st)



Weighting variants
Finally, group-relative policy optimization (GRPO) computes 
weights based on drawing multiple samples  

•
,  

 
where mean and standard deviation are computed over the 
rewards from the multiple samples

y(1), …, y(K)

Wt =
T

∑
t′ =t

r(k)
t′ 

− mean

std



Weighting variants

DeepSeek-Math



Weighting variants: recap
There are several ways to weight the gradient updates based on 
the reward. Some require learning a value function vϕ(st)

Hyperparam Key idea Extra model?

Discounted
Return Discount factor Less reward on 

previous steps No

GRPO Discount factor 
Number of samples

Draw multiple 
samples, take 
the mean / std

No

Value function 
baseline Discount factor

Baseline based 
on how good a 

state is
Value function

Generalized 
advantage 
estimation

Discount factor 
Lambda parameter

Use the value 
function in more 

clever ways
Value function



Putting it all together
Given: initial language model , dataset of prompts , reward  

Run a RL algorithm 

• Generate a response,  

• Compute advantages 

• Run reward model, compute KL penalty, possibly run value function 

• Compute loss (e.g., policy gradient, PPO), update  with gradient descent 

• If applicable, also update value function  with gradient descent

p0 {x(n)}N
n=1 r(x, y)

̂y ∼ pθ(y |x)

pθ

vϕ



Note: not specific to ‘human feedback’!
Given: initial language model , dataset of prompts , reward  

Run a RL algorithm 

• Generate a response,  

• Compute advantages 

• Run reward model, compute KL penalty, possibly run value model 

• Compute loss (e.g., policy gradient, PPO) and update with gradient descent

p0 {x(n)}N
n=1 r(x, y)

̂y ∼ pθ(y |x)

pθ

Task-specific aspect: prompts and reward
Example: x is a math problem 

Reward is correct/incorrect answer



Example: trl
• https://github.com/huggingface/trl 

https://github.com/huggingface/trl


Example: trl
• https://github.com/huggingface/trl 

https://github.com/huggingface/trl


Example: trl
• https://github.com/huggingface/trl 

https://github.com/huggingface/trl


Example: verl
• https://github.com/volcengine/verl 

https://github.com/volcengine/verl


Today’s lecture

• Language model reinforcement learning pipeline 

• Direct preference optimization



Direct Preference Optimization
• For the specific case of a preference reward, can 

we skip having to train a separate reward model? 

[Rafailov et al 2023]



Direct Preference Optimization
• Recall that under the Bradley Terry model we have: 

 

                 

• And that the optimal KL-constrained policy is: 

 

p(yi ≻ yj) =
exp(r(yi))

exp(r(yi)) + exp(r(yj))

= σ (r(yi) − r(yj))

pθ(y |x) =
1

Z(x)
p0(y |x)exp ( 1

β
r(x, y))

[Rafailov et al 2023]



Direct Preference Optimization
• We can rewrite the optimal KL-constrained policy in terms of its reward: 

 

 

• Plug this into the Bradley-Terry model: 

 

• Now replace  with  and use the maximum likelihood objective for the 
Bradley-Terry model to learn the parameters 

p*(y |x) =
1

Z(x)
p0(y |x)exp ( 1

β
r(x, y))

r*(x, y) = β log
p*(y |x)
p0(y |x)

+ β log Z(x)

p*(y1 ≻ y2) =
1

1 + exp (β log p*(y2 |x)
p0(y2 |x) − β log p*(y1 |x)

p0(y1 |x) )
p* pθ

θ

[Rafailov et al 2023]



Direct Preference Optimization

 ℒDPO(pθ; p0) =

−𝔼(x,yw,yl)∼𝒟 log σ (β log
pθ(yw |x)
p0(yw |x)

− β log
pθ(yl |x)
p0(yl |x) )

[Rafailov et al 2023]



Direct Preference Optimization

 

 

where  is the “implicit reward”.

∇θℒDPO(pθ; p0) =

−β𝔼(x,yw,yl)∼𝒟 [σ ( ̂rθ(x, yl) − ̂rθ(x, yw)) [∇θlog p(yw |x) − ∇θlog p(yl |x)]]

̂rθ(x, y) = β log
pθ(y |x)
p0(y |x)

[Rafailov et al 2023]



Comparison
Data Reward Data Models

DPO Offline Preference Preference 
pairs

Policy 
Reference  

RLHF with 
PPO Online Preference

Preference 
pairs for RM 

Prompts for RL

Policy 
Reference 

Value function 
Reward

General 
Online RL Online Any

Prompts for RL 
 

+ Depends on 
reward

Policy 
+ depends on 

objective, 
advantages, 

reward



Example: trl
• https://github.com/huggingface/trl 

https://github.com/huggingface/trl


Today’s lecture

• Language model reinforcement learning pipeline 

• Example: RLHF 

• Supervised fine-tuning 

• Reward modeling  

• Reinforcement learning 

• Direct preference optimization



Questions?


