
AI for (Formal) Mathematics

Sean Welleck

April 15, 2025

Carnegie Mellon University



AI agents in expert domains

AI agents in expert domains

• Finance

• Medicine

• Mathematics

• Open-ended dialogue

• Come up with counterexamples

• Help write proofs

• ...

1



AI agents in expert domains

AI agents in expert domains

• Finance

• Medicine

• Mathematics

• Open-ended dialogue

• Come up with counterexamples

• Help write proofs

• ...

1



“Informal” mathematics

Math as raw data (text, images, ...)

• Flexible

• Widely used

• Difficult to check

Language model solution.

2



Formal mathematics

Math as source code

• Write a specification (e.g., 1+1=2)

• Write a proof

• Automatically checked

• Code compiles ≡ correct proof Math as source code.

3



Formal mathematics

Math as source code

• Write a specification (e.g., 1+1=2)

• Write a proof

• Automatically checked

• Code compiles ≡ correct proof
Theorem proving languages

3



Formal mathematics (Demo)

If R ⊆ S and S ⊆ T then R ⊆ T

4



How is formal math used in practice?

Growing use in mathematics:

Terence Tao’s Lean formalization project (October 2023)

• Lean Mathlib project: 1+ million lines of code, 300+ contributors

5



How is formal math used in practice?

Growing use in mathematics:

Terence Tao’s Lean formalization project (October 2023)

• Lean Mathlib project: 1+ million lines of code, 300+ contributors

5



How is formal math used in practice?

Why?1

• Collaboration

• Break down a big problem into multiple pieces

• Anyone can submit code to solve a piece

• We know we can trust the code since it is automatically checked!

• Instant feedback

• Guaranteed correctness

• ...

1See e.g., Mathematics and the formal turn, AFM Aims and Scope

6

https://arxiv.org/abs/2311.00007
https://afm.episciences.org/page/aims-and-scope


How is formal math used in practice?

Why?1

• Collaboration

• Break down a big problem into multiple pieces

• Anyone can submit code to solve a piece

• We know we can trust the code since it is automatically checked!

• Instant feedback

• Guaranteed correctness

• ...

1See e.g., Mathematics and the formal turn, AFM Aims and Scope

6

https://arxiv.org/abs/2311.00007
https://afm.episciences.org/page/aims-and-scope


How is formal math used in practice?

Why?1

• Collaboration

• Break down a big problem into multiple pieces

• Anyone can submit code to solve a piece

• We know we can trust the code since it is automatically checked!

• Instant feedback

• Guaranteed correctness

• ...

1See e.g., Mathematics and the formal turn, AFM Aims and Scope

6

https://arxiv.org/abs/2311.00007
https://afm.episciences.org/page/aims-and-scope


How is formal math used in practice?

Why?1

• Collaboration

• Break down a big problem into multiple pieces

• Anyone can submit code to solve a piece

• We know we can trust the code since it is automatically checked!

• Instant feedback

• Guaranteed correctness

• ...

1See e.g., Mathematics and the formal turn, AFM Aims and Scope

6

https://arxiv.org/abs/2311.00007
https://afm.episciences.org/page/aims-and-scope


Why is AI ∩ formal math important?

Formal math for AI

• Verifiable

• Prevent incorrect math and code generation

• Feedback signal for learning

• Tests reasoning

• From easy: 1+1 = 2

• To hard: Fermat’s Last Theorem

7



Why is AI ∩ formal math important?

Formal math for AI

• Verifiable

• Prevent incorrect math and code generation

• Feedback signal for learning

• Tests reasoning

• From easy: 1+1 = 2

• To hard: Fermat’s Last Theorem

7



LLMs ∩ formal math

gpt-f (2020)

8



LLMs ∩ formal math

gpt-f (2020)

9



LLMs ∩ formal math

Rapid progress in methods based on language models:

miniF2F benchmark performance, 2022-2024

10



LLMs ∩ formal math

Generated International Math Olympiad solution in Lean

(DeepSeek Prover-1.5B, Xin et al 2024)

11



LLMs ∩ formal math

Terence Tao’s Lean formalization project (October 2023)

So...why don’t people and AI always use formal math?

12



LLMs ∩ formal math

Terence Tao’s Lean formalization project (October 2023)

So...why don’t people and AI always use formal math?

12



Key challenge: the informal-formal gap

Informal ideas, intuitions, and even proofs are difficult to express formally:

• Each step of reasoning needs to be specified in detail

• Requires a deep knowledge of the formal system

13



Bridging Informal and Formal Mathematical Reasoning

This talk: Bridging Informal and Formal Mathematical Reasoning with AI

14



This talk: Bridging Informal and Formal

1. Informal thoughts

• Training models to think informally

• Lean-STaR

2. Informal provers

• Sketching proofs and filling in the gaps

• Draft, Sketch, Prove

• LeanHammer

3. Research-level mathematics

• Assisting in research-level projects

• Practical tools

• MiniCTX

15



This talk: Bridging Informal and Formal

1. Informal thoughts

• Training models to think informally

• Lean-STaR

2. Informal provers

• Sketching proofs and filling in the gaps

• Draft, Sketch, Prove

• LeanHammer

3. Research-level mathematics

• Assisting in research-level projects

• Practical tools

• MiniCTX

15



This talk: Bridging Informal and Formal

1. Informal thoughts

• Training models to think informally

• Lean-STaR

2. Informal provers

• Sketching proofs and filling in the gaps

• Draft, Sketch, Prove

• LeanHammer

3. Research-level mathematics

• Assisting in research-level projects

• Practical tools

• MiniCTX

15



This talk: Bridging Informal and Formal

1. Informal thoughts

• Training models to think informally

• Lean-STaR

2. Informal provers

• Sketching proofs and filling in the gaps

• Draft, Sketch, Prove

• LeanHammer

3. Research-level mathematics

• Assisting in research-level projects

• Practical tools

• MiniCTX

15



I: Informal thoughts



1. Training models to “think” — Lean-STaR

Lean-STaR: Learning to Interleave Thinking and Proving
Haohan Lin, Zhiqing Sun, Yiming Yang, Sean Welleck

ICLR 2025 (Spotlight)

16



1. Training models to “think” — Neural theorem proving

Neural theorem proving

• Math as checkable code

• Proof: sequence of (state, step)
17



1. Training models to “think” — Neural theorem proving

Language model-based proving:

• Train a model pθ(y |x) on a dataset D = {(x , y)}, e.g.,
• x : proof state

• y : next tactic (next “step”)

• D: extracted from theorems and proofs

• Generate proofs:

Best-first search

18



1. Training models to “think” — Neural theorem proving

Language model-based proving:

• Train a model pθ(y |x) on a dataset D = {(x , y)}, e.g.,
• x : proof state

• y : next tactic (next “step”)

• D: extracted from theorems and proofs

• Generate proofs:

Best-first search

18



1. Training models to “think” — Lean-STaR

Can we train a model to “think” before each step of formal reasoning?

19



1. Training models to “think” — Lean-STaR

Why?

• Plan proof steps

• Diversify search space

• More tokens can give more computational capacity

20



1. Training models to “think” — Lean-STaR

Lean-STaR (Self-taught reasoner2)

Learn to generate thoughts via reinforcement learning

1. Initialization

2. Reinforcement learning

2Inspired by STaR: Bootstrapping Reasoning with Reasoning, Zelikman et al 2022

21



1. Training models to “think” — Lean-STaR

1. Initialization

22



1. Training models to “think” — Lean-STaR

1. Initialization

22



1. Training models to “think” — Lean-STaR

2: Reinforcement learning

Need:

• Method to generate proofs

• Learning algorithm

23



1. Training models to “think” — Lean-STaR

2: Reinforcement learning

Need:

• Method to generate proofs

• Learning algorithm

23



1. Training models to “think” — Lean-STaR

Best-first search: difficult to score (thought, tactic) candidates

24



1. Training models to “think” — Lean-STaR

New sampling method

24



Training models to “think” — Lean-STaR

Algorithm: train on the successful proofs, and repeat:3

• Collect (state, thought, tactic) from successful proofs

• Train a new model p1θ(thought, tactic|state)
• Generate proofs

• ...

3I.e. Expert Iteration [Polu et al 2022], Rest-EM [Singh et al 2024]

25



Training models to “think” — Lean-STaR

• miniF2F: competition problems (AMC, AIME, IMO)

26



Training models to “think” — Lean-STaR

miniF2F test
0
5
10
15
20
25
30
35
40
45
50

P
as
s
ra
te

GPT-4

ReProver (retrieval-augmented)

COPRA (GPT-4 agent)

Lean-STaR 7B (start)

Lean-STaR 7B (+ thoughts)

Lean-STaR 7B (+ expert iteration)

27



Training models to “think” — Lean-STaR

miniF2F test
0
5
10
15
20
25
30
35
40
45
50

P
as
s
ra
te

GPT-4

ReProver

COPRA (GPT-4 agent)

Lean-STaR 7B (start)

Lean-STaR 7B

28



Training models to “think” — Lean-STaR

Increasing the search budget is more effective with thoughts

29



Training models to “think” — Lean-STaR

Example generated thoughts and proof from Lean-STaR

30



Training models to “think” — Lean-STaR

Example generated thoughts and proof from Lean-STaR
31



Training models to “think” — After Lean-STaR

After Lean-STaR, incorporating thoughts became a widely-used

component of LLM-based theorem proving:

Informal thoughts in DeepSeek Prover 1.5

32



Training models to “think” — After Lean-STaR

After Lean-STaR, incorporating thoughts became a widely-used

component of LLM-based theorem proving:

Informal thoughts in Kimina Prover (April 14 2025)

32



Training models to “think” — After Lean-STaR

More broadly, reasoning models that generate long chains-of-thought

have subsequently begun to revolutionize LLM reasoning:

OpenAI o1 reasoning model DeepSeek R1 reasoning model

33



Training models to “think” — Lean-STaR

Recap: Lean-STaR

• Training on formal code may be insufficient to learn the underlying

thought process needed to produce the code

• Learn to generate thoughts via reinforcement learning

34



This talk: Bridging Informal and Formal

1. Informal thoughts

2. Informal provers

• Sketching proofs and filling in the gaps

• Draft, Sketch, Prove

• LeanHammer

3. Research-level mathematics

35



II: Informal and formal provers



Combining informal and formal provers

Overall goal: combine high-level reasoning and low-level reasoning

36



Motivation: informal proofs and formal proofs

How would we write this as a formal proof?

37



Motivation: informal proofs and formal proofs

A proof with a high-level sketch and low-level proof steps.

38



Low-level provers: Sledgehammer

Sledgehammer [Paulson 2010] calls out to external automated provers.

• First-order logic, higher-order logic, SMT

39



Low-level provers: Sledgehammer

Struggles due to the large search space of possible proofs

40



Idea: combine high-level and low-level proving

Idea: combine high-level (human, LLM) and low-level proving

41



Draft-Sketch-Prove

Draft, Sketch, Prove: Guiding Formal Theorem Provers with

Informal Proofs

Albert Q. Jiang, Sean Welleck, Jin Peng Zhou

Jiacheng Liu, Wenda Li, Mateja Jamnik

Guillaume Lample, Yuhuai Wu

ICLR 2023 (Oral)

42



Draft-Sketch-Prove

Idea:

Draft an informal proof, translate it into a formal sketch, then use a

low-level prover to fill in the gaps.

43



Draft, Sketch, Prove

Given informal theorem xI ,

formal theorem xF

1. Draft yI ∼ p(·|xI )

2. Sketch zF ∼ p(·|xF , xI , yI )

3. Prove yF = f (xF , zF )

Human-written or LLM-generated draft

44



Draft, Sketch, Prove

Given informal theorem xI ,

formal theorem xF

1. Draft yI ∼ p(·|xI )

2. Sketch zF ∼ p(·|xF , xI , yI )

3. Prove yF = f (xF , zF )

LLM-generated sketch

44



Draft, Sketch, Prove

Given informal theorem xI ,

formal theorem xF

1. Draft yI ∼ p(·|xI )

2. Sketch zF ∼ p(·|xF , xI , yI )

3. Prove yF = f (xF , zF )

Low-level prover (Sledgehammer) fills in the gaps

44



Draft-sketch-prove

45



Draft-sketch-prove

Inference-time proof search scaling

45



Draft-sketch-prove

International Math Olympiad problem
45



Draft, Sketch, Prove

Demo notebook: github.com/cmu-l3/ntptutorial-II

46

https://github.com/cmu-l3/ntptutorial-II/blob/main/partII_dsp/notebooks/II_dsp__part2_dsp.ipynb


Next: building a low-level prover for Lean

Recap:

• Draft-Sketch-Prove: generate high-level sketches and fill in gaps

• Isabelle’s Sledgehammer calls out to external provers to fill in gaps

Next: can we build a Sledgehammer for Lean?

47



Next: building a low-level prover for Lean

Recap:

• Draft-Sketch-Prove: generate high-level sketches and fill in gaps

• Isabelle’s Sledgehammer calls out to external provers to fill in gaps

Next: can we build a Sledgehammer for Lean?

47



LeanHammer

Premise Selection for a Lean Hammer

Thomas Zhu, Joshua Clune

Jeremy Avigad, Albert Q. Jiang, Sean Welleck

Under Review 2025

48



What is a hammer?

A hammer integrates an automated theorem prover into an interactive

theorem prover

• Interactive theorem prover: Lean, Isabelle, Coq

• A programming language that checks proofs

• Automated theorem prover: higher-order logic provers, SMT solvers

• Tries to automatically find proofs

49



What is a hammer?

A hammer integrates an automated theorem prover into an interactive

theorem prover

• Interactive theorem prover: Lean, Isabelle, Coq

• A programming language that checks proofs

• Automated theorem prover: higher-order logic provers, SMT solvers

• Tries to automatically find proofs

49



What is a hammer?

A hammer integrates an automated theorem prover into an interactive

theorem prover

• Interactive theorem prover: Lean, Isabelle, Coq

• A programming language that checks proofs

• Automated theorem prover: higher-order logic provers, SMT solvers

• Tries to automatically find proofs

49



Key challenge: Premise selection

Automated theorem provers (ATPs) struggle with the large search space

of possible proofs.

• Premise selection: select a small subset of theorems and definitions

that are likely to be useful for proving a given theorem.

• Around 250, 000 premises in Lean’s Mathlib

• Cuts down the prover’s search space

50



A hammer pipeline

A standard hammer pipeline:

51



A hammer pipeline

A standard hammer pipeline:

Pre-existing components:

• Translation: LeanAuto [Qian et al 2025]

• ATP: Zipperposition [Cruanes et al 2015]

• Reconstruction: Duper [Clune et al 2024]

51



A hammer pipeline

A standard hammer pipeline:

Our challenge:

• Premise selection

• Put it all together to create LeanHammer

51



LeanHammer — Neural premise selection

Idea: frame premise selection as retrieval with a neural language model

• Transformer encoder embeds the state and candidate premises

• Contrastive loss on (state, {premise+}, {premise−}) examples

• Nuance in how to collect and format examples

52



LeanHammer — Neural premise selection

Idea: frame premise selection as retrieval with a neural language model

• Transformer encoder embeds the state and candidate premises

• Contrastive loss on (state, {premise+}, {premise−}) examples

• Nuance in how to collect and format examples

52



LeanHammer — Neural premise selection

Idea: frame premise selection as retrieval with a neural language model

• Transformer encoder embeds the state and candidate premises

• Contrastive loss on (state, {premise+}, {premise−}) examples

• Nuance in how to collect and format examples

52



LeanHammer — Putting it all together

Idea: combine the premise selector and ATP with a tree search

Tree search: Aesop [Limperg & From 2023]

1. Queries the automated theorem prover using the premises

2. Applies tactics (e.g. apply, simp all) using the premises

Goes beyond the standard hammer pipeline!

53



LeanHammer — Putting it all together

Idea: combine the premise selector and ATP with a tree search

Tree search: Aesop [Limperg & From 2023]

1. Queries the automated theorem prover using the premises

2. Applies tactics (e.g. apply, simp all) using the premises

Goes beyond the standard hammer pipeline!

53



LeanHammer — Putting it all together

Idea: combine the premise selector and ATP with a tree search

Tree search: Aesop [Limperg & From 2023]

1. Queries the automated theorem prover using the premises

2. Applies tactics (e.g. apply, simp all) using the premises

Goes beyond the standard hammer pipeline!

53



LeanHammer

As a user, simply issue hammer at any step of a proof:

LeanHammer in action

54



LeanHammer — Demo

Demo: start with human-written proof sketch (from Mathematics in Lean)

55



LeanHammer — Demo

Demo: fill in the gaps (sorrys) with LeanHammer

56



LeanHammer — Quantitative results

Varying the premise selector within LeanHammer:

Held-out mathlib theorems
0
5
10
15
20
25
30
35
40
45
50

P
ro
of

ra
te

(%
)

No premise selection

ReProver retriever

MePO

LeanHammer retriever

LeanHammer retriever ∪ MePO

Ground truth premises

57



Recap

Two approaches for combining informal and formal provers:

• Draft-Sketch-Prove (DSP)

• LLM drafts informal proof, generates formal sketch

• Low-level prover (Sledgehammer) fills in low-level details

• LeanHammer

• Brings hammer functionality to Lean

• Neural premise selection + tree search + automated theorem proving

• Enables filling in proof sketches with hammer command

Even small neural networks are powerful! (retriever: < 100M params)

58



Recap

Two approaches for combining informal and formal provers:

• Draft-Sketch-Prove (DSP)

• LLM drafts informal proof, generates formal sketch

• Low-level prover (Sledgehammer) fills in low-level details

• LeanHammer

• Brings hammer functionality to Lean

• Neural premise selection + tree search + automated theorem proving

• Enables filling in proof sketches with hammer command

Even small neural networks are powerful! (retriever: < 100M params)

58



Recap

Two approaches for combining informal and formal provers:

• Draft-Sketch-Prove (DSP)

• LLM drafts informal proof, generates formal sketch

• Low-level prover (Sledgehammer) fills in low-level details

• LeanHammer

• Brings hammer functionality to Lean

• Neural premise selection + tree search + automated theorem proving

• Enables filling in proof sketches with hammer command

Even small neural networks are powerful! (retriever: < 100M params)

58



Recap

Two approaches for combining informal and formal provers:

• Draft-Sketch-Prove (DSP)

• LLM drafts informal proof, generates formal sketch

• Low-level prover (Sledgehammer) fills in low-level details

• LeanHammer

• Brings hammer functionality to Lean

• Neural premise selection + tree search + automated theorem proving

• Enables filling in proof sketches with hammer command

Even small neural networks are powerful! (retriever: < 100M params)

58



This talk: Bridging Informal and Formal

1. Informal thoughts

2. Informal provers

3. Research-level mathematics

• Assisting in research-level projects

• Practical tools

• MiniCTX

59



III: Research-level mathematics



What does it look like to formalize research-level math?4

4Formalizing the proof of PFR in Lean4 using Blueprint: a short tour by Terence Tao

60

https://terrytao.wordpress.com/2023/11/18/formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/


What does it look like to formalize research-level math?4

4Formalizing the proof of PFR in Lean4 using Blueprint: a short tour by Terence Tao

60

https://terrytao.wordpress.com/2023/11/18/formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/


Where can AI help?

As a start, can AI help with filling in small parts of the blueprint?

61



Where can AI help? — Challenges

Accessibility gap:

• Some methods are hard to integrate into tools

• Not open-source (AlphaProof, ...)

• Expensive to run (MCTS, ...)

However, there are already tools available!

62



Where can AI help? — Challenges

Accessibility gap:

• Some methods are hard to integrate into tools

• Not open-source (AlphaProof, ...)

• Expensive to run (MCTS, ...)

However, there are already tools available!

62



Where can AI help? — Existing tools

LLMLean: https://github.com/cmu-l3/llmlean

63



Where can AI help? — Existing tools

LLMLean: https://github.com/cmu-l3/llmlean

63



Where can AI help? — Existing tools

LLMLean example on Polynomial Freiman Rusza Conjecture project

63



Where can AI help? — Benchmarking gap

• Self-contained

• Uses standard results

64



Where can AI help? — Benchmarking gap

• Self-contained

• Uses standard results • Part of a project

• Uses new definitions and lemmas

64



miniCTX

miniCTX: Neural Theorem Proving with (Long-)Contexts

Jiewen Hu, Thomas Zhu, Sean Welleck

ICLR 2025 (Oral)

65



miniCTX

Research-level theorems depend on newly-formalized context

• (context, theorem) → proof

• Context: repository of code, new definitions, auxiliary lemmas

66



miniCTX

miniCTX:

Test models on real Lean projects:5

• “Future mathlib”: theorems added after a time cutoff

• Recent projects: PFR, PrimeNumberTheorem, ...

Periodically updated with new projects to stay ahead of LLM training

cutoffs.

5+ tools for easily adding new projects: https://github.com/cmu-l3/ntp-toolkit

67



miniCTX

miniCTX:

Test models on real Lean projects:5

• “Future mathlib”: theorems added after a time cutoff

• Recent projects: PFR, PrimeNumberTheorem, ...

Periodically updated with new projects to stay ahead of LLM training

cutoffs.

5+ tools for easily adding new projects: https://github.com/cmu-l3/ntp-toolkit

67



miniCTX

In-file: dependencies appear in the file

Cross-file: dependencies span files

68



miniCTX — preceding code context

Does context actually matter? A simple experiment.

“File tuning”: train on (preceding code, state, next-tactic) examples

69



miniCTX

Two methods can have similar performance on competition problems, but

vastly difference performance on actual projects

70



miniCTX

Premise selection helps with cross-file dependencies.

71



miniCTX — LLMLean

File-tuned model is deployed in LLMLean:

https://github.com/cmu-l3/llmlean

72



miniCTX

Benchmark, models, code are open-source:

• Data/models: https://huggingface.co/l3lab

• Data extraction: https://github.com/cmu-l3/ntp-toolkit

• Evaluation: https://github.com/cmu-l3/minictx-eval

73

https://huggingface.co/l3lab
https://github.com/cmu-l3/ntp-toolkit
https://github.com/cmu-l3/minictx-eval


Recap: Towards AI for Research-Level Formalization

Formalizing research-level math has unique challenges

• Accessibility gap exists between AI advances and real-world

formalization

• But we have some tools available!

• Benchmarking gap exists between competition problems and

real-world formalization

• miniCTX tests the ability to generalize to new, real-world projects

74



This talk: Bridging Informal and Formal

1. Informal thoughts

• Training models to think informally

• Lean-STaR

2. Informal provers

• Sketching proofs and filling in the gaps

• Draft, Sketch, Prove

• LeanHammer

3. Research-level mathematics

• Assisting in research-level projects

• Practical tools

• MiniCTX

75



Thank you!

Collaborators on works in this talk (alphabetical by last name):

• Jeremy Avigad (CMU)

• Joshua Clune (CMU)

• Jiewen Hu (CMU)

• Mateja Jamnik (Cambridge)

• Albert Q. Jiang (Cambridge, Mistral)

• Timothee Lacroix (Meta, Mistral)

• Guillaume Lample (Meta, Mistral)

• Haohan Lin (Tsinghua)

• Wenda Li (Edinburgh)

• Jiacheng Liu (Washington)

• Zhiqing Sun (CMU, OpenAI)

• Yuhuai (Tony) Wu (Google, X.ai)

• Yiming Yang (CMU)

• Jin Peng Zhou (Cornell)

• Thomas Zhu (CMU)

Sean Welleck

CMU School of Computer Science

Learning, Language, and Logic (L3) Lab

wellecks@cmu.edu

76


	I: Informal thoughts
	II: Informal and formal provers
	III: Research-level mathematics

