CS11-711 Advanced NLP

Advanced Post-Training

Sean Welleck

Carnegie Mellon University Language Technologies Institute

https://cmu-l3.github.io/anlp-spring2025/

Recap: pre-training

Post-training

- Post-training: keep training a base model
 - Fine-tuning (e.g., instruction tuning)
 - Reinforcement learning
 - Other learning algorithms
- Goal: make the model better for downstream use
 - As a chat model, as a problem solving model, ...

Today's lecture

- Language model reinforcement learning pipeline
 - Example: RLHF
 - Supervised fine-tuning
 - Reward modeling
 - Reinforcement learning
- Direct preference optimization

Recap: reinforcement learning

Key idea: keep training using feedback

- Example feedback: reward function
- Example algorithm: policy gradient

Preference Feedback

• Sometimes it's easier to collect data on *preferences*

Hello, you are #&@#*@#

RL from Human Feedback (RLHF)

- 1. Supervised fine-tuning (SFT): Fine-tune a language model using a dataset $D_{SFT} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$.
 - Example: *x* is a prompt, *y* is a human-written response
- 2. **Reward modeling**: Train a reward model $r_{\phi}(x, y)$ using preference data $D_{Pref} = \{(x, y_{+}^{(n)}, y_{-}^{(n)})\}_{n=1}^{N'}$
 - Example: *x* is a prompt, *y* is a model-generated response
- 3. **Reinforcement learning (RL)**: Further fine-tune the language model from step 1 (call it p_0) using a reinforcement learning algorithm:

$$p_{\theta} = RL(p_0, r_{\phi}, \{x^{(n)}\}_{n=1}^{N''})$$

• Example: *x* is a prompt, PPO is the RL algorithm

RL from Human Feedback (RLHF)

Step 1

Collect demonstration data, and train a supervised policy.

 \bigcirc

Explain the moon

landing to a 6 year old

Some people went to the moon ...

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

D > C > A = B

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Ouyang et al 2022

Step 1: SFT

1. Supervised fine-tuning (SFT):

Fine-tune a language model using a dataset $D_{SFT} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$.

- Example data:
 - Alpaca [Taori et al 2023]:
 52,000 model-generated (prompt, response) examples
 - Any technique from the instruction-tuning lecture!
 (see Lecture 9)

Example Generated task

Instruction: Brainstorm creative ideas for designing a conference room.

Output:

... incorporating flexible components, such as moveable walls and furniture ...

Large-scale example (AI2 Tulu 3)

- 900k prompts:
 - 57%: open-source data
 - 43%: generate additional prompts for instruction following, math, and code. Generate responses using proprietary models
- Skill-specific mixtures: keep the mixtures that led to the best performance on individual skills

Category	Prompt Dataset	Count
General	OpenAssistant Guanaco ^{1,2}	7,132
	TÜLU 3 Hardcoded	24
	No Robots	9,500
	WildChat GPT-4↓	241307
	UltraFeedback	
Knowledge	FLAN v2 ^{1,2,↓}	89,982
Recall	SciRIFF↓	35, 357
	TableGPT↓	5,000
Math	TÜLU 3 Persona MATH	149,960
& Reasoning	TÜLU 3 Persona GSM	49,980
	TÜLU 3 Persona Algebra	20,000
	OpenMathInstruct 2 [↓]	50,000
	NuminaMath-TIR ^a	64,312
Coding	TÜLU 3 Persona Python	34,999
	Evol CodeAlpaca ^{<i>α</i>,2}	107,276
Safety &	TÜLU 3 CoCoNot	10,983
Non-Compliance	TÜLU 3 WildJailbreak ^{α,↓}	50,000
	TÜLU 3 WildGuardMix ^{α,↓}	50,000
Multilingual	Aya↓	202,285
Precise IF	TÜLU 3 Persona IF	29,980
	Daring Anteater	
Total		939,344

Step 2: Reward modeling

- 2. **Reward modeling**: Train a reward model $r_{\phi}(x, y)$ using preference data $D_{Pref} = \{(x, y_{+}^{(n)}, y_{-}^{(n)})\}_{n=1}^{N'}$
- Prompts x: re-use SFT dataset prompts and/ or introduce new ones
 - Example: AlpacaFarm [Dubois et al 2024]: reserved out 10k of the 52k Alpaca data for generating D_{pref}
- Responses y: generate with SFT model or other models
- Need: (i) preference ratings, (ii) method to train the reward model

A prompt and (several model Explain the moon landing to a 6 year old outputs are sampled. **B** Explain gravit Explain wa (C) Moon is natura People went to satellite of the moo A labeler ranks the outputs from best to worst. D > C > A = B This data is used to train our reward model. D > C > A = B

Gathering preference ratings

- Given x, y₁, y₂, determine which response is better (or rank > 2 responses)
- Approach 1: use human labelers
 - E.g. Open AI, Meta, hire them
- Approach 2: use a strong language model
 - E.g. AlpacaFarm [Dubois et al 2024]: used a GPT model to rate responses generated by Llama

Large-scale example (AI2 Tulu 3)

Sample four responses from different models for each prompt

Training the reward model

• Given a dataset
$$D = \{(y_{+}^{(n)}, y_{-}^{(n)})\}_{n=1}^{N}$$

• Train model to assign higher scores to y_+ :

$$\mathscr{L} = -\sum_{y_+, y_- \in D} \log \sigma \left(r_{\theta}(y_+) - r_{\theta}(y_-) \right)$$
Where does this come from?

Reward model objective

- **Bradley-Terry model** (1952): A probability model for the outcome of pairwise comparisons
- Given items i, j, it estimates the probability that the pairwise comparison i > j is true as,

$$\Pr(i > j) = \frac{p_i}{p_i + p_j}$$

Reward model objective

• Define
$$p_i = \exp(r_{\theta}(y_i))$$
:

$$p(y_i \succ y_j) = \frac{\exp(r_{\theta}(y_i))}{\exp(r_{\theta}(y_i)) + \exp(r_{\theta}(y_j))}$$

$$= \frac{1}{1 + (\exp(r_{\theta}(y_j))/\exp(r_{\theta}(y_i)))}$$

$$= \frac{1}{1 + \exp\left(-[r_{\theta}(y_i) - r_{\theta}(y_j)]\right)}$$

$$= \sigma\left(r_{\theta}(y_i) - r_{\theta}(y_j)\right)$$
Sigmoid function

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

Reward model objective

• Likelihood of observing all preferences in the dataset:

$$\mathscr{L}(\theta) = \prod_{(y_i, y_j) \in \mathscr{D}} \sigma(r_{\theta}(y_i) - r_{\theta}(y_j))$$

 Maximize likelihood (minimize negative log-likelihood) via the loss:

$$\mathscr{L}_{NLL}(\theta) = -\log \mathscr{L}(\theta)$$
$$= -\sum_{(y_i, y_j) \in \mathscr{D}} \log \sigma \left(r_{\theta}(y_i) - r_{\theta}(y_j) \right)$$

Step 3: Reinforcement learning

3. Reinforcement learning (RL): Further fine-tune the language model from step 1 (call it p_0) using a reinforcement learning algorithm:

$$p_{\theta} = RL(p_0, r_{\phi}, \{x^{(n)}\}_{n=1}^{N''})$$

- Important in practice (next slides):
 - Prevent the model p_{θ} from moving too far from the original model p_0
 - "Catastrophic forgetting", reward hacking

KL Divergence constraint

• Maximize expected reward subject to a KL divergence penalty:

$$\arg\max_{\theta} \mathbb{E}_{x,y} \left[r(x,y) \right] - \beta D_{KL}(p_{\theta} || p_0)$$

- Higher β : more pressure to stay close to the original model
- Lower β : more freedom to maximize reward
- Common approach: introduce through a modified reward:

$$r^{KL} = -\beta \log \frac{p_{\theta}(y \mid x)}{p_0(y \mid x)}$$

Requires keeping around a copy of the original model p_0 ("reference policy")!

KL Divergence constraint

This reward approximates the KL divergence:

$$D_{\mathsf{KL}}\left(p_{\theta}(y|x)\|p_{0}(y|x)\right) = \sum_{y} p_{\theta}(y|x)\log\frac{p_{\theta}(y|x)}{p_{0}(y|x)}$$
$$= \mathbb{E}_{y \sim p_{\theta}}\log\frac{p_{\theta}(y|x)}{p_{0}(y|x)}$$
$$\approx \log\frac{p_{\theta}(\hat{y}|x)}{p_{0}(\hat{y}|x)}$$

where $\hat{y} \sim p_{\theta}(\cdot | x)$, i.e. a single-sample Monte-Carlo approximation.

KL Divergence constraint

In summary, we add a reward penalty so that we optimize:

$$\arg\max_{\theta} \mathbb{E}_{x,y}\left[r(x,y)\right] - \beta D_{KL}(p_{\theta}||p_0)$$

The policy that maximizes this objective is:

$$p_{\theta}(y \mid x) = \frac{1}{Z(x)} p_0(y \mid x) \exp\left(\frac{1}{\beta} r(x, y)\right)$$

See Korbak et al 2022 or Rafailov et al 2023 for the derivation

Algorithm variants

Policy gradient (REINFORCE)

$$L_{PG} = W_t \log p_{\theta}(y_t | y_{< t}, x)$$

$$=>$$
 gradient $= W_t \nabla_{\theta} \log p_{\theta}(y_t | y_{< t}, x)$

Proximal policy optimization (PPO)

$$L_{PPO} = \min\left(\frac{p_{\theta}(y_t | y_{< t}, x)}{p_{\theta_{old}}(y_t | y_{< t}, x)}W_t, \operatorname{clip}\left(\frac{p_{\theta}(y_t | y_{< t}, x)}{p_{\theta_{old}}(y_t | y_{< t}, x)}(x, y), 1 - \epsilon, 1 + \epsilon\right)W_t\right)$$

Next: different choices for weights W_t

Weighting variants

Different ways to weight each gradient update based on the rewards:

• Option 1: use discounted cumulative rewards

•
$$W_t: R_t = \sum_{k=t+1} \gamma^{k-t} r_k$$

- Option 2: use a baseline:
 - $W_t : (R_t b(s_t))$
 - Common baseline: learn a *state-value function*: $V(s_t)$

Weighting variants

State-value function: predicts how good the state is

$$V(s_t) = \mathbb{E}[R_t]$$

In practice, add a scalar output head to the transformer, collect states and rewards, and minimize an L2 loss:

$$L_{VF} = \|v_{\phi}(s_t) - R_t\|$$

When used as a baseline, the observed return needs to be better than average in order to result in a positive gradient update:

$$W_t = (R_t - v_\phi(s_t))$$

General view: advantages

We can define the *advantage* of state and action:

$$A(s_t, a_t) = Q(s_t, a_t) - V(s_t)$$
$$V(s_t) = \mathbb{E}[R_t]$$
$$Q(s_t, a_t) = \mathbb{E}[R_t | a_t]$$

Advantage is positive when the action a_t is better than average

We can set $W_t = A(s_t, a_t)$ if we have a way to estimate the advantage

Estimating advantages

$$A(s_t, a_t) = Q(s_t, a_t) - V(s_t)$$

Several estimates do not add additional bias when used in place of the true advantage [Schulman et al 2016]:

- R_t (Option 1, discounted return)
- $R_t b(s_t)$ (Option 2, with baseline)
- $r_t + \gamma V(s_{t+1}) V(s_t)$ (Temporal-Difference (TD) Error)

Estimating advantages

Generalized advantage estimation (GAE) [Schulman 2016] generalizes TD error, allowing for trading off bias and variance:

• $\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$ (Temporal-Difference (TD) Error)

•
$$\operatorname{GAE}_{t}(\gamma,\lambda) = \sum_{t'=t}^{T} (\gamma\lambda)^{\ell} \delta_{t'}$$

- GAE_t(γ ,0) = $\delta_t = r_t + \gamma V(s_{t+1}) V(s_t)$
- $GAE_t(\gamma, 1) = R_t V(s_t)$

Weighting variants

Finally, *group-relative policy optimization* (GRPO) computes weights based on drawing multiple samples $y^{(1)}, ..., y^{(K)}$

$$W_t = \sum_{\substack{t'=t}}^T \frac{r_{t'}^{(k)} - \text{mean}}{\text{std}},$$

where mean and standard deviation are computed over the rewards from the multiple samples

Weighting variants

DeepSeek-Math

Weighting variants: recap

There are several ways to weight the gradient updates based on the reward. Some require learning a value function $v_{\phi}(s_t)$

	Hyperparam	Key idea	Extra model?
Discounted Return	Discount factor	Less reward on previous steps	No
GRPO	Discount factor Number of samples	Draw multiple samples, take the mean / std	No
Value function baseline	Discount factor	Baseline based on how good a state is	Value function
Generalized advantage estimation	Discount factor Lambda parameter	Use the value function in more clever ways	Value function

Putting it all together

Given: initial language model p_0 , dataset of prompts $\{x^{(n)}\}_{n=1}^N$, reward r(x, y)

Run a RL algorithm

- Generate a response, $\hat{y} \sim p_{\theta}(y \mid x)$
- Compute advantages
 - Run reward model, compute KL penalty, possibly run value function
- Compute loss (e.g., policy gradient, PPO), update p_{θ} with gradient descent
 - If applicable, also update value function v_{ϕ} with gradient descent

Note: not specific to 'human feedback'!

Given: initial language model p_0 , dataset of prompts $\{x^{(n)}\}_{n=1}^N$, reward r(x, y)

Run a RL algorithm

- Generate a response, $\hat{y} \sim p_{\theta}(y \mid x)$
- Compute advantages
 - Run reward model, compute KL penalty, possibly run value model
- Compute loss (e.g., policy gradient, PPO) and update p_{θ} with gradient descent

Task-specific aspect: prompts and reward Example: x is a math problem Reward is correct/incorrect answer

D

<u>https://github.com/huggingface/trl</u>

SFTTrainer

```
Here is a basic example of how to use the SFTTrainer:
```

```
from trl import SFTTrainer
from datasets import load_dataset
```

```
dataset = load_dataset("trl-lib/Capybara", split="train")
```

```
trainer = SFTTrainer(
    model="Qwen/Qwen2.5-0.5B",
    train_dataset=dataset,
)
trainer.train()
```

ιĠ

<u>https://github.com/huggingface/trl</u>

RewardTrainer

Here is a basic example of how to use the **<u>RewardTrainer</u>**:

```
from trl import RewardConfig, RewardTrainer
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
model = AutoModelForSequenceClassification.from_pretrained(
    "Qwen/Qwen2.5-0.5B-Instruct", num_labels=1
)
model.config.pad_token_id = tokenizer.pad_token_id
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = RewardConfig(output_dir="Qwen2.5-0.5B-Reward", per_device_train_batch_size=2)
trainer = RewardTrainer(
    args=training_args,
    model=model,
    processing_class=tokenizer,
    train_dataset=dataset,
)
trainer.train()
```

<u>https://github.com/huggingface/trl</u>

GRPOTrainer

```
GRPOTrainer implements the Group Relative Policy Optimization (GRPO) algorithm that is more memory-efficient than PPO and was used to train Deepseek AI's R1.
```

```
from datasets import load_dataset
from trl import GRP0Trainer
```

```
dataset = load_dataset("trl-lib/tldr", split="train")
```

```
# Dummy reward function: count the number of unique characters in the completions
def reward_num_unique_chars(completions, **kwargs):
    return [len(set(c)) for c in completions]
```

```
trainer = GRP0Trainer(
    model="Qwen/Qwen2-0.5B-Instruct",
    reward_funcs=reward_num_unique_chars,
    train_dataset=dataset,
)
```

```
trainer.train()
```

D

Example: verl

<u>https://github.com/volcengine/verl</u>

Running a PPO example step-by-step:

- Data and Reward Preparation
 - Prepare Data for Post-Training
 - Implement Reward Function for Dataset
- Understanding the PPO Example
 - PPO Example Architecture
 - Config Explanation
 - Run GSM8K Example

Algorithm

- algorithm: gamma: 1.0 lam: 1.0 adv_estimator: gae kl_penalty: kl # how to estimate kl divergence kl_ctrl: type: fixed kl_coef: 0.005
- gemma : discount factor
- lam : Trade-off between bias and variance in the GAE estimator
- adv_estimator : Support gae , grpo , reinforce_plus_plus , rloo
- kl_penalty: Support kl, abs, mse and full. How to calculate the kl divergence between
 actor and reference policy. For specific options, refer to core_algos.py .

Today's lecture

- Language model reinforcement learning pipeline
- Direct preference optimization

[Rafailov et al 2023]

• For the specific case of a preference reward, can we skip having to train a separate reward model?

[Rafailov et al 2023]

• Recall that under the Bradley Terry model we have:

$$p(y_i \succ y_j) = \frac{\exp(r(y_i))}{\exp(r(y_i)) + \exp(r(y_j))}$$
$$= \sigma\left(r(y_i) - r(y_j)\right)$$

• And that the optimal KL-constrained policy is:

$$p_{\theta}(y \mid x) = \frac{1}{Z(x)} p_0(y \mid x) \exp\left(\frac{1}{\beta} r(x, y)\right)$$

[Rafailov et al 2023]

• We can rewrite the optimal KL-constrained policy in terms of its reward:

$$p_*(y|x) = \frac{1}{Z(x)} p_0(y|x) \exp\left(\frac{1}{\beta}r(x,y)\right)$$
$$r_*(x,y) = \beta \log \frac{p_*(y|x)}{p_0(y|x)} + \beta \log Z(x)$$

• Plug this into the Bradley-Terry model:

$$p_*(y_1 \succ y_2) = \frac{1}{1 + \exp\left(\beta \log \frac{p_*(y_2|x)}{p_0(y_2|x)} - \beta \log \frac{p_*(y_1|x)}{p_0(y_1|x)}\right)}$$

- Now replace p_* with p_θ and use the maximum likelihood objective for the Bradley-Terry model to learn the parameters θ

[Rafailov et al 2023]

$$\mathcal{L}_{\mathsf{DPO}}(p_{\theta};p_0) =$$

$$-\mathbb{E}_{(x,y_w,y_l)\sim\mathcal{D}}\left[\log\sigma\left(\beta\log\frac{p_{\theta}(y_w|x)}{p_0(y_w|x)}-\beta\log\frac{p_{\theta}(y_l|x)}{p_0(y_l|x)}\right)\right]$$

[Rafailov et al 2023]

$$\nabla_{\theta} \mathscr{L}_{\mathsf{DPO}}(p_{\theta}; p_0) =$$

$$-\beta \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\sigma \left(\hat{r}_{\theta}(x, y_l) - \hat{r}_{\theta}(x, y_w) \right) \left[\nabla_{\theta} \log p(y_w | x) - \nabla_{\theta} \log p(y_l | x) \right] \right]$$

where
$$\hat{r}_{\theta}(x, y) = \beta \log \frac{p_{\theta}(y \mid x)}{p_0(y \mid x)}$$
 is the "implicit reward".

Comparison

	Data	Reward	Data	Models
DPO	Offline	Preference	Preference pairs	Policy Reference
RLHF with PPO	Online	Preference	Preference pairs for RM Prompts for RL	Policy Reference Value function Reward
General Online RL	Online	Any	Prompts for RL + Depends on reward	Policy + depends on objective, advantages, reward

<u>https://github.com/huggingface/trl</u>

DPOTrainer

DPOTrainer implements the popular **Direct Preference Optimization (DPO) algorithm** that was used to post-train **Llama 3** and many other models. Here is a basic example of how to use the DPOTrainer :

Ŋ

```
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import DP0Config, DP0Trainer
```

```
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DP0Config(output_dir="Qwen2.5-0.5B-DP0")
trainer = DP0Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset,
    processing_class=tokenizer
)
trainer.train()
```

Today's lecture

- Language model reinforcement learning pipeline
 - Example: RLHF
 - Supervised fine-tuning
 - Reward modeling
 - Reinforcement learning
- Direct preference optimization

Questions?