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What is Natural Language 
Processing (NLP)?

• Technology that enables computers to process, generate, and 
interact with language (e.g., text). Some key aspects: 

• Learn useful representations: capture meaning in a 
structured way that can be used for downstream tasks (e.g., 
embeddings used to classify a document)

• Generate language: create language (e.g., text, code) for 
tasks like dialogue, translation, or question answering.

• Bridge language and action: Use language to perform tasks, 
solve problems, interact with environments (e.g., a code IDE) 



Today’s NLP

DeepSeek-V3 on Together.ai, Generated Jan 8, 2025



Today’s NLP

https://openscholar.allen.ai/, Generated Jan 8, 2025

https://openscholar.allen.ai/


Today’s NLP

https://github.com/All-Hands-AI/OpenHands , generated Jan 8 2025

https://github.com/All-Hands-AI/OpenHands


In this class, you’ll learn the fundamental 
concepts and practical techniques 

underlying systems like these



• Many tasks involve an input  and an output , 
where x and/or y might involve language.

x ∈ 𝒳 y ∈ 𝒴

Input x Output y Task

Text Text in Other Language Translation
Text Label Text Classification

Image Text Image Captioning

State of 
an environment Action Decision-Making 

Agent Tasks

Search query List of documents Retrieval

Tasks Performed by NLP Systems



A Few Methods for Creating NLP Systems
• Rules: Manual creation of rules 

 
 
 

• Supervised learning: Machine learning from data 

• Reinforcement Learning: Learning to maximize reward 
by interacting with an environment 

def classify(x: str) -> str: 
    sports_keywords = ["baseball", "soccer", "football", “tennis"] 
    if any(keyword in x for keyword in sports_keywords): 
        return "sports" 
    else: 
        return "other"

I love to play baseball. 
The stock price is going up. 
He got a hat-trick yesterday. 
He is wearing tennis shoes.

sports 
other 
sports 
other

Training Model



Data Requirements for System Building

• Rules/prompting based on intuition: 
No data needed, but also no performance guarantees 

• Rules/prompting based on spot-checks: 
A small amount of data with input x only 

• Supervised learning: 
Additional training set. More is often better 

• Reinforcement learning: 
An environment (inputs, states/actions/transitions, reward) 



A Rule-Based NLP System



Example: classification
• Given a review on a reviewing web site (x), decide whether 

its label (y) is positive (1), negative (-1) or neutral (0)

I   hate   this  movie
positive 
neutral 

negative

I   love   this   movie
positive 
neutral 

negative

I   saw   this   movie
positive 
neutral 

negative



Goal: design a classifier

•  

• : input sentence 

•  {-1,0,1} 

• We are given a dataset 

g : 𝒳 → 𝒴

x ∈ 𝒳

y ∈ 𝒴 :

D = {(xi, yi)}N
i=1



General pattern: features and score

Extract a feature vector , and compute a score:  

•  

•  

•  

•  are parameters (here, ) 

f(x)

sθ(x) = w⊤f(x)

w ∈ ℝh×1

f(x) ∈ ℝh×1

θ w



Making a decision
Decide which class  belongs to using the scoring 
function: 

x

g(x) =
1 s(x) > 0
0 s(x) = 0
−1 s(x) < 0



Three general ingredients
• Modeling/Parameterization: choose how the scoring 

function is computed and which parameters (e.g., 
numbers or rules) need to be set.

• Inference: make a decision given a scoring 
function.

• Learning: setting the parameters based on data.



Model/ 
Parameterization:  

 
 

“Learning”: 

Inference:

Example

https://github.com/cmu-l3/anlp-spring2026-code/blob/main/01_intro/
rule_based_classifier.ipynb 

https://github.com/cmu-l3/anlp-spring2026-code/blob/main/01_intro/rule_based_classifier.ipynb
https://github.com/cmu-l3/anlp-spring2026-code/blob/main/01_intro/rule_based_classifier.ipynb


Some Difficult Cases



Low-frequency Words
The action switches between past and present , but the 

material link is too tenuous to anchor the emotional 
connections that purport to span a 125-year divide .

negative

Here 's yet another studio horror franchise mucking up its 
storyline with glitches casual fans could correct in their 

sleep .
negative

Solution?: Keep working until we get all of them? 
Incorporate external resources such as sentiment 

dictionaries?



Conjugation

An operatic , sprawling picture that 's entertainingly acted , 
magnificently shot and gripping enough to sustain most of 

its 170-minute length .
positive

Solution?: Use the root form and part-of-speech of word? 

It 's basically an overlong episode of Tales from the Crypt .
negative



Negation

This one is not nearly as dreadful as expected .
positive

Serving Sara does n't serve up a whole lot of laughs .

negative

Solution?: If a negation modifies a word, disregard it?



Metaphor, Analogy

Green might want to hang onto that ski mask , as robbery 
may be the only way to pay for his next project .

Puts a human face on a land most Westerners are 
unfamiliar with.

positive

negative

Solution?: ???

Has all the depth of a wading pool .
negative



Other Languages

モンハンの名前がついてるからとりあえずモンハン要素を
ちょこちょこ入れればいいだろ感が凄い。

見事に視聴者の心を掴む作品でした。
positive

negative

Solution?: Learn Japanese and re-do all the work?



Learning the Scoring Function



Learning the scoring function

Xtrain Ytrain

Xdev Ydev

Xtest Ytest

Learning Algorithm

Learned 
Feature Extractor 

Weights

Inference Algorithm

Supervision



• Goal: Learn a scoring function (“energy function”) that says how 
compatible output  is for input : 

 

• Higher score: more compatible.  
Lower score: less compatible. 

• Binary classifier:  

•  

•  

•

y x

sθ(x, y) ∈ ℝ

y ∈ {−1,1}

sθ(x) = w⊤fϕ(x)

sθ(x, y) = y ⋅ sθ(x)

θ = (w, ϕ)

A more general recipe

*The (negative) score is also referred to as an “energy”  
See e.g., [LeCun 2006, Cho 2025]

E(x, y) = − s(x, y)

• Multi-class:  
•  

•  
•  

•

y ∈ {0,1,…, K}
sθ(x) = W⊤fϕ(x)

W ∈ ℝh×K

fϕ(x) ∈ ℝh×1

sθ(x, y) = sθ(x)[y]



• Goal: Learn a scoring function (“energy function”) that says how 
compatible output  is for input : 

 

1. Model/Parameterization: the form and parameters of the 
function (e.g., neural net architecture and its weights). 

2. Learning: how we adjust the parameters using supervision 
(e.g., using input-output examples, a reward function). 

3. Inference: how we make decisions after learning.

y x

sθ(x, y) ∈ ℝ

Three general ingredients



Example Parameterization: 
Bag of Words (BoW)

lookup lookup lookup

hate
x2

movie
xT

this
x3

I
x1

lookup

Score s ∈ ℝ

Features f(x) ∈ ℝV

+
· Weights w ∈ ℝV

0 a
0 aardvark
⋮ ⋮
1 I
⋮ ⋮
0 zebra

V: Vocabulary size  
(e.g., set of all words  

in training set)

xt ∈ {0,1}V



lookup lookup lookup

Weights w ∈ ℝV

lookup

Score s ∈ ℝ

Features f(x) ∈ ℝV

+
·

Features f are based on word identity, weights w learned

Which problems mentioned before would this solve?

Example Parameterization: 
Bag of Words (BoW)



What do the parameters represent?
• Binary classification: Each word has a single scalar, positive 

indicating “positive” and negative indicating “negative” 

• Multi-class classification: Each word has its own 5 elements 
corresponding to e.g. [very pos, pos, neutral, neg, very neg]

Binary

love 
hate 
nice 
no 

dog 
…

2.4 
-3.5 
1.2 
-0.2 
-0.3 
…

w ∈ ℝV

Multi-class

love 
hate 
nice 
no 

dog 
…

2.4 
-3.5 
1.2 
-0.2 
-0.1

1.5 
-2.0 
2.1 
0.3 
0.3

-0.5 
-1.0 
0.4 
-0.1 
0.6 
…

-0.8 
0.4 
-0.1 
0.4 
0.2

-1.4 
3.2 
-0.2 
0.5 
-0.2

v. p
ositive

positive
neutral

negative

v. n
egative

W ∈ ℝV×K

K = 5



Example inference

• Example for a binary classifier: 

 

   

  

̂y = argmaxysθ(x, y)

= argmaxy∈{−1,1}ysθ(x)

= sign(sθ(x))

E.g., the output scalar  
from the  

bag-of-words model 
on the previous slide 



• Given  examples split into 
  

• Define a loss function: 

•
 

• Run an algorithm that solves: 

•

(x, y)
Dtrain, Ddev, Dtest

ℒ(θ, D) = ∑
(x,y)∈D

L(x, y, θ)

min
θ

ℒ(θ, Dtrain)

Example learning

Xtrain Ytrain

Xdev Ydev

Xtest Ytest



Example learning
• Use an algorithm called “structured perceptron”

feature_weights = {} 
for x, y in data: 
    # Make a prediction 
    features = extract_features(x) 
    predicted_y = run_classifier(features) 
    # Update the weights if the prediction is wrong 
    if predicted_y != y: 
        for feature in features: 
            feature_weights[feature] = ( 
                feature_weights.get(feature, 0) + 
                y * features[feature] 
            )

https://github.com/cmu-l3/anlp-spring2026-code/blob/main/01_intro/
trained_bow_classifier.ipynb 

https://github.com/cmu-l3/anlp-spring2026-code/blob/main/01_intro/trained_bow_classifier.ipynb
https://github.com/cmu-l3/anlp-spring2026-code/blob/main/01_intro/trained_bow_classifier.ipynb


What’s Missing?
• Handling of conjugated or compound words 

• I love this move -> I loved this movie 

• Handling of word similarity 

• I love this move -> I adore this movie 

• Handling of sentence structure 

• It has an interesting story, but is boring overall 

• …



A Better Parameterization:  
Neural Networks

lookup lookup lookup

hate moviethis

Weights w ∈ ℝd

I
lookup

Score

Features f(x) ∈ ℝd

+
·

complicated function learned 
from data (neural net) We’ll need to figure 

out several details:  
- Which neural net 

architecture? 
- Which learning 

algorithm? 
…



From classification to general 
tasks



• Build a parameterized scoring function (“energy function”) that 
says how compatible output  is for input : 

 

• Model/Parameterization: choose form of  and parameters to set

• Learn the parameters using supervision (e.g., labels, rewards)

• Inference: select an output (e.g., maximization, sampling) 

y x

sθ(x, y) ∈ ℝ

sθ

̂y = g(s, x)

A General Recipe



• Classification: assign high scores to correct classes, low scores to incorrect 
classes. 

• Ranking: given a query , assign scores to documents  so that 
they’re in the correct order 

• Probabilistic modeling: assign scores so that we have distributions  

• Example:  

• : English sentence, : Japanese sentence 

• : Conversation history, : response 

• …

x y1, y2, …

p(y |x)

x y

x y

A General Recipe



• Given a scoring function, we can build a probabilistic model: 

 

• For instance: 
• I hate this movie ->  
[negative = 0.98, neutral = 0.01, positive = 0.01] 

• With a probabilistic model we can do inference by sampling: 

pθ(y |x) =
exp (sθ(x, y))

∑y′￼
exp (sθ(x, y′￼))

̂y ∼ pθ(y |x)

From scores to probabilities



• Now suppose the output space is any sequence (of text, 
images, etc.): 

 

• I hate this movie -> because it isn’t creative. 

• We can generate text, images, or make decisions by sampling. 

• Example: large language models 

• We’ll cover modeling, learning, and inference decisions needed 
to achieve this

pθ(y |x) =
exp (sθ(x, y))

∑y′￼
exp (sθ(x, y′￼))

From classification to generation



• We can use such a model to form a “policy” that is used to 
decide which action  to take in state : 

 
• S: {Movie streaming website}  
The user said: “I hate this movie” 

• A: [CLICK]pause button 

• Example: AI agents

a s

π(a |s) ⟺ pθ(y = a |x = s)

From generation to actions



• Modeling/Parameterization:  

• Neural network architectures 

• Autoregressive, diffusion, 
flows 

• Images, retrieval, tools 

• Learning

• Unstructured data 

• Paired data 

• Environment with reward 
function

Roadmap
Goal: build good learning-based systems for any NLP task

• Inference 

• Optimization and 
sampling 

• Multi-sample strategies 

• Efficient strategies



Themes

• Fundamentals 
• Architectures 
• Learning and inference 
• Generative models 
• Evaluation and research skills 
• Reinforcement learning and agents 
• Scaling and efficiency



Topic 1: Fundamentals

• Fundamentals 
• General framework: Lecture 1 
• Deep learning and learned representations: Lecture 2 
• Language modeling: Lecture 3 

See the detailed schedule on the course webpage



Topic 2: Neural Network Architectures for 
NLP

Fundamentals: 
• Recurrent neural networks: lecture 4 
• Attention and transformers: lecture 5 

Advanced: 
• Mixture of experts: lecture 21 
• Long sequence models: lecture 22 



Topic 3: Learning and Inference for NLP

Fundamentals: 
• Pre-training: lecture 6 
• In-context learning: lecture 7 
• Fine-tuning and distillation: lecture 8 
• Decoding algorithms: lecture 9 

Advanced: 
• Test-time scaling strategies: lecture 23 



Topic 4: Generative Models for NLP

Fundamentals: 
• Autoregressive models: lecture 2 
• Retrieval and RAG: lecture 10 
• Multimodal models: lecture 11, 12 

Advanced: 
• Diffusion and flows: lecture 13 



Topic 5: Evaluation and research skills

Fundamentals: 
• Evaluation techniques: lecture 14 
• Experimental design & research skills: lecture 15 



Topic 6: Reinforcement Learning and 
Agents in NLP

Fundamentals / advanced: 
• RL fundamentals: lecture 16 
• RL applications in NLP: lecture 17 
• Agents: lecture 18 



Topic 7: Scaling and Efficiency

Advanced: 
• Quantization: lecture 19 
• Parallel and distributed training: lecture 20 

+ previously mentioned lectures: 
• Mixture of experts: lecture 21 
• Scaling sequence length: lecture 22 
• Test-time scaling: lecture 23 



• This course (11-711) 

• Foundations and 
fundamentals of 
cutting edge NLP 
(including LLMs)

• Large Language 
Model Applications 
(11-766): 

• Applications of 
LLMs

Comparison to other courses
Advanced NLP introduces you to the fundamental tools  
and concepts from around NLP. With respect to LLMs:

Fundamentals 
and Foundations

Applications



• Advanced Deep Learning 
(10-707) 

• Focus on fundamental 
building blocks of deep 
learning

• Large Language Model 
Applications (11-776): 

• Focus on applications of 
LLMs 

• Multimodal Machine Learning 
(11-777) 

• Focus on non-text 

• Systems (11-868, 15-642) 

• Focus on systems, 
scaling, efficiency

Comparison to other courses
Advanced NLP introduces you to a variety of fundamental tools  
and concepts from around cutting edge NLP. To go in further depth:

• Reinforcement learning 
(10-703) 

• Focus on reinforcement 
learning 

• Code generation (11-891) 

• Focus on applications 
related to code 

• Inference for LMs (11-664) 

• Focus on language 
model inference

Generative 
Model 

Fundamentals

Multi-modal

Efficiency/
Systems

LLMs

Deep Learning

Applications

Research 
Skills

RL & Agents

Evaluation



Class Format/Structure



Class Format

• Before class: Do main reading 
• During class:

• Lecture/Discussion: Go through material and 
discuss. We’ll also have interactive elements 
using Slido. 

• Code/Data Walkthrough: The instructor will 
sometimes walk through some demonstration 
code, data, etc.



Assignments
• Assignment 1 - Build-your-own LM: Individually implement 

language model loading and training 
• Assignment 2 - NLP Task from Scratch: Individually perform data 

creation, modeling, and evaluation for a specified task 
• Project 

• Assignment 3 - Survey and re-implementation: Survey 
literature, re-implement and reproduce results from a recently 
published NLP paper 

• Assignment 4 - Final project: Perform a unique project that 
either (1) improves on state-of-the-art, or (2) applies NLP models 
to a unique task. Present a poster and write a report. 

• For assignments 1-3, we give a total of 3 late days. Feel free to use 
these for unexpected circumstances or delays.



Quizzes

• 5 in-person quizzes. 
• Written, closed-book 

• Takes place in the first 20 minutes of lecture. 
• We will drop your lowest quiz grade. 

• Feel free to use this for unexpected 
circumstances.



Exam

• 1 in-person exam 
• Written, closed-book 

• Takes place during a lecture slot (4/16)



Recordings and Attendance
• We will do our best to send Zoom recordings of the lectures. 
• Attendance: we expect you to attend courses and participate 

in discussions/interactive elements during class. 
• We do not allow registering for the course when you have a 

schedule conflict. 
• You absolutely must attend: 

• Quizzes 
• Exam 
• Project Hours 
• Project Poster Sessions 

• Note: 5% of the course grade is in-class participation.

Please check the course 
webpage for specific dates!



Waitlist

• We have a long waitlist; thank you for the 
excitement! 

• Policy: out of fairness, we can’t prioritize individual 
cases.



Should I take this course?

• I’m certain that you’re excited about the course 
content! It’s extremely relevant and important 
content, and you’ll learn a lot. 

• Please be sure that you will be able to satisfy 
the logistics associated with the attendance 
(lectures, quizzes, exam, project hours, project 
presentation) and other aspects of the course.



Teaching Team and Resources
• Instructor: Sean Welleck 
• TAs: 

• Dareen Alharthi (Head TA) 
• Daniel Chechelnitsky, Weihua Du, Ibrahim Aldarmaki, Andy 

Liu, Zhen Wu, Arnav Yayavaram, Siddharth Yayavaram 
• Office hours: see course website. They will begin on 1/20.

• Website: https://cmu-l3.github.io/anlp-spring2026/ 
• Code: https://github.com/cmu-l3/anlp-spring2026-code   
• Piazza: https://piazza.com/cmu/spring2026/cs11711 

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code
https://piazza.com/cmu/spring2026/cs11711


Syllabus

• The website functions as the syllabus: 

• https://cmu-l3.github.io/anlp-spring2026/ 

https://cmu-l3.github.io/anlp-spring2026/


Thank you


