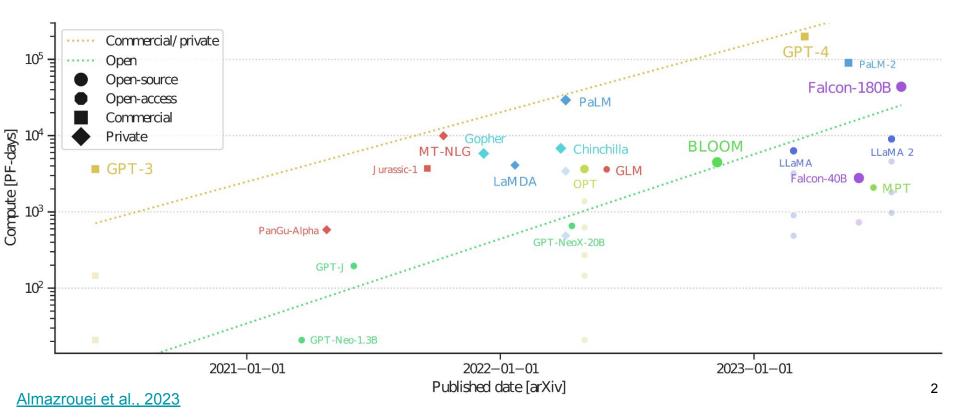
Efficient Foundation Models via Quantization Tim Dettmers

Language models grew 100x in compute requirements in a few years



This lecture ...

Using foundation models

This lecture ...

Using foundation models

Finetuning foundation models

This lecture ...

Using foundation models

Finetuning foundation models

Typical user groups for each case

Using foundation models

Finetuning foundation models

Typical user groups for each case

Using foundation models

Finetuning foundation models

Typical user groups for each case

Using foundation models

Finetuning foundation models

Accessibility challenges of foundation models

Using foundation models

Finetuning foundation models

Challenges of accessible use of foundation models

Reduced memory footprint

Challenges of accessible use of foundation models

Reduced memory footprint

Maintain prediction/generation quality

Challenges of accessible use of foundation models

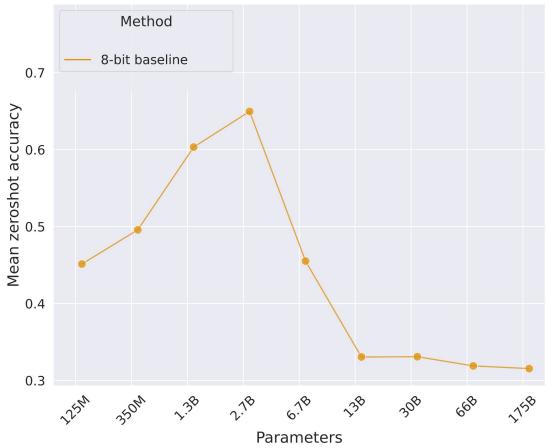
Reduced memory footprint

Maintain prediction/generation quality

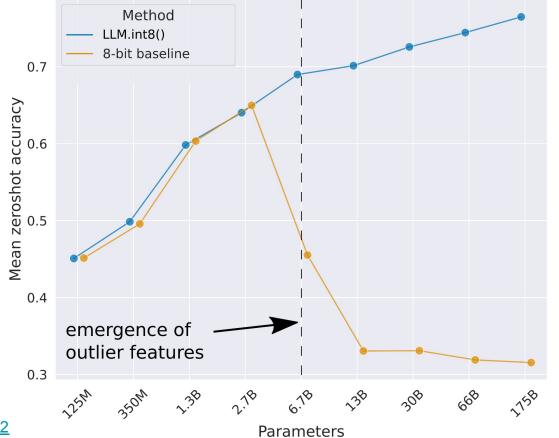
Generation / prediction speed

Compress 16-bit foundation models to 8 bit and 4 bit

8-bit Foundation Models Fail at Scale



Our LLM.int8() method is the first method that works at scale



Dettmers et al., 2022

Accessibility challenges of foundation models

Using foundation models

Finetuning foundation models

Evolution of scale of protein models

AlphaFold

ESM-1

21 Million Parameters 650 Million Parameters

November 2021

Evolution of scale of protein models

AlphaFold

TATA

T

ESM-1

21 Million Parameters 650 Million Parameters

July 2021

November 2021

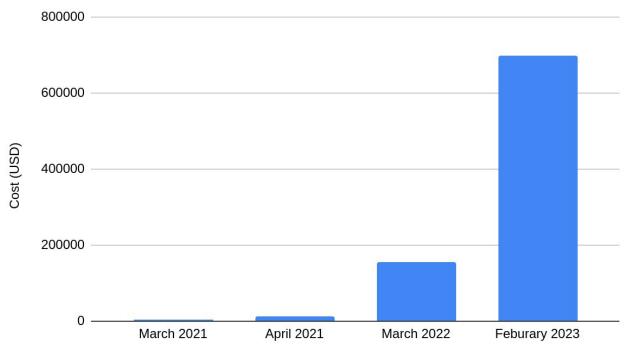
August 2022

15 billion

Parameters

ESM-2

Finetuning is expensive due to GPU memory requirements



QLoRA: Finetuning large models on a single GPU.

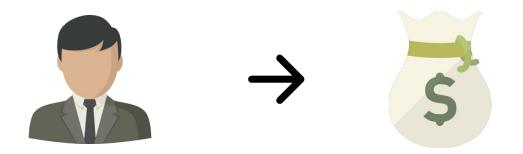
↓ QLoRA

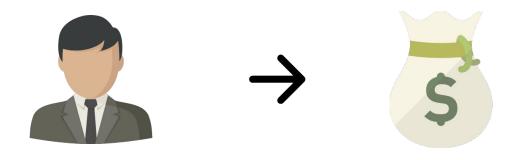
(4-bit finetuning)

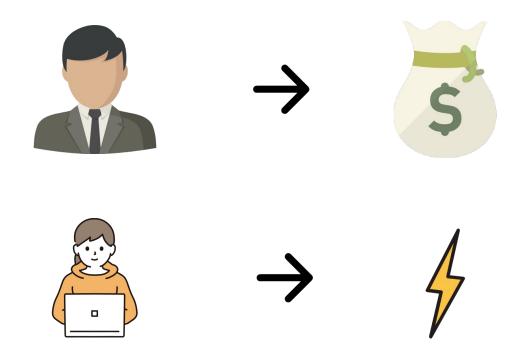
Accessibility challenges of foundation models

Using foundation models

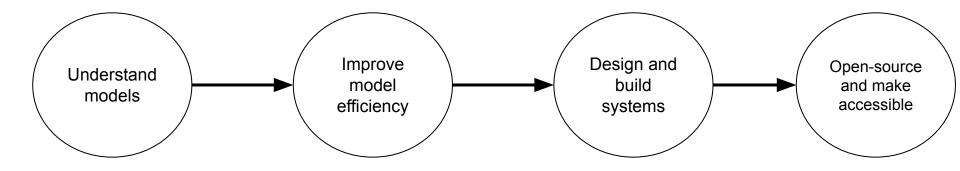
Finetuning foundation models







Four steps to making foundation models accessible



The bitsandbytes library implements all my research algorithms.

One of the most popular machine learning libraries, growing at 1.7M installations per month.

Widely used in industry.

Usage of bitsandbytes outside of computer science after 2 years

Clinical research: Veen et al., 2023; Nerella et al., 2023; Shoham & Rappoport 2023; Liu et al., 2023; Gosh et al., 2024; Fan et al., 2024; Han et al., 2023; Yang et al., 2023; Schlegel et al., 2023; An et al., 2023

Biomedical: Ateia et al., 2023; Wang et al., 2023; Li et al., 2023; Wang et al., 2023; Delmas et al., 2023; Robinson et al., 2023; Ateia et al., 2023; Hong et al., 2023; Amara et al., 2023; Fries et al., 2022; He et al., 2023;

Humanities: Fok et al., 2023; Kuzman et al., 2023; Han et al., 2023, Deng et al., 2024;

Education: Zeilikman et al., 2023; Sonkar et al., 2023;

Political science: Linegar et al., 2023; He et al., 2023; Bornheim et al., 2023; Gesnouin et al., 2024; Allaham et al., 2024

Social science: Attanasio et al., 2023; Hu et al., 2023; Weld et al., 2024

Manufacturing: Freire et al., 2024; Zhang et al., 2024; Momodu 2023;

Other fields: Kraus et al., 2023; Hadi et al., 2023; Zelikman et al., 2023; Jiang 2023; Freudenberg 2023; Wang et al., 2023; Chu et al., 2024; Buehler et al., 2023; Saben & Chandrasekar, 2024;

Accessibility challenges of foundation models

Using foundation models

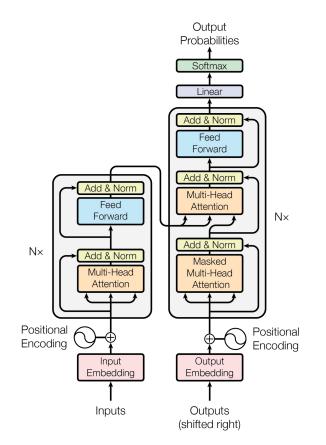
Finetuning foundation models

Background

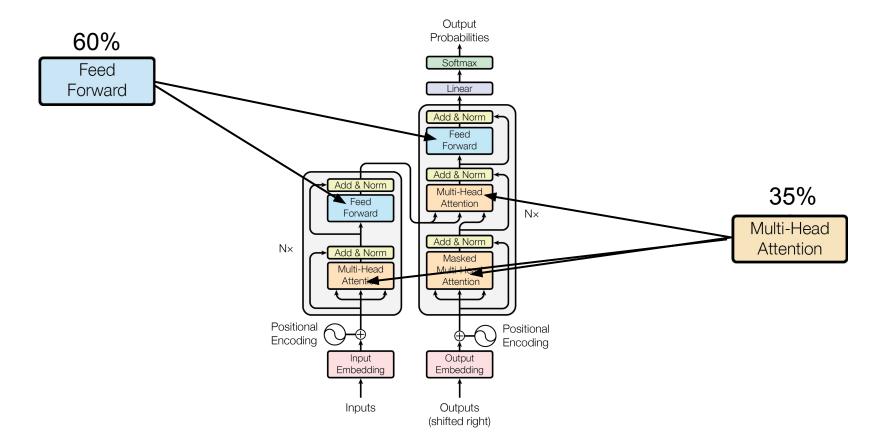
- 1. Resource use in neural networks
- 2. Neural networks
- 3. Quantization

1. Resource use in neural networks

Transformers: The backbone of foundation models

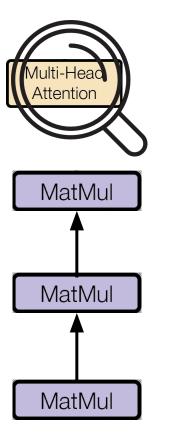


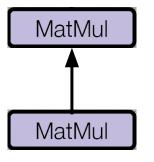
Transformers: The backbone of foundation models



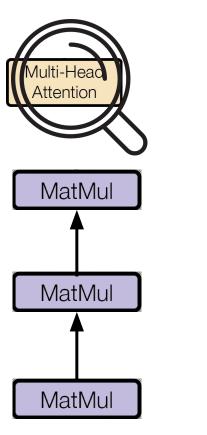
Transformers are mostly matrix multiplication

Transformers are mostly matrix multiplication





Transformers are mostly matrix multiplication



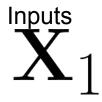
MatMul MatMul

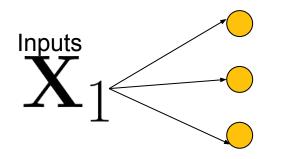
Matrix multiplication

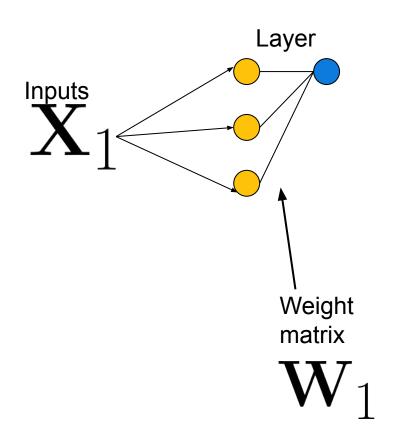
consumes:

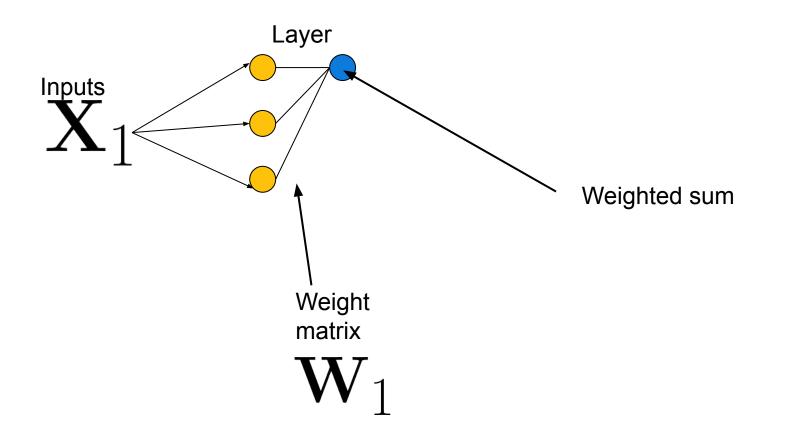
- 95% Memory
- 95% Computation

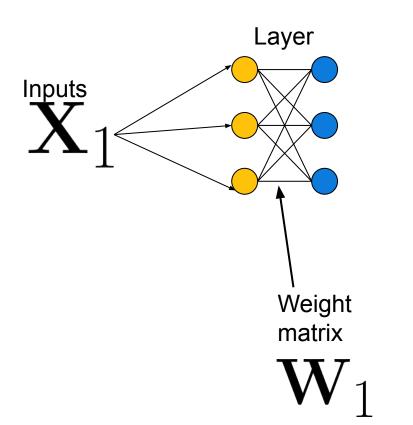
2. Neural networks



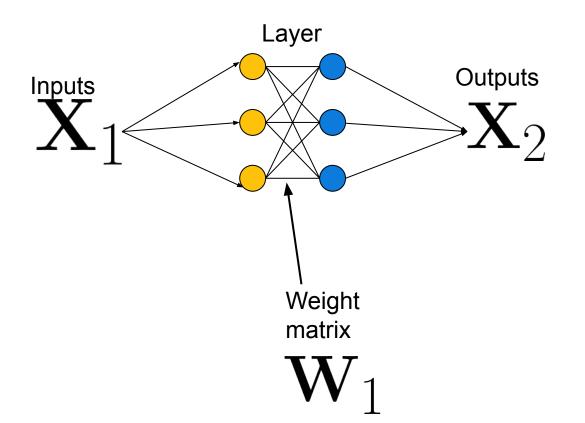


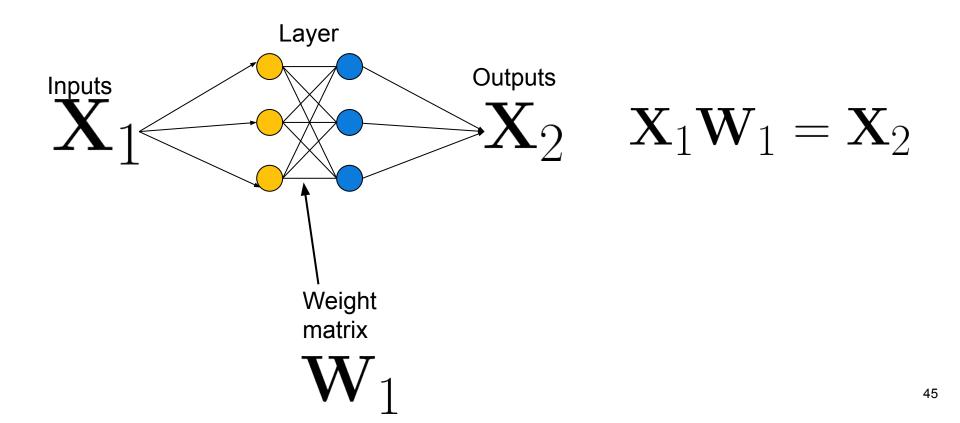


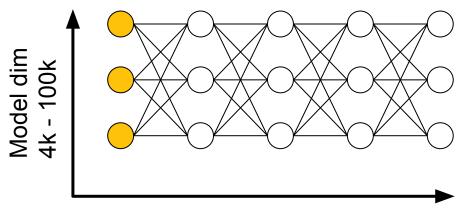




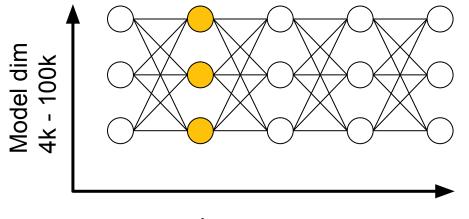
Where are resources used in neural networks?



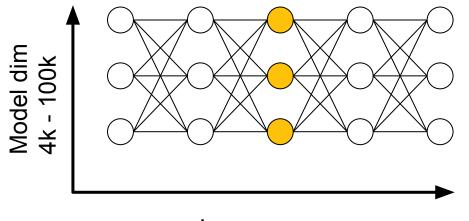




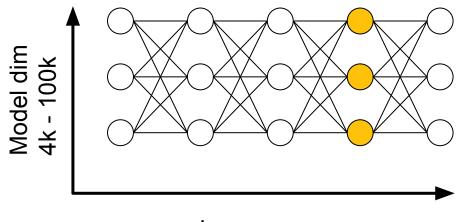
Layers 50 - 100



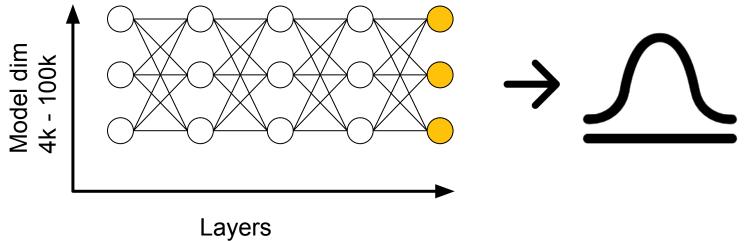
Layers 50 - 100



Layers 50 - 100



Layers 50 - 100



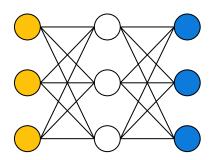
50 - 100

Matrix multiplication is quite optimal in terms of hardware and software

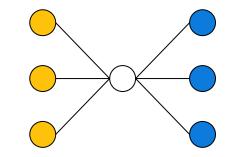
Matrix multiplication is quite optimal in terms of hardware and software

As such we need to find good approximations to gain efficiency

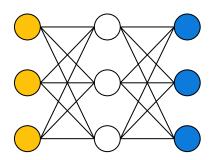
Approximations need to be faithful



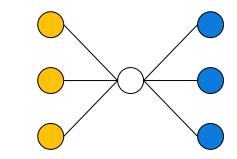
Approximation through low-rank projection



Approximations need to be faithful



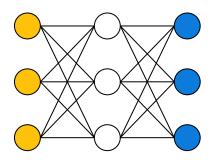
Approximation through low-rank projection



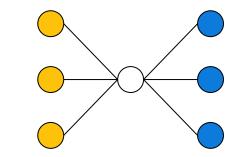
Speed

Memory

Approximations need to be faithful



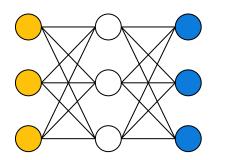
Approximation through low-rank projection



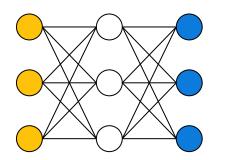
Speed

Quality

Approximations need to be useful in practice

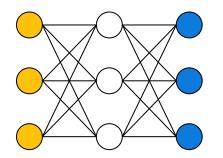


Approximation through sparsification Approximations need to be useful in practice



Approximation through sparsification

Approximations need to be useful in practice



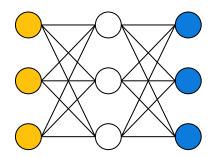
Approximation through sparsification

Speed

Quality

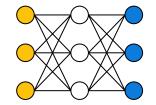
Quantization has challenges ...

16-bit



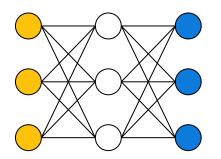
 \rightarrow

Approximation through 8-bit computation

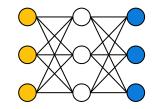


Quantization has challenges ...

16-bit



Approximation through 8-bit computation



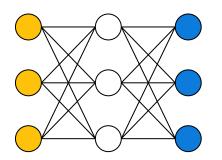
Speed

Memory

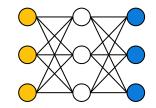
Quality

Quantization has challenges, but we can overcome them!

16-bit



Approximation through 8-bit computation



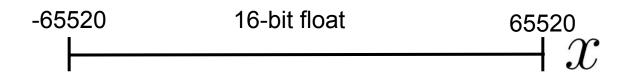
Speed

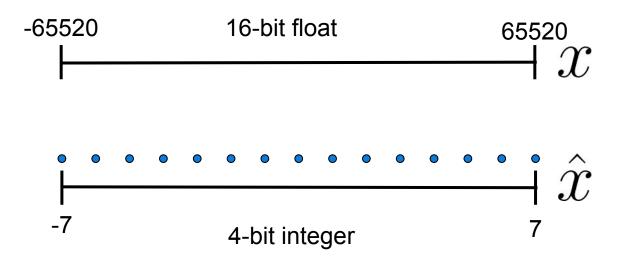
Memory

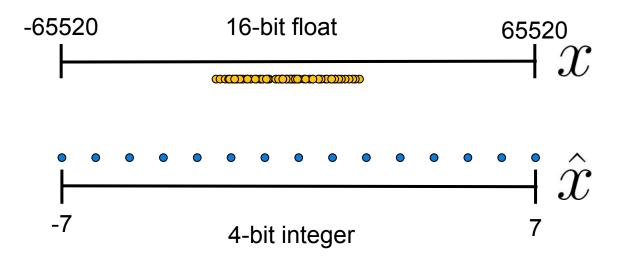
Quality

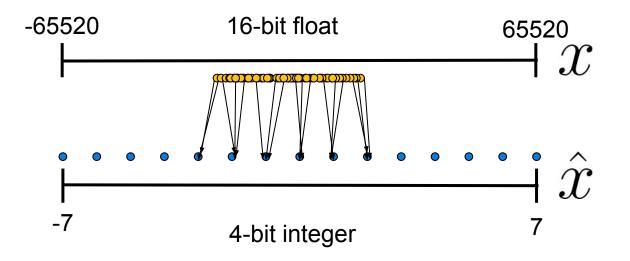
61

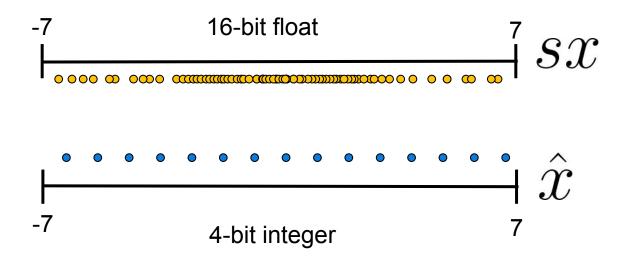
3. Quantization

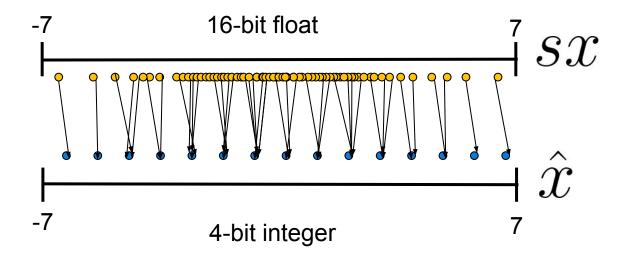




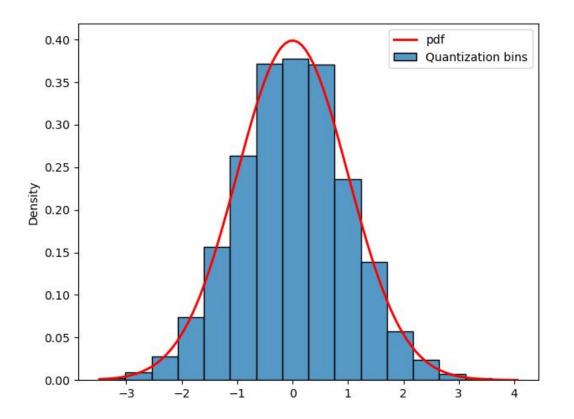


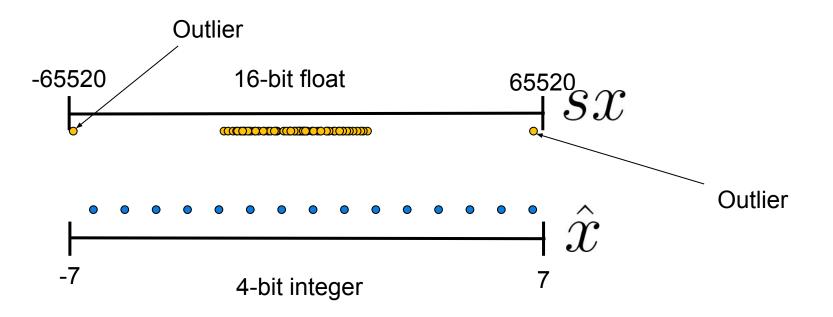


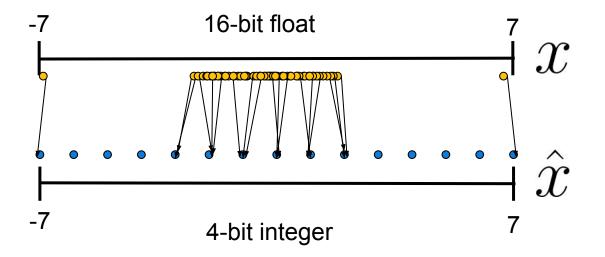




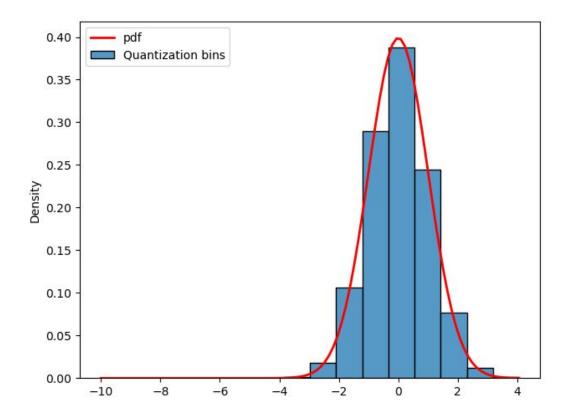
Integer quantization is similar to histogram binning







What do outliers in quantization look like?



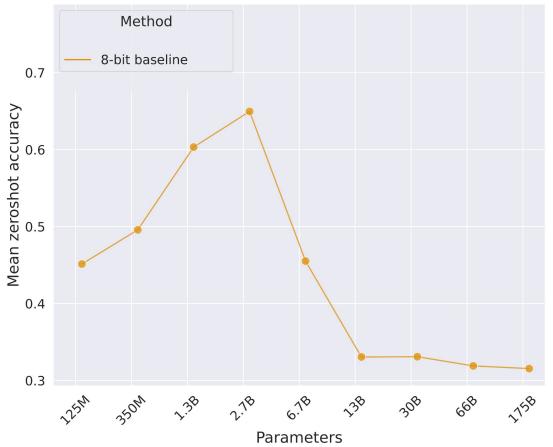
Accessibility challenges of foundation models

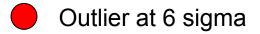
Using foundation models

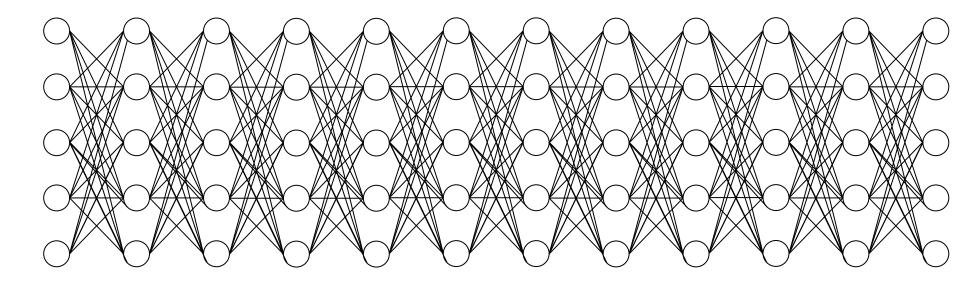
Finetuning foundation models

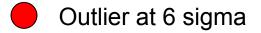
Quantization: companies vs users

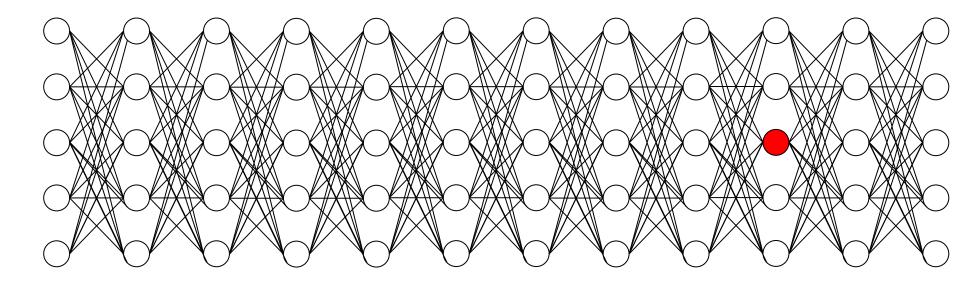
8-bit Foundation Models Fail at Scale

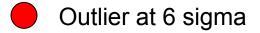


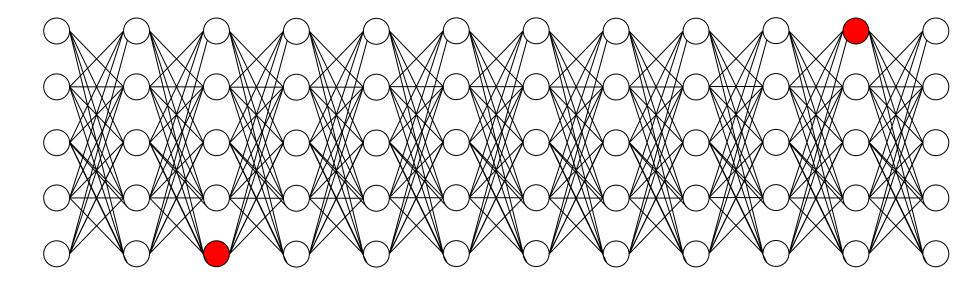


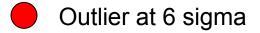


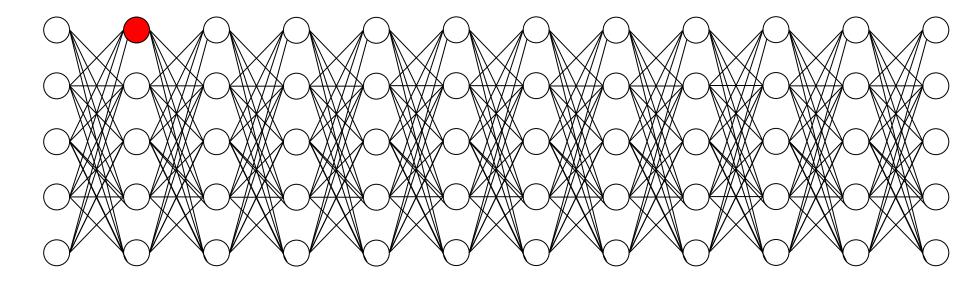


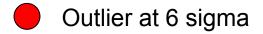


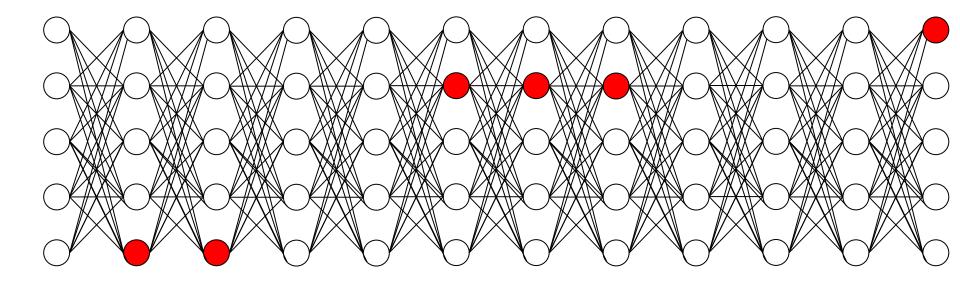


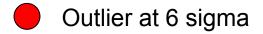


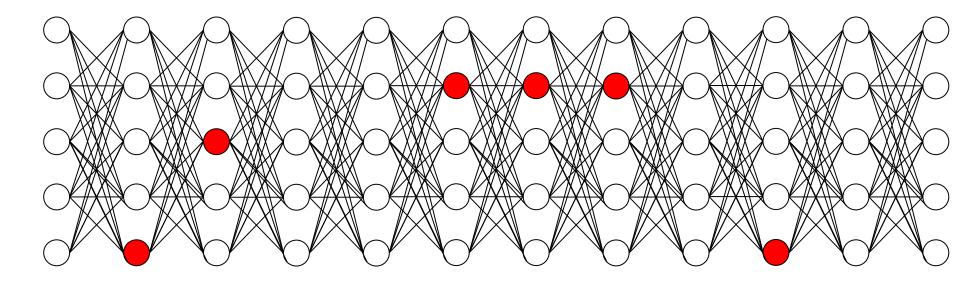


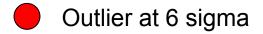


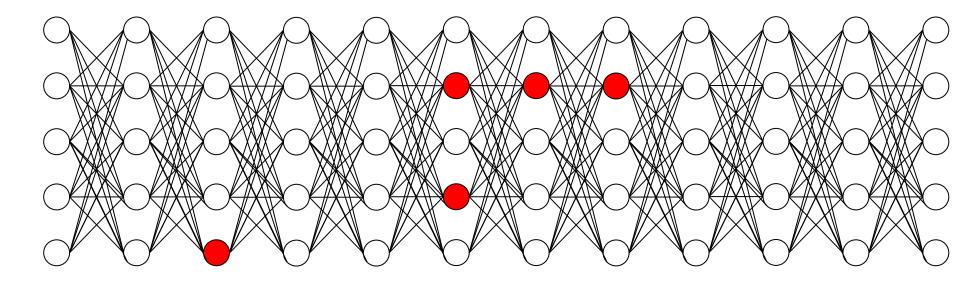


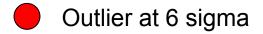


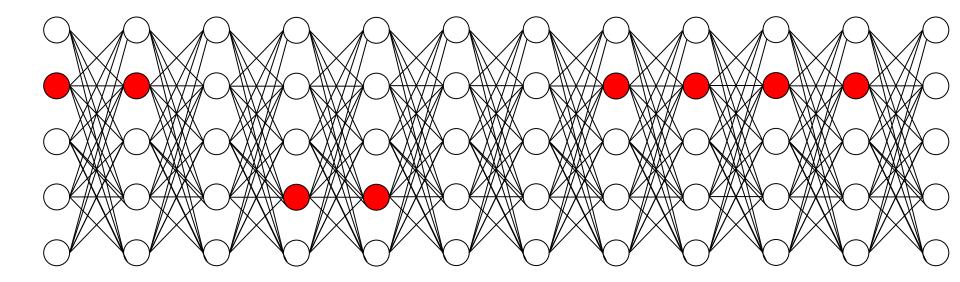


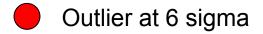


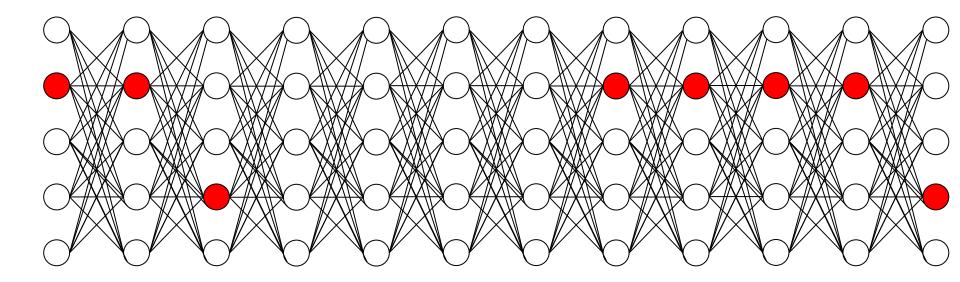


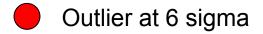


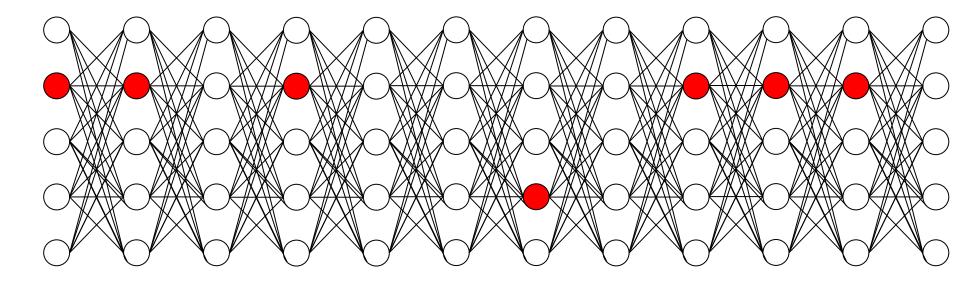


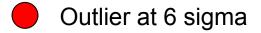


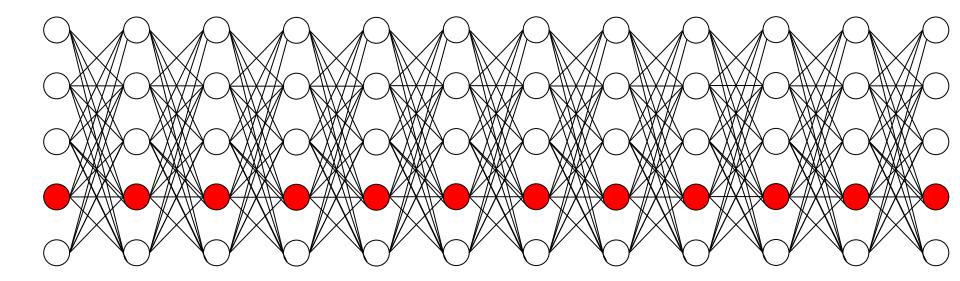


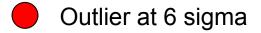


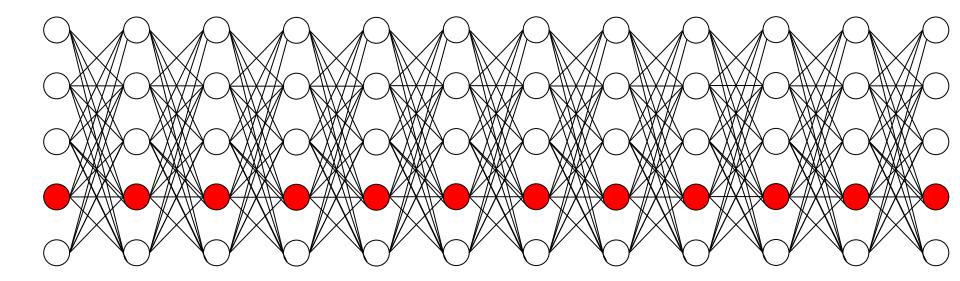


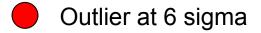


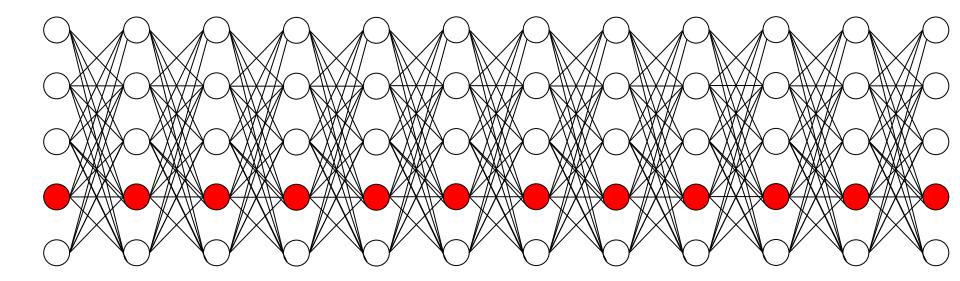


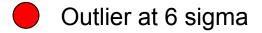


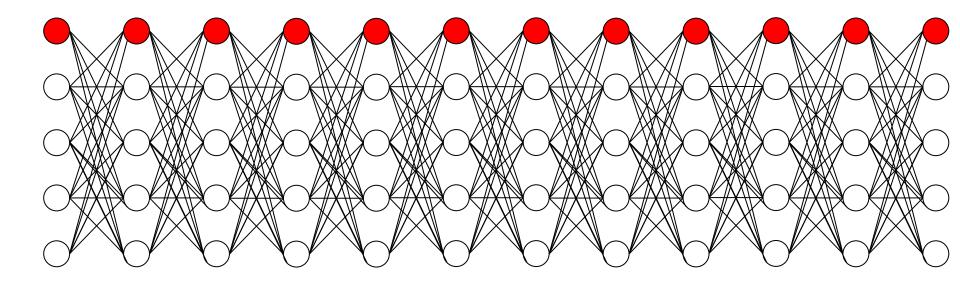


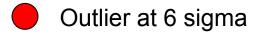


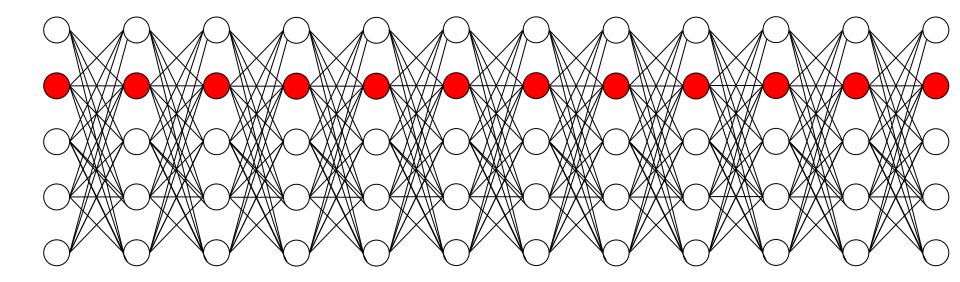




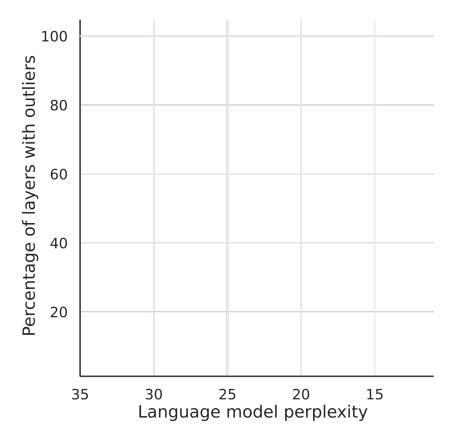




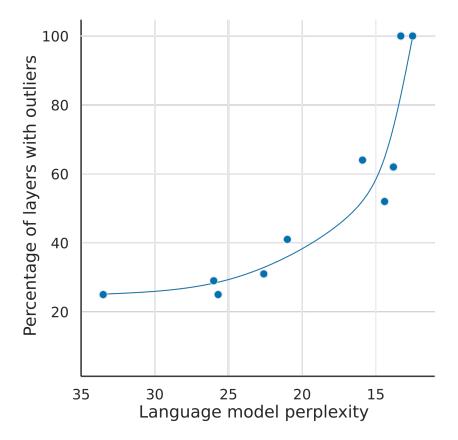




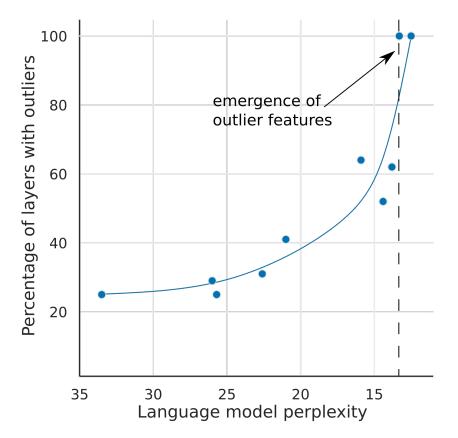
Emergent outliers vs language model performance



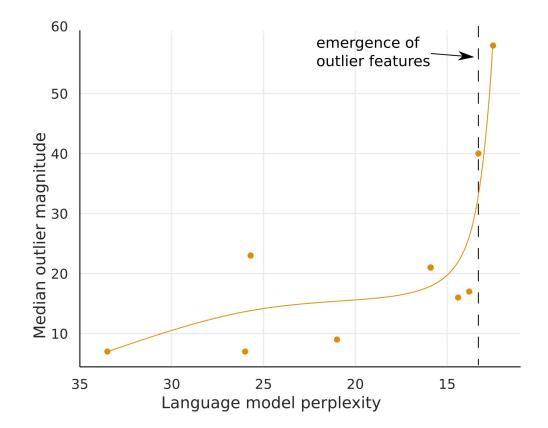
Emergent outliers vs language model performance



Emergent outliers vs language model performance



Emergent outliers vs outlier magnitude



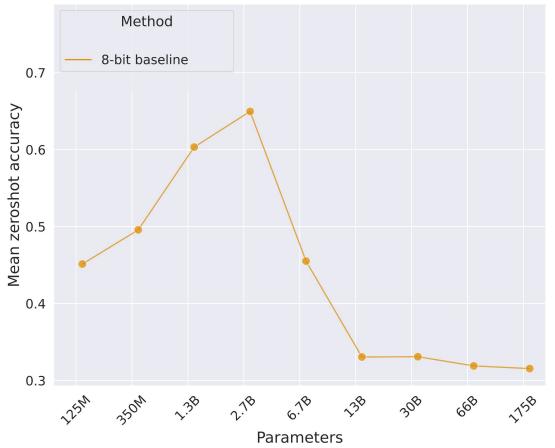
Mixed precision decomposition

Matrix multiply outliers (0.1%) in 16-bit.

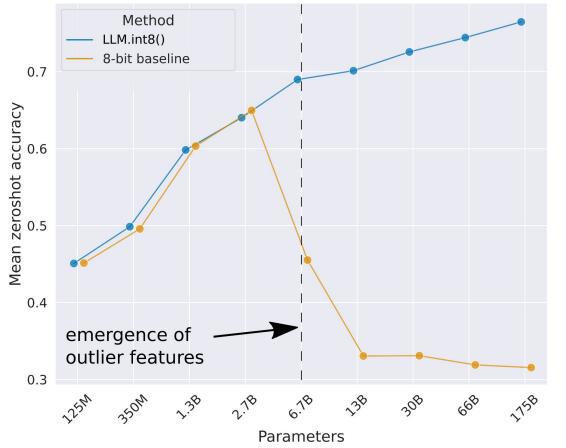
Matrix multiply other values (99.9%) in 8-bit.

$$\mathbf{C}_{f16} \approx \sum_{h \in O} \mathbf{X}_{f16}^{h} \mathbf{W}_{f16}^{h} + \mathbf{S}_{f16} \cdot \sum_{h \notin O} \mathbf{X}_{i8}^{h} \mathbf{W}_{i8}^{h}$$

8-bit Foundation Models Fail at Scale

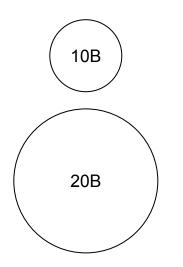


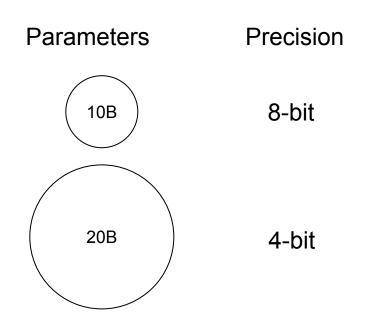
Our LLM.int8() method is the first method that works at scale

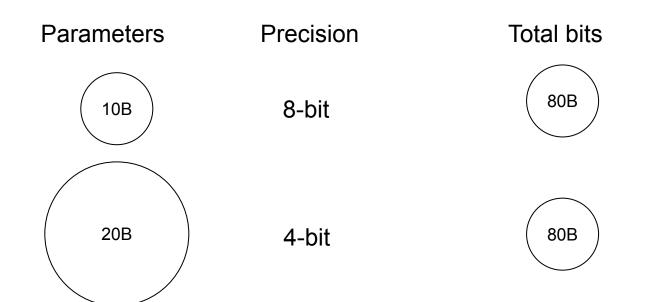


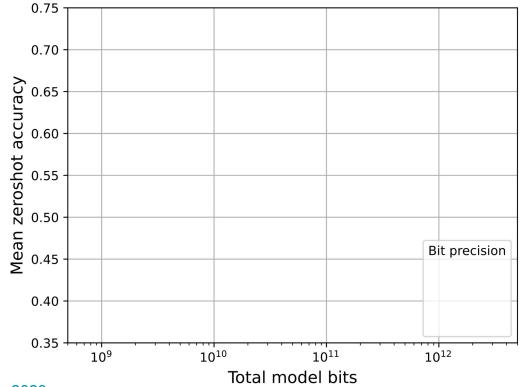
How can we maximize performance density per bit?

Parameters

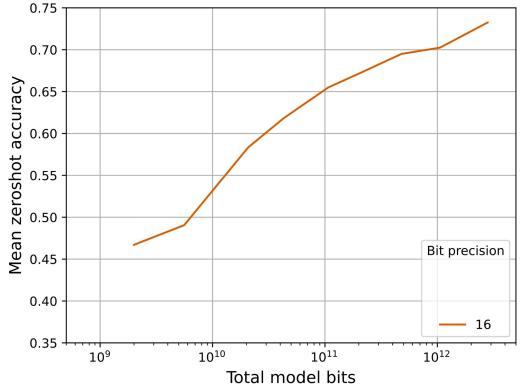




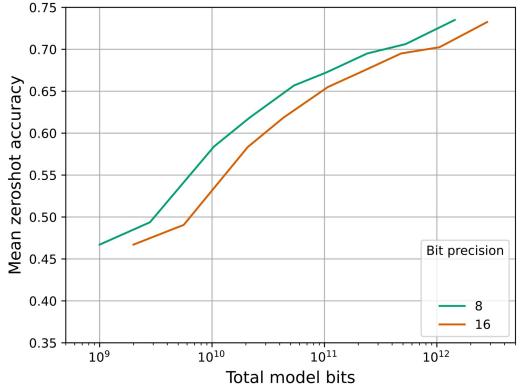




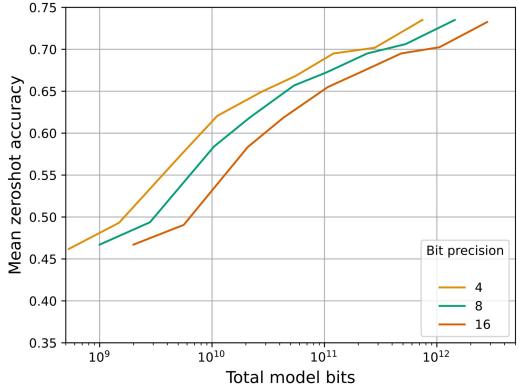
Dettmers & Zettlemoyer, 2023



Dettmers & Zettlemover, 2023



Dettmers & Zettlemover, 2023

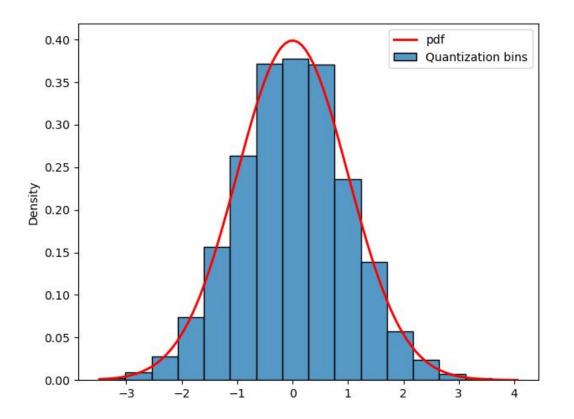


Dettmers & Zettlemoyer, 2023

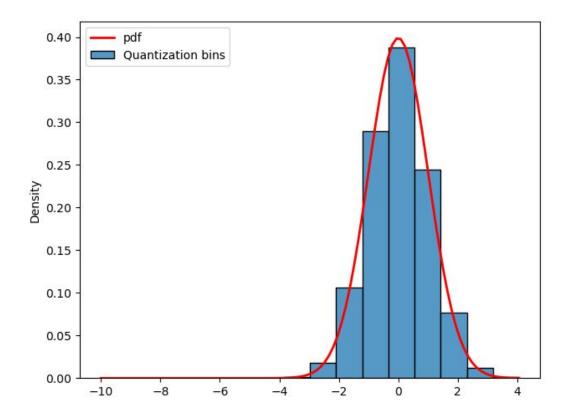


Dettmers & Zettlemoyer, 2023

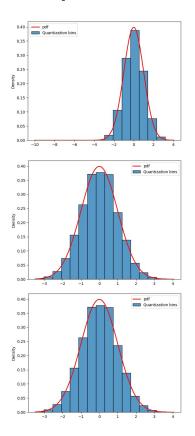
Integer quantization is similar to histogram binning

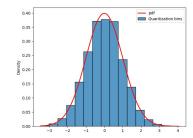


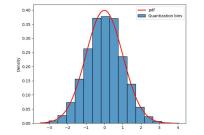
What do outliers in quantization look like?

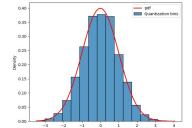


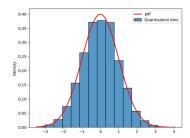
Block-wise quantization

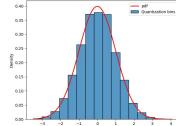


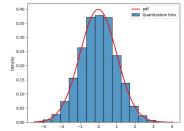




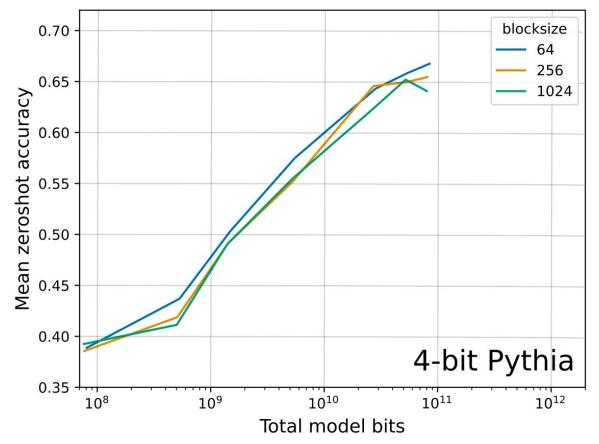








What does help to improve scaling? Block size



Hardware-based block-wise quantization with Blackwell B100/B200

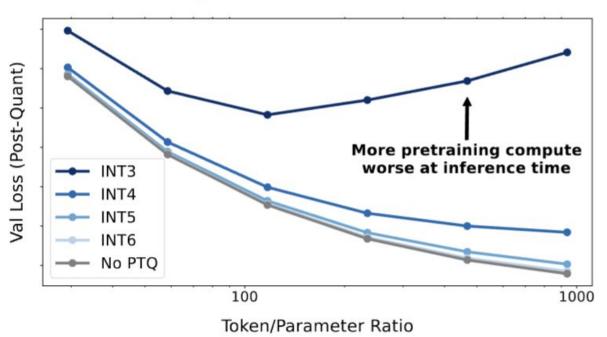
Scaling Laws for Precision

Tanishq Kumar^{*1} Zachary Ankner^{*3, 4} Benjamin F. Spector² Blake Bordelon¹ Niklas Muennighoff² Mansheej Paul⁴ Cengiz Pehlevan¹ Christopher Ré² Aditi Raghunathan⁵

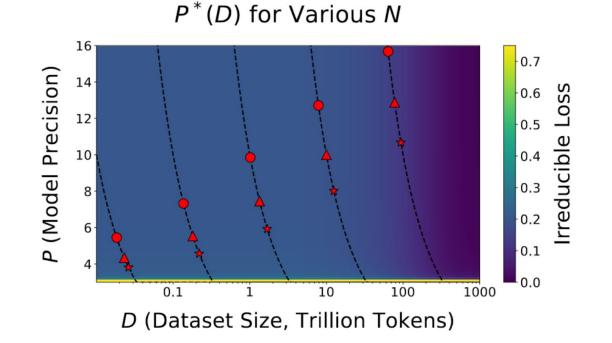
> ¹Harvard University ²Stanford University ³MIT ⁴Databricks ⁵Carnegie Mellon University

Quantization precision optimality depends on data per parameter

Scaling: Post-Train Quantization



Optimal precision for pretraining/post-training quantization



Circle: 8B Triangle: 70B Star: 405B

Take-away

Fundamental insights into foundation models information processing enables efficiency and accessibility

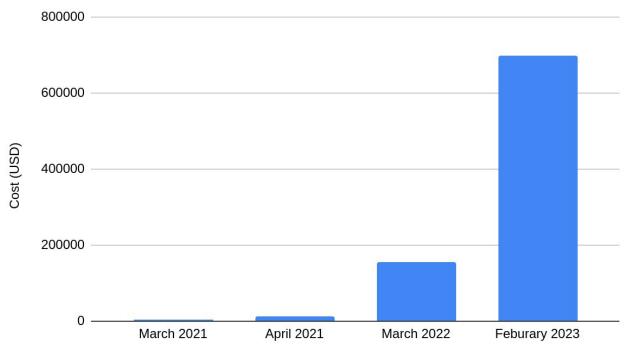
Accessibility challenges of foundation models

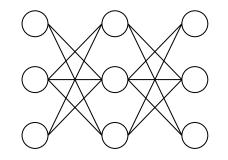
Using foundation models

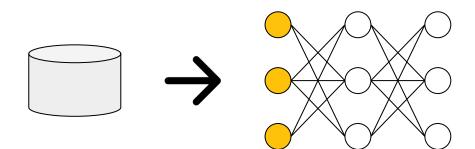
Finetuning foundation models

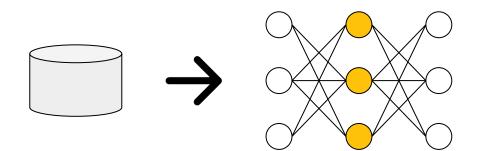
Quantization: companies vs users

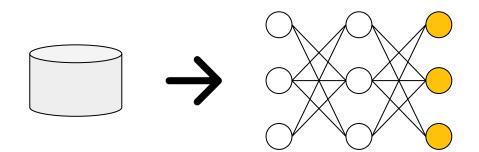
Finetuning is expensive due to GPU memory requirements

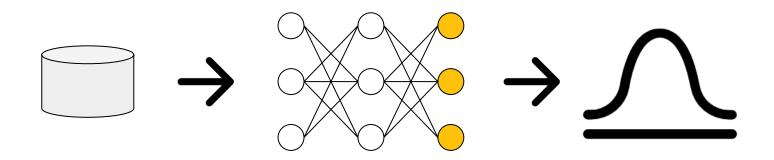


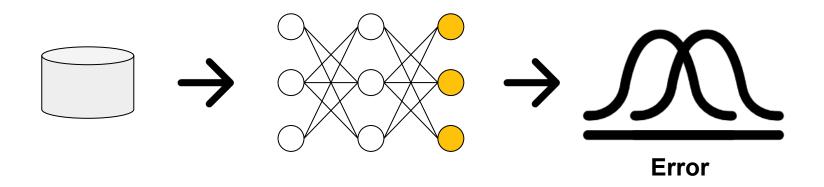


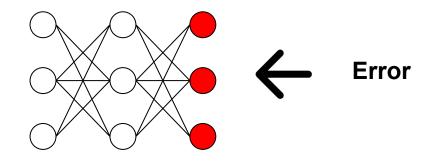


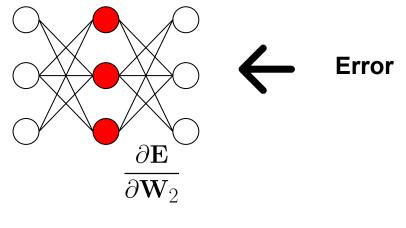




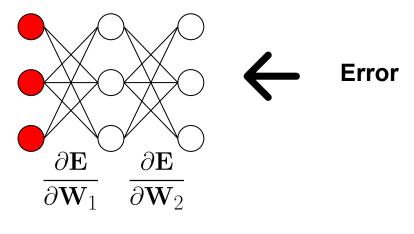








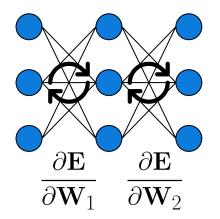
Weight gradients

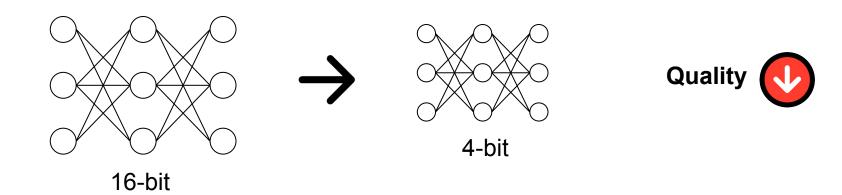


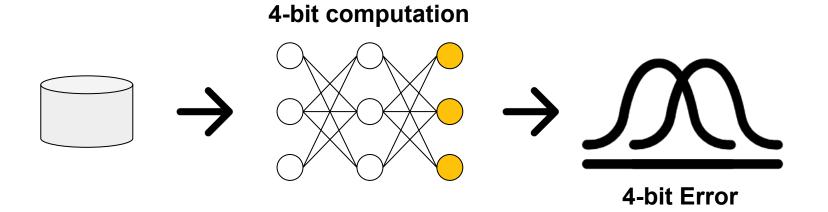
Weight gradients

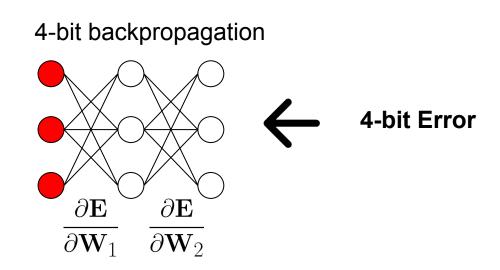
Background: How to finetune a model

Update the weights



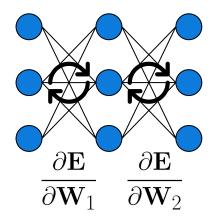


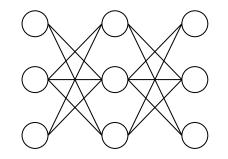


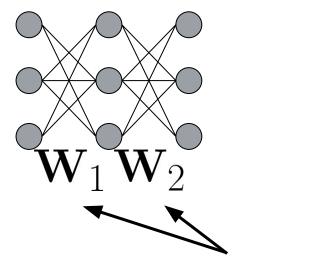


4-bit Weight gradients

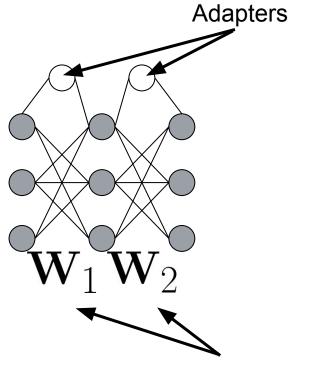
Update the weights



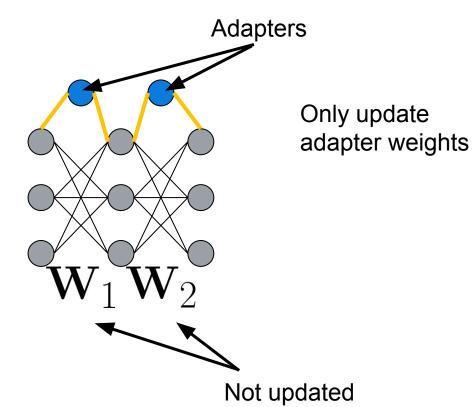


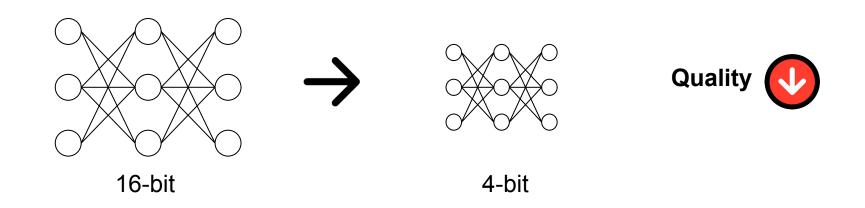


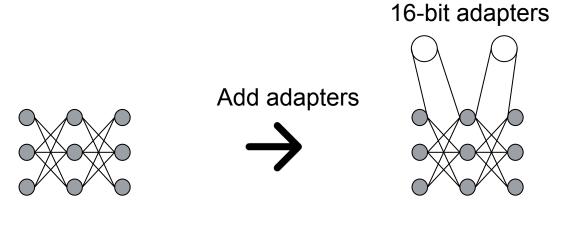
Not updated



Not updated

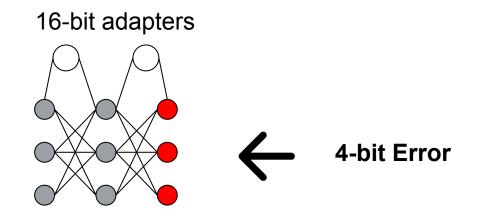


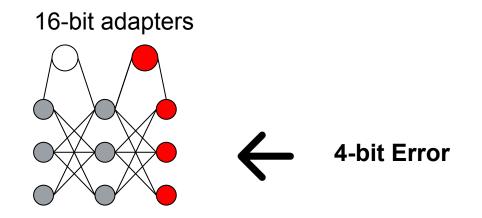


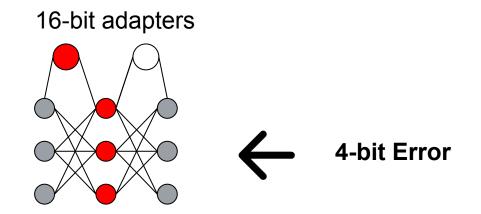


4-bit

4-bit

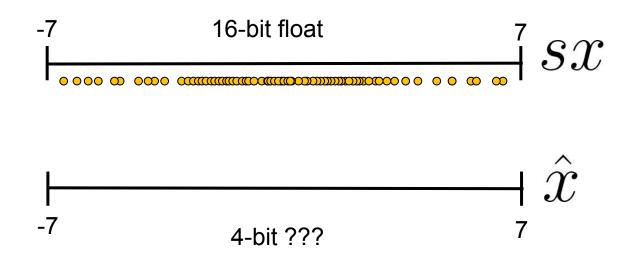




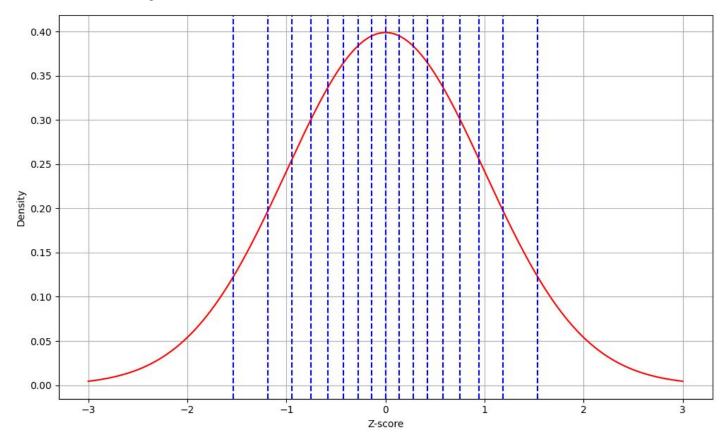


16-bit adapters

What 4-bit data type is information theoretically optimal?



4-bit NormalFloat (NF4) an information-theoretically optimal data type for normal distributions

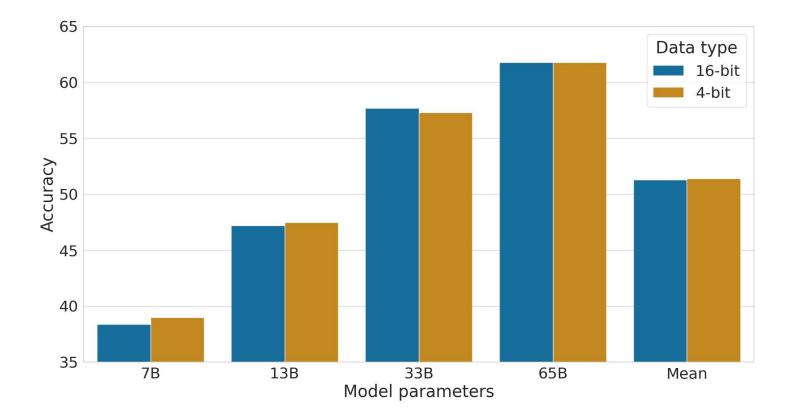


142

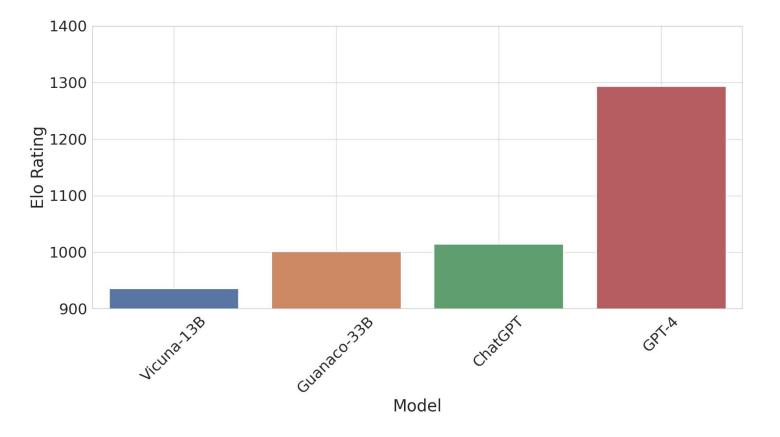
QLoRA systems contributions

Results

QLoRA recovers lost performance through fine-tuning



4-bit Guanaco: A ChatGPT-quality 4-bit chatbot finetuned in 24h on a single GPU



Take-away

4-bit finetuning is possible by passing gradients through a 4-bit neural network to 16-bit adapters.

Accessibility challenges of foundation models

Using foundation models

Finetuning foundation models

Quantization: companies vs users

Inference efficiency

Prefill: multiple tokens are multiplied with each weight matrix. Efficient even at small batch sizes

Decoding: generating token-by-token. Only Efficient at large batch sizes.

Companies optimize for decoding tokens/\$. Users optimize token/second.

Decoding speed interactive learning

- 1. Batch size 1, fast for one user, but very wasteful in terms of GPU resources
- 2. Larger batch sizes yield about the same tokens/sec/user, but more efficient
- 3. MFU only very high with large batch sizes, but difficult to achieve for a single user. KV-cache size is a limiting factor.
- 4. Multiple GPUs only fast if one has a fast connection between GPUs
- 5. Quantization only efficient for small batch sizes