
CS11-711 Advanced NLP

Advanced Post-Training
Sean Welleck

https://cmu-l3.github.io/anlp-spring2025/

https://cmu-l3.github.io/anlp-spring2025/

Recap: pre-training

Data Pre-train Base
Model

Adapt
Sentiment analysis

Translation

Dialogue

Instruction following

Problem solving

…

Post-training

• Post-training: keep training a base model

• Fine-tuning (e.g., instruction tuning)

• Reinforcement learning

• Other learning algorithms

• Goal: make the model better for downstream use

• As a chat model, as a problem solving model, …

Today’s lecture

• Language model reinforcement learning pipeline

• Example: RLHF

• Supervised fine-tuning

• Reward modeling

• Reinforcement learning

• Direct preference optimization

Recap: reinforcement learning

Let’s think step by step. 2 + 3 = 23.

Reward

ModelWhat is 2+3?

Generate

Update
Let’s think step by step. 2 + 3 = 5.

Key idea: keep training using feedback

• Example feedback: reward function

• Example algorithm: policy gradient

Preference Feedback
• Sometimes it’s easier to collect data on preferences

RL from Human Feedback (RLHF)
1. Supervised fine-tuning (SFT): Fine-tune a language model using a

dataset .

• Example: is a prompt, is a human-written response

2. Reward modeling: Train a reward model using preference data

• Example: is a prompt, is a model-generated response

3. Reinforcement learning (RL): Further fine-tune the language model from
step 1 (call it) using a reinforcement learning algorithm:

• Example: is a prompt, PPO is the RL algorithm

DSFT = {(x(n), y(n))}N
n=1

x y

rϕ(x, y)
DPref = {(x, y(n)

+ , y(n)
−)}N′

n=1

x y

p0

pθ = RL(p0, rϕ, {x(n)}N′ ′
n=1)

x

RL from Human Feedback (RLHF)

Ouyang et al 2022

Step 1: SFT
1. Supervised fine-tuning (SFT):

Fine-tune a language model
using a dataset

.

• Example data:

• Alpaca [Taori et al 2023]:
52,000 model-generated
(prompt, response) examples

• Any technique from the
instruction-tuning lecture!
(see Lecture 9)

DSFT = {(x(n), y(n))}N
n=1

Large-scale example (AI2 Tulu 3)
• 900k prompts:

• 57%: open-source data

• 43%: generate additional
prompts for instruction
following, math, and code.
Generate responses using
proprietary models

• Skill-specific mixtures: keep the
mixtures that led to the best
performance on individual skills

Step 2: Reward modeling
2. Reward modeling: Train a reward model

 using preference data

• Prompts : re-use SFT dataset prompts and/
or introduce new ones

• Example: AlpacaFarm [Dubois et al 2024]:
reserved out 10k of the 52k Alpaca data
for generating

• Responses : generate with SFT model or
other models

• Need: (i) preference ratings, (ii) method to
train the reward model

rϕ(x, y)
DPref = {(x, y(n)

+ , y(n)
−)}N′

n=1

x

Dpref

y

Gathering preference ratings
• Given , determine which response

is better (or rank > 2 responses)

• Approach 1: use human labelers

• E.g. Open AI, Meta, hire them

• Approach 2: use a strong language
model

• E.g. AlpacaFarm [Dubois et al 2024]:
used a GPT model to rate responses
generated by Llama

x, y1, y2

Large-scale example (AI2 Tulu 3)

Training the reward model
• Given a dataset

• Train model to assign higher scores to :

D = {(y(n)
+ , y(n)

−)}N
n=1

y+

ℒ = − ∑
y+,y−∈D

log σ (rθ(y+) − rθ(y−))

Where does this come from?

Reward model objective

• Bradley-Terry model (1952): A probability model
for the outcome of pairwise comparisons

• Given items , it estimates the probability that the
pairwise comparison is true as,

i, j
i > j

Pr(i > j) =
pi

pi + pj

Reward model objective
• Define :

pi = exp (rθ(yi))

p(yi ≻ yj) =
exp(rθ(yi))

exp(rθ(yi)) + exp(rθ(yj))

=
1

1 + (exp(rθ(yj))/exp(rθ(yi)))

=
1

1 + exp (−[rθ(yi) − rθ(yj)])
= σ (rθ(yi) − rθ(yj))

Sigmoid function
σ(z) = 1

1 + exp(−z)

Divide by
exp(rθ(yi))

Reward model objective
• Likelihood of observing all preferences in the dataset:

• Maximize likelihood (minimize negative log-likelihood)
via the loss:

ℒ(θ) = ∏
(yi,yj)∈𝒟

σ(rθ(yi) − rθ(yj))

ℒNLL(θ) = − log ℒ(θ)

= − ∑
(yi,yj)∈𝒟

log σ (rθ(yi) − rθ(yj))

Step 3: Reinforcement learning
3. Reinforcement learning (RL):

Further fine-tune the language
model from step 1 (call it) using a
reinforcement learning algorithm:

• Important in practice (next slides):

• Prevent the model from moving
too far from the original model

• “Catastrophic forgetting”, reward
hacking

p0

pθ = RL(p0, rϕ, {x(n)}N′ ′

n=1)

pθ
p0

KL Divergence constraint
• Maximize expected reward subject to a KL divergence penalty:

• Higher : more pressure to stay close to the original model

• Lower : more freedom to maximize reward

• Common approach: introduce through a modified reward:

Requires keeping around a copy of the original model (“reference policy”)!

arg max
θ

𝔼x,y [r(x, y)] − βDKL(pθ∥p0)

β

β

rKL = − β log
pθ(y |x)
p0(y |x)

p0

KL Divergence constraint

This reward approximates the KL divergence:

where , i.e. a single-sample Monte-Carlo approximation.

DKL (pθ(y |x)∥p0(y |x)) = ∑
y

pθ(y |x)log
pθ(y |x)
p0(y |x)

= 𝔼y∼pθ
log

pθ(y |x)
p0(y |x)

≈ log
pθ(̂y |x)
p0(̂y |x)

̂y ∼ pθ(⋅ |x)

KL Divergence constraint
In summary, we add a reward penalty so that we optimize:

The policy that maximizes this objective is:

See Korbak et al 2022 or Rafailov et al 2023 for the derivation

arg max
θ

𝔼x,y [r(x, y)] − βDKL(pθ∥p0)

pθ(y |x) =
1

Z(x)
p0(y |x)exp (1

β
r(x, y))

Algorithm variants
Policy gradient (REINFORCE)

=> gradient =

Proximal policy optimization (PPO)

LPG = Wt log pθ(yt |y<t, x)

Wt ∇θlog pθ(yt |y<t, x)

LPPO = min (pθ(yt |y<t, x)
pθold

(yt |y<t, x)
Wt, clip (pθ(yt |y<t, x)

pθold
(yt |y<t, x)

(x, y),1 − ϵ,1 + ϵ) Wt)
Next: different choices for weights Wt

Weighting variants
Different ways to weight each gradient update based on the rewards:

• Option 1: use discounted cumulative rewards

•

• Option 2: use a baseline:

•

• Common baseline: learn a state-value function:

Wt : Rt = ∑
k=t+1

γk−trk

Wt : (Rt − b(st))

V(st)

Weighting variants
State-value function: predicts how good the state is

In practice, add a scalar output head to the transformer, collect
states and rewards, and minimize an L2 loss:

When used as a baseline, the observed return needs to be better
than average in order to result in a positive gradient update:

V(st) = 𝔼[Rt]

LVF = ∥vϕ(st) − Rt∥

Wt = (Rt − vϕ(st))

General view: advantages
We can define the advantage of state and action:

Advantage is positive when the action is better than average

We can set if we have a way to estimate the
advantage

A(st, at) = Q(st, at) − V(st)

V(st) = 𝔼[Rt]
Q(st, at) = 𝔼[Rt |at]

at

Wt = A(st, at)

Estimating advantages

Several estimates do not add additional bias when used in
place of the true advantage [Schulman et al 2016]:

• (Option 1, discounted return)

• (Option 2, with baseline)

• (Temporal-Difference (TD) Error)

A(st, at) = Q(st, at) − V(st)

Rt

Rt − b(st)

rt + γV(st+1) − V(st)

Estimating advantages
Generalized advantage estimation (GAE) [Schulman 2016]
generalizes TD error, allowing for trading off bias and variance:

• (Temporal-Difference (TD) Error)

•

•

•

δt = rt + γV(st+1) − V(st)

GAEt(γ, λ) =
T

∑
t′ =t

(γλ)ℓδt′

GAEt(γ,0) = δt = rt + γV(st+1) − V(st)

GAEt(γ,1) = Rt − V(st)

Weighting variants
Finally, group-relative policy optimization (GRPO) computes
weights based on drawing multiple samples

•
,

where mean and standard deviation are computed over the
rewards from the multiple samples

y(1), …, y(K)

Wt =
T

∑
t′ =t

r(k)
t′

− mean

std

Weighting variants

DeepSeek-Math

Weighting variants: recap
There are several ways to weight the gradient updates based on
the reward. Some require learning a value function vϕ(st)

Hyperparam Key idea Extra model?

Discounted
Return Discount factor Less reward on

previous steps No

GRPO Discount factor
Number of samples

Draw multiple
samples, take
the mean / std

No

Value function
baseline Discount factor

Baseline based
on how good a

state is
Value function

Generalized
advantage
estimation

Discount factor
Lambda parameter

Use the value
function in more

clever ways
Value function

Putting it all together
Given: initial language model , dataset of prompts , reward

Run a RL algorithm

• Generate a response,

• Compute advantages

• Run reward model, compute KL penalty, possibly run value function

• Compute loss (e.g., policy gradient, PPO), update with gradient descent

• If applicable, also update value function with gradient descent

p0 {x(n)}N
n=1 r(x, y)

̂y ∼ pθ(y |x)

pθ

vϕ

Note: not specific to ‘human feedback’!
Given: initial language model , dataset of prompts , reward

Run a RL algorithm

• Generate a response,

• Compute advantages

• Run reward model, compute KL penalty, possibly run value model

• Compute loss (e.g., policy gradient, PPO) and update with gradient descent

p0 {x(n)}N
n=1 r(x, y)

̂y ∼ pθ(y |x)

pθ

Task-specific aspect: prompts and reward
Example: x is a math problem

Reward is correct/incorrect answer

Example: trl
• https://github.com/huggingface/trl

https://github.com/huggingface/trl

Example: trl
• https://github.com/huggingface/trl

https://github.com/huggingface/trl

Example: trl
• https://github.com/huggingface/trl

https://github.com/huggingface/trl

Example: verl
• https://github.com/volcengine/verl

https://github.com/volcengine/verl

Today’s lecture

• Language model reinforcement learning pipeline

• Direct preference optimization

Direct Preference Optimization
• For the specific case of a preference reward, can

we skip having to train a separate reward model?

[Rafailov et al 2023]

Direct Preference Optimization
• Recall that under the Bradley Terry model we have:

• And that the optimal KL-constrained policy is:

p(yi ≻ yj) =
exp(r(yi))

exp(r(yi)) + exp(r(yj))

= σ (r(yi) − r(yj))

pθ(y |x) =
1

Z(x)
p0(y |x)exp (1

β
r(x, y))

[Rafailov et al 2023]

Direct Preference Optimization
• We can rewrite the optimal KL-constrained policy in terms of its reward:

• Plug this into the Bradley-Terry model:

• Now replace with and use the maximum likelihood objective for the
Bradley-Terry model to learn the parameters

p*(y |x) =
1

Z(x)
p0(y |x)exp (1

β
r(x, y))

r*(x, y) = β log
p*(y |x)
p0(y |x)

+ β log Z(x)

p*(y1 ≻ y2) =
1

1 + exp (β log p*(y2 |x)
p0(y2 |x) − β log p*(y1 |x)

p0(y1 |x))
p* pθ

θ

[Rafailov et al 2023]

Direct Preference Optimization

 ℒDPO(pθ; p0) =

−𝔼(x,yw,yl)∼𝒟 log σ (β log
pθ(yw |x)
p0(yw |x)

− β log
pθ(yl |x)
p0(yl |x))

[Rafailov et al 2023]

Direct Preference Optimization

where is the “implicit reward”.

∇θℒDPO(pθ; p0) =

−β𝔼(x,yw,yl)∼𝒟 [σ (̂rθ(x, yl) − ̂rθ(x, yw)) [∇θlog p(yw |x) − ∇θlog p(yl |x)]]

̂rθ(x, y) = β log
pθ(y |x)
p0(y |x)

[Rafailov et al 2023]

Comparison
Data Reward Data Models

DPO Offline Preference Preference
pairs

Policy
Reference

RLHF with
PPO Online Preference

Preference
pairs for RM

Prompts for RL

Policy
Reference

Value function
Reward

General
Online RL Online Any

Prompts for RL

+ Depends on
reward

Policy
+ depends on

objective,
advantages,

reward

Example: trl
• https://github.com/huggingface/trl

https://github.com/huggingface/trl

Today’s lecture

• Language model reinforcement learning pipeline

• Example: RLHF

• Supervised fine-tuning

• Reward modeling

• Reinforcement learning

• Direct preference optimization

Questions?

