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Language models grew 100x in compute requirements in a few years
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Almazrouei et al., 2023

https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2311.16867
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Challenges of accessible use of foundation models

Reduced memory footprint

Generation / prediction speed

Maintain prediction/generation quality
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Compress 16-bit foundation models to 8 bit and 4 bit



8-bit Foundation Models Fail at Scale
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Our LLM.int8() method is the first method that works at scale
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Dettmers et al., 2022

https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2208.07339
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Evolution of scale of protein models
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Finetuning is expensive due to GPU memory requirements
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QLoRA: Finetuning large models on a single GPU.

QLoRA

21

(4-bit finetuning)

Dettmers et al., 2023

https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2305.14314
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Four steps to making foundation models accessible

Understand 
models

Improve
model

efficiency 

Design and 
build 

systems 

Open-source 
and make
accessible
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The bitsandbytes library implements all my research algorithms.

One of the most popular machine learning libraries, growing at 1.7M installations 
per month.

Widely used in industry.
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Usage of bitsandbytes outside of computer science after 2 years

Clinical research: Veen et al., 2023; Nerella et al., 2023; Shoham & Rappoport 2023; Liu et al., 2023; Gosh et al., 
2024; Fan et al., 2024; Han et al., 2023; Yang et al., 2023; Schlegel et al., 2023; An et al., 2023

Biomedical: Ateia et al., 2023; Wang et al., 2023; Li et al., 2023; Wang et al., 2023; Delmas et al., 2023; Robinson et 
al., 2023; Ateia et al., 2023; Hong et al., 2023; Amara et al., 2023; Fries et al., 2022; He et al., 2023;

Humanities: Fok et al., 2023; Kuzman et al., 2023; Han et al., 2023, Deng et al., 2024; 

Education: Zeilikman et al., 2023; Sonkar et al., 2023;

Political science: Linegar et al., 2023; He et al., 2023; Bornheim et al., 2023; Gesnouin et al., 2024; Allaham et al., 
2024

Social science: Attanasio et al., 2023; Hu et al., 2023; Weld et al., 2024

Manufacturing: Freire et al., 2024; Zhang et al., 2024; Momodu 2023;

Other fields: Kraus et al., 2023; Hadi et al., 2023; Zelikman et al., 2023; Jiang 2023; Freudenberg 2023; Wang et al., 
2023; Chu et al., 2024; Buehler et al., 2023; Saben & Chandrasekar, 2024;
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Accessibility challenges of foundation models

Quantization: companies vs users

Using foundation models

Finetuning foundation models
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1. Resource use in neural networks
2. Neural networks
3. Quantization
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1. Resource use in neural networks

32



Transformers: The backbone of foundation models
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Transformers: The backbone of foundation models
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Transformers are mostly matrix multiplication
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Transformers are mostly matrix multiplication
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Matrix multiplication 
consumes:
● 95% Memory
● 95% Computation



2. Neural networks
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Background: neural networks. A sequence of layers.
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Background: neural networks. A sequence of layers.
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Where are resources used in neural networks?
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Background: neural networks. A sequence of layers.
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Matrix multiplication is quite optimal in terms of 
hardware and software
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Matrix multiplication is quite optimal in terms of 
hardware and software

…
As such we need to find good approximations to 

gain efficiency
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Approximations need to be faithful
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Approximation
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Approximations need to be useful in practice
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Quantization has challenges …
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60

Approximation
through

8-bit computation16-bit

Speed

Memory

Quality



Quantization has challenges, but we can overcome them!
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3. Quantization
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Quantizing 16-bit normal distributed data to 4-bit integers

63

16-bit float-65520 65520



Quantizing 16-bit normal distributed data to 4-bit integers

64

16-bit float

-7 74-bit integer

-65520 65520



Quantizing 16-bit normal distributed data to 4-bit integers

65

16-bit float

-7 74-bit integer

-65520 65520



Quantizing 16-bit normal distributed data to 4-bit integers

66

16-bit float

-7 74-bit integer

-65520 65520



Quantizing 16-bit normal distributed data to 4-bit integers
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Quantizing 16-bit normal distributed data to 4-bit integers

68

16-bit float-7 7

-7 74-bit integer



Integer quantization is similar to histogram binning



Quantizing 16-bit normal distributed data to 4-bit integers
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Quantizing 16-bit normal distributed data to 4-bit integers
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What do outliers in quantization look like?



Accessibility challenges of foundation models

Quantization: companies vs users

Using foundation models

Finetuning foundation models
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8-bit Foundation Models Fail at Scale
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Outlier patterns in small neural networks (350M parameters)
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Outlier patterns in small neural networks (350M parameters)
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Outlier patterns in small neural networks (1.3B parameters)
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Outlier patterns in small neural networks (1.3B parameters)
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Outlier patterns in small neural networks (1.3B parameters)
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Outlier at 6 sigma



Outlier patterns in small neural networks (2.7B parameters)
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Outlier patterns in small neural networks (2.7B parameters)
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Outlier patterns in small neural networks (2.7B parameters)
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Outlier patterns in large neural networks (6.7B parameters)
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Outlier patterns in large neural networks (6.7B parameters)
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Outlier patterns in large neural networks (6.7B parameters)
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Outlier patterns in large neural networks (6.7B parameters)
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Outlier patterns in large neural networks (13B parameters)
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Outlier at 6 sigma



Emergent outliers vs language model performance
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Emergent outliers vs language model performance
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Emergent outliers vs language model performance
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Emergent outliers vs outlier magnitude
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Mixed precision decomposition

Matrix multiply outliers (0.1%) in 16-bit.

Matrix multiply other values (99.9%) in 8-bit.
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8-bit Foundation Models Fail at Scale
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Our LLM.int8() method is the first method that works at scale
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How can we maximize performance density 
per bit?
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Maximizing performance density in foundation models
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Maximizing performance density in foundation models
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Maximizing performance density in foundation models

101
Dettmers & Zettlemoyer, 2023

https://arxiv.org/abs/2212.097207
https://arxiv.org/abs/2106.09685
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Maximizing performance density in foundation models
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https://arxiv.org/abs/2212.097207
https://arxiv.org/abs/2106.09685


Maximizing performance density in foundation models
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Dettmers & Zettlemoyer, 2023

https://arxiv.org/abs/2212.097207
https://arxiv.org/abs/2212.09720


Integer quantization is similar to histogram binning



What do outliers in quantization look like?



Block-wise quantization



What does help to improve scaling? Block size



Hardware-based block-wise quantization with Blackwell B100/B200
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Quantization precision optimality depends on data per parameter
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Optimal precision for pretraining/post-training quantization
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Take-away 

Fundamental insights into foundation models 
information processing enables efficiency and 

accessibility
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Accessibility challenges of foundation models

Quantization: companies vs users

Using foundation models

Finetuning foundation models
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Finetuning is expensive due to GPU memory requirements
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How to finetune a model
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How to finetune a model
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Background: How to finetune a model
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Update the weights

Quality



Finetuning a 4-bit model with our insights … 
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Finetuning a 4-bit model with our insights … 
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4-bit Error

4-bit computation



Finetuning a 4-bit model with our insights … 
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4-bit Error

4-bit Weight gradients

4-bit backpropagation



Finetuning a 4-bit model with our insights … 
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Quality



Low-rank Adaptation (LoRA)

131
 Hu et al., 2021

https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2106.09685


Low-rank Adaptation (LoRA)
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Not updated
 Hu et al., 2021

https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2106.09685


Low-rank Adaptation (LoRA)
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Low-rank Adaptation (LoRA)
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Adapters

Not updated

Only update 
adapter weights

 Hu et al., 2021

https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2106.09685


Quantized Low-rank Adaptation (QLoRA)
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Quantized Low-rank Adaptation (QLoRA)
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Quantized Low-rank Adaptation (QLoRA)
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Quantized Low-rank Adaptation (QLoRA)
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Quantized Low-rank Adaptation (QLoRA)
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4-bit model

16-bit adapters

Quality



What 4-bit data type is information theoretically optimal?
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-7 7

-7 74-bit ???

16-bit float



4-bit NormalFloat (NF4) an information-theoretically 
optimal data type for normal distributions
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QLoRA systems contributions



Results
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QLoRA recovers lost performance through fine-tuning
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4-bit Guanaco: A ChatGPT-quality 4-bit chatbot finetuned in 24h on a single GPU
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Take-away 

4-bit finetuning is possible by passing 
gradients through a 4-bit neural network to 

16-bit adapters.
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Accessibility challenges of foundation models

Quantization: companies vs users

Using foundation models

Finetuning foundation models
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Inference efficiency

Prefill: multiple tokens are multiplied with each weight matrix. Efficient even at 
small batch sizes

Decoding: generating token-by-token. Only Efficient at large batch sizes.

Companies optimize for decoding tokens/$. Users optimize token/second. 
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Decoding speed interactive learning

1. Batch size 1, fast for one user, but very wasteful in terms of GPU resources
2. Larger batch sizes yield about the same tokens/sec/user, but more efficient
3. MFU only very high with large batch sizes, but difficult to achieve for a single 

user. KV-cache size is a limiting factor.
4. Multiple GPUs only fast if one has a fast connection between GPUs
5. Quantization only efficient for small batch sizes
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