
CS11-711 Advanced NLP

Learned
Representations

Sean Welleck

Slides adapted from Graham Neubig’s Fall 2024 course

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code

Recap
• Goal: learn a good scoring function

• => good probabilistic models

• Three key ingredients

• Modeling/Parameterization: how (or) is implemented (e.g., the architecture)

• Learning: setting the parameters using supervision

• Inference: making a decision after learning

• We saw an example classification model based on:

• Bag-of-words and word identities

• Structured perceptron learning

• A simple inference algorithm

sθ(x, y)

pθ(y |x) ∝ sθ(x, y)

sθ pθ

θ

Today’s lecture

• We will still focus on classification:

• We will go over fundamentals that underlie any state-of-
the-art NLP system:

• Continuous representations of subwords

• Parameterization based on neural networks

• Learning by optimizing a loss function with back
propagation and gradient descent

g(x) → {1,2,…, K}

Recap: Bag of Words (BoW)

Features: sum of 1-hot vectors
Weights: learned

lookup lookup lookup

hate moviethisI
lookup

+
·

Bag of Words: Symptoms
• Handling of conjugated or compound words

• I love this move -> I loved this movie

• Handling of word similarity

• I love this move -> I adore this movie

• Handling of combination features

• I love this movie -> I don’t love this movie

• I hate this movie -> I don’t hate this movie

• Handling of sentence structure

• It has an interesting story, but is boring overall

Subword
Models

Neural
Networks

Sequence
Models

Word
Embeddings

Subword Models

Basic Idea

• Split less common words into multiple subword tokens

• Benefits:
• Share parameters between subwords
• Reduce parameter size, save compute+memory

the companies are expanding

the compan _ies are expand _ing

Core problem: tokenization
• Map text into a sequence of discrete tokens from a vocabulary

• We want a vocabulary that is:

• Expressive: represent any text (English, Japanese, code, …)

• Efficient

• Not too large: larger vocabulary means more parameters to learn/store

• Not too small: smaller vocabulary means longer inputs

𝒱

the companies are expanding the, compan ,_ies, are, expand, _ing

t, h, e, c, o, m, p, a, n, ….

the, companies, are, expandingx

x1, …, xT xt ∈ 𝒱

Core problem: tokenization
• Demo: https://tiktokenizer.vercel.app/

https://tiktokenizer.vercel.app/

Idea 1: UTF-8

• Tokenize text as UTF-8 bytes

• Expressive: any Unicode string (Japanese, English, Latex, …)

• Vocabulary is too small: sequences are very long (inefficient)

Unicode string

UTF-8
(Vocabulary = 256 byte choices)

元気ですか。Hello!

Idea 2: Byte Pair Encoding
• Key idea: merge the most common

token pairs into new tokens

• Start with a base vocabulary (e.g.,
UTF-8) and a training set

• Repeat:

• Find the token pair that occurs
most often

• Introduce a new token and
replace the token pair

• Stop when a desired vocab size is
reached.

Practical tools: tiktoken
• Load pre-existing OpenAI

vocabularies (e.g., GPT-2, GPT-4)

• Tokenize and decode text

Practical tools: SentencePiece
• Also supports training a tokenizer

• Uses Unicode as the base vocabulary

• byte_fallback=True: tokenize as UTF-8 bytes when a Unicode
character is out-of-vocabulary

Subword Considerations

• Vocabulary depends on the BPE training data:

• Under-represented languages: merged less, hence longer sequences

• Work-around: upsample under-represented languages

• Inconsistent numbers: 123 -> “123” vs. 927 -> “92” “7”

• Work-around: Hand-defined rules, e.g. never group digits together

Recap

• Tokenization and subword models

• Represent sequences as tokens determined based on
frequency

• Next: Token embeddings

Continuous Word Embeddings

Basic Idea
• Previously: one-hot vectors (sparse)

• Continuous embeddings: dense vectors in ℝdemb

I
lookup

like
lookup

One-hot

xt : [0,…1,…,0] ∈ {0,1}V

V: vocabulary size

Dense

xt : [0.2, − 1.3,…,0.6] ∈ ℝdemb

: “embedding dimension”demb

I
lookup

like
lookup

Embedding Layer
• Embedding layer: matrix with a row/column for each

vocabulary token. “Lookup”: select a row/column.

lookup(2)

V

demb

• Equivalent to multiplying by a one-hot vector

V

demb

0
0
1
0
0
…

*

Continuous Bag of Words (CBoW)

embed embed embed

hate
x2

movie
xT

this
x3

I
x1

embed

: number of
output classes
K

W

W ∈ ℝK×d

+

Bias
scores

ℝK

ℝK

Linear layer
Weights

Parameters
- Embedding layer
- Weights
- Bias

θ

W

+
h ∈ ℝd

In Code

In practice, implemented in libraries (e.g., nn.Embedding)

In Code

What do Our Vectors Represent?

• No guarantees, but we hope that:
• Words that are similar are close in vector space
• Each vector element is a feature

monster

cat

dog

angel

great
excellent

nice

bad disease

basket

sun Shown in 2D, but
in reality we use
512, 1024, etc.

Recap

• Tokenization and subword models

• Represent sequences as tokens determined based on
frequency

• Token embeddings

• Represent tokens as learned continuous vectors

• Next: Neural networks

Neural Network Features

Motivation: combination features

There’s nothing I don’t
love about this movie

very good
good

neutral
bad

very bad

I don’t love this movie

very good
good

neutral
bad

very bad

Deep CBoW

: number of
output classes
K

x2 xTx3x1

+
h(1) ∈ ℝdemb

scores ℝK

Linear layer
W ∈ ℝK×d

embed embed embedembed

Parameters
- Embedding layer
- Weights
- Biases

θ

W(1), W(2), W
tanh(W(1)h + b(1))

h(2) ∈ ℝd

Layer

tanh(W(2)h + b(2))

h(3) ∈ ℝd

Layer

Why tanh?
Why do these layers help?

Nonlinearities

• Activation functions such as
tanh introduce nonlinearity

• Non-linearities allow the
neural network to model more
complex patterns

• Without activation functions,
stacking matrices collapses to
a linear transformation

tanh(W*h + b)

W1 W2 W’

Linear Linear Linear

≡

W1 W2

LinearLinear Nonlinear

≡ W2

Nonlinear

Other activation functions: sigmoid, ReLU, GELU, see PyTorch list

https://pytorch.org/docs/main/nn.html#non-linear-activations-weighted-sum-nonlinearity

Deep CBoW In Code

(One hidden-layer version)

What do Our Vectors Represent?

• We can learn feature combinations

• E.g., a node in the second layer might be
“feature 1 AND feature 5 are active”

• E.g. capture things such as “not” AND “hate”

• We can learn nonlinear transformations of the
previous layer’s features

Recap
• Tokenization and subword models

• Represent sequences as tokens determined based on
frequency

• Token embeddings

• Represent tokens as learned continuous vectors

• Neural networks

• Learn complex, non-linear feature functions

• Next: Training neural network models

Training neural network models

Training neural network models

• We use gradient descent

• Write down a loss function

• Calculate gradients of the loss function with
respect to the parameters

• Move the parameters in the direction that
reduces the loss function

Example Loss: Binary Cross entropy

• Example task: classify tweets
as positive (1) or negative (0)

• Model outputs a probability
 for the positive

class

• Use a sigmoid layer:

• Ground truth label

x

pθ(x) ∈ [0,1]

Sigmoid(s) = σ(s) =
1

1 + exp(−s)

y ∈ {0,1} LBCE(θ; x, y) =

−y log(pθ(x)) − (1 − y)log(1 − pθ(x))

Example Loss: Binary Cross entropy

• Suppose

•

•

• very negative

• L very positive (high loss)

•

•

• L very small (low loss)

y = 1

L = − log(pθ(x))

pθ(x) → 0

log pθ(x)

pθ(x) → 1

log pθ(x) → 0
LBCE(θ; x, y) =

−y log(pθ(x)) − (1 − y)log(1 − pθ(x))

Cross entropy loss (multi-class)
• Example task: classify tweets as

positive (2), neutral (1), or negative (0)

• Given a training example

• Model outputs a probability vector

• E.g.

• Ground truth label: one-hot vector

• E.g.

(x, y)

p = [0.2,0.5,0.3]

y = [0,0,1]

LCE = −
K

∑
i=1

yi log(pi)

pi =
exp(zi)

∑K
j=1 exp(zj)

scores ℝK

probs ΔK

softmax

Cross entropy loss (multi-class)

• Model assigns high probability to correct class:

• small loss

• Model assigns low probability to correct class:

• large loss

pi ≈ 1 ⟹ log pi ≈ 0 ⟹

pi ≈ 0 ⟹ log pi ≈ − ∞ ⟹

LCE = −
K

∑
i=1

yi log(pi)

Where does cross entropy loss come from?

• Minimize the KL Divergence between two distributions:

•

• In our example:

• , and

min
p2

KL (p1, p2) = min
p2

− ∑
x

p1(x)log (p2(x)
p1(x))

≡ min
p2

∑
x

− p1(x)log p2(x) + p1(x)log p1(x)

≡ min
p2

− ∑
x

p1(x)log p2(x)

p1 = [0,0,1] p2 = [0.2,0.5,0.3]

Cross entropy
H(p1, p2)

(Negative) entropy
−H(p1)

Cross entropy loss (in code)

Implemented in standard libraries, e.g. nn.CrossEntropyLoss

Training neural network models

• We use gradient descent

• Write down a loss function

• Calculate gradients of the loss function with
respect to the parameters

• Move the parameters in the direction that
reduces the loss function

Calculating gradients
•

, where

•

•

•

•

•

• Multiplying the three terms, we get

p = σ(wx + b
z

) σ(x) =
1

1 + exp(−x)

L = − y log p − (1 − y)log(1 − p)

∂L
∂w

=
∂L
∂p

∂p
∂z

∂z
∂w

∂L
∂p

= −
y
p

+
1 − y
1 − p

=
p − y

p(1 − p)

∂p
∂z

= p(1 − p)

∂z
∂w

= x

∂L
∂w

= (p − y)x

Training neural network models

• We use gradient descent

• Write down a loss function

• Calculate gradients of the loss function with
respect to the parameters

• Move the parameters in the direction that
reduces the loss function

Optimizing Parameters

• Standard stochastic gradient descent does

Learning Rate

Gradient of Loss

• There are many other optimization options! (e.g.,
we’ll see several in the course and HW 1)

✓t = ✓t�1 � ⌘gt
<latexit sha1_base64="WmTb7CmseFEFrcsdvuCoFOH6zU0=">AAACCnicbZBPS8MwGMbT+W/Of1WPXoJD8LLRiqAehKEXjxOsG6ylpFm2haVpSd4Ko+zuxa/ixYOKVz+BN7+N2daDbj4Q+OV535fkfaJUcA2O822VlpZXVtfK65WNza3tHXt3714nmaLMo4lIVDsimgkumQccBGunipE4EqwVDa8n9dYDU5on8g5GKQti0pe8xykBY4X2oQ8DBiQEfIkLzKHmjnEN++aC+yGEdtWpO1PhRXALqKJCzdD+8rsJzWImgQqidcd1UghyooBTwcYVP9MsJXRI+qxjUJKY6SCf7jLGR8bp4l6izJGAp+7viZzEWo/iyHTGBAZ6vjYx/6t1MuidBzmXaQZM0tlDvUxgSPAkGNzlilEQIwOEKm7+iumAKELBxFcxIbjzKy+Cd1K/qLu3p9XGVZFGGR2gQ3SMXHSGGugGNZGHKHpEz+gVvVlP1ov1bn3MWktWMbOP/sj6/AFhNJmN</latexit><latexit sha1_base64="WmTb7CmseFEFrcsdvuCoFOH6zU0=">AAACCnicbZBPS8MwGMbT+W/Of1WPXoJD8LLRiqAehKEXjxOsG6ylpFm2haVpSd4Ko+zuxa/ixYOKVz+BN7+N2daDbj4Q+OV535fkfaJUcA2O822VlpZXVtfK65WNza3tHXt3714nmaLMo4lIVDsimgkumQccBGunipE4EqwVDa8n9dYDU5on8g5GKQti0pe8xykBY4X2oQ8DBiQEfIkLzKHmjnEN++aC+yGEdtWpO1PhRXALqKJCzdD+8rsJzWImgQqidcd1UghyooBTwcYVP9MsJXRI+qxjUJKY6SCf7jLGR8bp4l6izJGAp+7viZzEWo/iyHTGBAZ6vjYx/6t1MuidBzmXaQZM0tlDvUxgSPAkGNzlilEQIwOEKm7+iumAKELBxFcxIbjzKy+Cd1K/qLu3p9XGVZFGGR2gQ3SMXHSGGugGNZGHKHpEz+gVvVlP1ov1bn3MWktWMbOP/sj6/AFhNJmN</latexit><latexit sha1_base64="WmTb7CmseFEFrcsdvuCoFOH6zU0=">AAACCnicbZBPS8MwGMbT+W/Of1WPXoJD8LLRiqAehKEXjxOsG6ylpFm2haVpSd4Ko+zuxa/ixYOKVz+BN7+N2daDbj4Q+OV535fkfaJUcA2O822VlpZXVtfK65WNza3tHXt3714nmaLMo4lIVDsimgkumQccBGunipE4EqwVDa8n9dYDU5on8g5GKQti0pe8xykBY4X2oQ8DBiQEfIkLzKHmjnEN++aC+yGEdtWpO1PhRXALqKJCzdD+8rsJzWImgQqidcd1UghyooBTwcYVP9MsJXRI+qxjUJKY6SCf7jLGR8bp4l6izJGAp+7viZzEWo/iyHTGBAZ6vjYx/6t1MuidBzmXaQZM0tlDvUxgSPAkGNzlilEQIwOEKm7+iumAKELBxFcxIbjzKy+Cd1K/qLu3p9XGVZFGGR2gQ3SMXHSGGugGNZGHKHpEz+gVvVlP1ov1bn3MWktWMbOP/sj6/AFhNJmN</latexit>

gt = r✓t�1`(✓t�1)
<latexit sha1_base64="6hDez93AjMrSnNoeZfXZjS/6HaI=">AAACFnicbVDLSsNAFJ34rPUVdelmsAi6sCQiqAuh6MZlBatCE8JketsOTiZh5kYoIX/hxl9x40LFrbjzb5w+Fr4OXO7hnHuZuSfOpDDoeZ/O1PTM7Nx8ZaG6uLS8suqurV+ZNNccWjyVqb6JmQEpFLRQoISbTANLYgnX8e3Z0L++A21Eqi5xkEGYsJ4SXcEZWily670I6QkNFIsli4oA+4C2455fljQAKXe+S7uRW/Pq3gj0L/EnpEYmaEbuR9BJeZ6AQi6ZMW3fyzAsmEbBJZTVIDeQMX7LetC2VLEETFiM7irptlU6tJtqWwrpSP2+UbDEmEES28mEYd/89obif147x+5RWAiV5QiKjx/q5pJiSoch0Y7QwFEOLGFcC/tXyvtMM442yqoNwf998l/S2q8f1/2Lg1rjdJJGhWySLbJDfHJIGuScNEmLcHJPHskzeXEenCfn1Xkbj045k50N8gPO+xdFOJ7z</latexit><latexit sha1_base64="6hDez93AjMrSnNoeZfXZjS/6HaI=">AAACFnicbVDLSsNAFJ34rPUVdelmsAi6sCQiqAuh6MZlBatCE8JketsOTiZh5kYoIX/hxl9x40LFrbjzb5w+Fr4OXO7hnHuZuSfOpDDoeZ/O1PTM7Nx8ZaG6uLS8suqurV+ZNNccWjyVqb6JmQEpFLRQoISbTANLYgnX8e3Z0L++A21Eqi5xkEGYsJ4SXcEZWily670I6QkNFIsli4oA+4C2455fljQAKXe+S7uRW/Pq3gj0L/EnpEYmaEbuR9BJeZ6AQi6ZMW3fyzAsmEbBJZTVIDeQMX7LetC2VLEETFiM7irptlU6tJtqWwrpSP2+UbDEmEES28mEYd/89obif147x+5RWAiV5QiKjx/q5pJiSoch0Y7QwFEOLGFcC/tXyvtMM442yqoNwf998l/S2q8f1/2Lg1rjdJJGhWySLbJDfHJIGuScNEmLcHJPHskzeXEenCfn1Xkbj045k50N8gPO+xdFOJ7z</latexit><latexit sha1_base64="6hDez93AjMrSnNoeZfXZjS/6HaI=">AAACFnicbVDLSsNAFJ34rPUVdelmsAi6sCQiqAuh6MZlBatCE8JketsOTiZh5kYoIX/hxl9x40LFrbjzb5w+Fr4OXO7hnHuZuSfOpDDoeZ/O1PTM7Nx8ZaG6uLS8suqurV+ZNNccWjyVqb6JmQEpFLRQoISbTANLYgnX8e3Z0L++A21Eqi5xkEGYsJ4SXcEZWily670I6QkNFIsli4oA+4C2455fljQAKXe+S7uRW/Pq3gj0L/EnpEYmaEbuR9BJeZ6AQi6ZMW3fyzAsmEbBJZTVIDeQMX7LetC2VLEETFiM7irptlU6tJtqWwrpSP2+UbDEmEES28mEYd/89obif147x+5RWAiV5QiKjx/q5pJiSoch0Y7QwFEOLGFcC/tXyvtMM442yqoNwf998l/S2q8f1/2Lg1rjdJJGhWySLbJDfHJIGuScNEmLcHJPHskzeXEenCfn1Xkbj045k50N8gPO+xdFOJ7z</latexit>

In Code
Loss

Compute loss

Optimizer

Compute gradients
Update parameters

What is a Neural Net?:
Computation Graphs

“Neural” Nets
Neurons in the Brain??

Image credit: Wikipedia

Current Conception: Computation Graphs

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

y = x>Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:

y = x>Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument. They are
just pointers to nodes.

A node with an incoming edge is a function of
that edge’s tail node.

f(u) = u>

A node knows how to compute its value and the
gradient with respect to each input, here

∂f(u)
∂u

∂F
∂u

=
∂F

∂f(u)
∂f(u)
∂u

Local
Gradient

Incoming
gradient

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary,
binary, … n-ary. Often they are unary or binary.

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directed and acyclic

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.

Algorithms (1)

• Graph construction

• Forward propagation

• In topological order, compute the value of the
node given its inputs

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

x>Ax+ b · x+ c

Algorithms (2)

• Back-propagation:
• Process examples in reverse topological order
• Calculate the gradients of the parameters with

respect to the final value (usually a loss function)
• Parameter update:

• Move the parameters in the direction of this
gradient
W -= α * dl/dW

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Back Propagation

∂L
∂output

∂output
∂input

Basic Process in Neural
Network Frameworks

• Create a model

• For each example

• create a graph that represents the computation
you want

• calculate the result of that computation

• if training, perform back propagation and
update

Concrete
Implementation

Neural Network Frameworks

Most widely used in NLP Used in some NLP projects

Favors dynamic execution Favors definition+compilation

Developed by GoogleDeveloped by FAIR/Meta

More flexibility Conceptually simple parallelization

Code Example
• Classify tweets as positive, negative, or neutral
• BoW, CBoW, DeepCBoW

Recap
• Tokenization and subword models

• Represent sequences as tokens determined based on frequency

• Token embeddings

• Represent tokens as learned continuous vectors in

• Neural networks

• Learn complex, non-linear feature functions

• Training a neural network

• Choose a loss, construct a differentiable graph, take gradients

ℝd

Thank you!

