CS11-711 Advanced NLP

| earneo
Representations

Sean Welleck

(Carnegie A
i,

https://cmu-13.qgithub.io/anlp-spring2026/

https://github.com/cmu-I3/anlp-spring2026-code

Slides adapted from Graham Neubig’s Fall 2024 course

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code

Recap

« Goal: learn a good scoring function sy(x, y)
. => good probabilistic models py(y | x) o sy(x,y)
* Three key ingredients
- Modeling/Parameterization: how s, (or pyg) is implemented (e.g., the architecture)
. Learning: setting the parameters @ using supervision
- Inference: making a decision after learning
- We saw an example classification model based on:
- Bag-of-words and word identities
- Structured perceptron learning

- A simple inference algorithm

Today's lecture

« We will still focus on classification: g(x) = {1,2,..., K}

* We will go over tundamentals that underlie any state-of-
the-art NLP system:

e Continuous representations of subwords
e Parameterization based on neural networks

* |earning by optimizing a loss function with back
oropagation and gradient descent

Recap: Bag of Words (BoW)

&
Iii.:
+
N
& ® %

T
(ookupj COICHICD

hate this movie

Features: sum of 1-hot vectors
Weights: learned

Bag of Words: symptoms

| . Handllng of eon/ugaeted or com/oouno’ words ' Subword
| K ovi > | Iovedth|smOV|e L Models

. Handlmg of word similarity

* | love this move -> | adore this movie

. Handlihg of comb/net/on feez‘uree
"1 * | love this movie -> | don’t love this movie Hgfvl\(/ill’ks
“, . Handllng of sentence structure Sequence
[o It has an mterestlng storybut |srg overall * Models

Subword Models

Basic |ldea

e Split less common words into multiple subword tokens

the companies are expanding

!

the compan _ies are expand _ing

* Benefits:
* Share parameters between subwords

 Reduce parameter size, save compute+memory

Core problem: tokenization

 Map text into a sequence of discrete tokens from a vocabulary

Xis-es Xp X, €TV

x the, companies, are, expanding

the companies are expanding » the, compan ,_ies, are, expand, _ing

t,hye,c,o,m, p,an, ...

« We want a vocabulary 7 that is:
Expressive: represent any text (English, Japanese, code, ...)
Efficient
Not too large: larger vocabulary means more parameters to learn/store

Not too small: smaller vocabulary means longer inputs

Core problem: tokenization

Demo: https://tiktokenizer.vercel.app/

Tiktokenizer gpt-do
24

TR I HHello, how are you

123456789425217423 T C¢9 HHello, how are you
def foo(x):
return None 123456789425217423
def foo(x):

return None

<

https://tiktokenizer.vercel.app/

l[dea 1: UTF-8

* TJokenize text as UTF-8 bytes

TR T H\. Hello! Unicode string

l

utf = "JTKTI D, Hello!".encode("utf-8") UTF—8

print (Ix for x in utf]) (Vocabulary = 256 byte choices)

v/ 0.0s

[229, 133, 131, 230, 176, 151, 227, 129, 167, 227, 129, 153, 227, 129, 139, 227, 128, 130, 72, 101, 108, 108, 111, 33]

 Expressive: any Unicode string (Japanese, English, Latex, ...)

 Vocabulary is too small: sequences are very long (inefficient)

|[dea 2: Byte Pair Encoding

Key idea: merge the most common erainin . .
g_text = Hello, world!
tOkeﬂ pairS iﬂto new tOkenS Here is some example text to test

the BPE algorithm. It is not very
interesting, but it will do the job.

e Start with a base vocabulary (e.g.,
UTF-8) and a training set

° F?EEF)EBEit: pair: ('e', ' ') freq: 5
merging ('e', ' ') into a new token

* Find the token pair that occurs pair: ('t', ' ') freq: 5
mOSt Often merging ('t', ' ') into a new token

pair: ('e', 'r') freq: 3
* Introduce a new token and iR (7) gD @ me GEe

replace the token pair sair: ('t', 'h') freq: 3

merging ('t', 'h') into a new token

Stop when a desired vocab size is

pair: ('l', 'l') freq: 2
reaChed. merging ('l', 'l') into a new token

Practical tools: tiktoken

e Load pre-existing OpenAl
vocabularies (e.g., GPT-2, GPT-4)

%~ tiktoken

tiktoken is a fast tokeniser for use with OpenAl's models.

e Jokenize and decode text

inport tiktoken

enc = tiktoken.get_encoding("gpt2")
print(enc.encode("Hello, ZAlCEE"))

enc = tiktoken.get_encoding("cl1100k_base")
print(enc.encode("Hello, ZAlcEE"))

v/ 0.0s

[15496, 11, 23294, 241, 22174, 28618, 2515, 94, 31676]
[9906, 11, 220, 90115]

Practical tools: SentencePliece

O google / sentencepiece

* Dbyte fallback=True: tokenize as UTF-8 bytes when a Unicode
character is out-of-vocabulary

* Also supports training a tokenizer

 Uses Unicode as the base vocabulary

ids = sp.encode("hello, ZAICBEI ¥ZY ¥ZY > marathon")
print(ids)

print([sp.id_to_piece(idx) for idx in ids])

[1298, 295, 1339, 1353, 1333, 1534, 1457, 1366, 1793, 1373, 1333, 329, 1407, 584, 964]
[I_hel’ I'Lll' IOI' I’l, I_I' l:l' lhll, l‘:l' IBI’ I‘il’ I_I’ lval, I\/I’ I_va\/\/l' I_mara.thonl]

Subword Considerations

Vocabulary depends on the BPE training data:
Under-represented languages: merged less, hence longer sequences

Work-around. upsample under-represented languages

Inconsistent numbers: 123 -> “123" vs. 927 -> “92" “7”

Work-around. Hand-defined rules, e.g. never group digits together

Recap

e TJokenization and subword models

 Represent sequences as tokens determined based on
frequency

 Next: Token embeddings

Continuous Word Embeddings

Basic |ldea

* Previously: one-hot vectors (sparse)

« Continuous embeddings: dense vectors in R emb

One-hot Dense
b b
@ b < b <
2
Oookup] [Iookup]
Iookup Iookup
Jookup] | ookup o
like
x,:[0,...1,...,0] € {0,1}" x 1 [0.2, = 1.3,...,0.6] € R
V. vocabulary size d,,: “embedding dimension”

Embedding Layer

 Embedding layer: matrix with a row/column for each
vocabulary token. “Lookup™: select a row/column.

-
(i R LR (SR SRS S I b«
R L [SIS S IS I b <

emb | >4« |

4B 4B S b g g g am >«
\ /

* Equivalent to multiplying by a one-hot vector

v [
O -8
LR (SR T TR [TSR [b <
demb L [I [[[—> =
L (S S S S TR <
b dib dh A dh db dh Jdb 4 ~z

Continuous Bag of Words (CBoW)

[| scores RX® K:number of
Weights Bias 4 output classes
5 Kxd L |
WeR™ RE [Lmear Iayer] oaramaters
& & - Embedding layer
W @ : r t P i Weights W
> < - ¢ X L - Bias

.. : +
n(/ .'\\
ERaNEE

cembe@ cembe@ @mbe@ @mbe@

I hate thls movie

In Code

class Embedding(nn.Module):
def __init__ (self, vocab_size, emb_size):
super (Embedding, self).__init__ ()
self.weight = nn.Parameter(torch.randn(vocab_size, emb_size))

self.vocab_size = vocab_size

forward(self, x):
xs = torch.nn.functional.one_hot(x, num_classes=self.vocab_size).float()

return torch.matmul(xs, self.weight)

In practice, implemented in libraries (e.g., nn.Embedding)

In Code

class CBoW(torch.nn.Module):
def __init__ (self, vocab_size, num_labels, emb_size):
super(CBoW, self).__init_ ()
self.embedding = nn.Embedding(vocab_size, emb_size)
self.output_layer = nn.Linear(emb_size, num_labels)

forward(self, tokens):

emb = self.embedding(tokens)

emb_sum = torch.sum(emb, dim=0) #
= emb_sum.view(1l, -1) '

out = self.output_layer(h)

return out

What do Our Vectors Represent?

* No guarantees, but we hope that:

 Words that are similar are close in vector space

e Each vector element is a feature

angeli

great

L

excellent

nice

sun
- pasket

cat
dog E

monster

bad

b
b
e

disease

e
-
e

Shown in 2D, but
N reality we use
512, 1024, etc.

Recap

 Joken embeddings
 Represent tokens as learned continuous vectors

e Next: Neural networks

Neural Network Features

Motivation: combination features

good
| don't love this movie — neutral

There’s nothing | don't / n%%?%

love about this movie bad
very bad

Deep CBoW

scores RX
K: number of

output classes [Linear layer]
= [RKXd
GOOeO h® e R4
Pareémebte(rjsd 9 | @mh(W@)h + b@) Layer
mbedding layer
Weights WD, W2, W 0000e el
Biases @nh(W(l)h+b(1)) Layer
00080 Ve Réw Why tanh?
4 Why do these layers help?
|
/'/' '{\

cembe@ cembe@ @mbe@ @mbe@

Nonlinearities

Eanh(W*h + b)]

e Activation functions such as

tanh introduce nonlinearity W1 We = = |4y
e Non-linearities allow the Linear Nonlinear Linear Nonlinear

neural network to model more

complex patterns

e Without activation functions,
. . W1 W2 = W’
stacking matrices collapses to
a linear transformation
Linear Linear Linear

Other activation functions: sigmoid, RelLU, GELU, see PyTorch list

https://pytorch.org/docs/main/nn.html#non-linear-activations-weighted-sum-nonlinearity

Deep CBoW In Code

class DeepCBoW(torch.nn.Module):
def __init__ (self, vocab_size, num_labels, emb_size, hid_size):
super(DeepCBoW, self).__init_ ()
self.embedding = nn.Embedding(vocab_size, emb_size)
self.linearl = nn.Linear(emb_size, hid_size) ’
self.output_layer = nn.Linear(hid_size, num_labels)

forward(self, tokens):

emb = self.embedding(tokens)
emb_sum = torch.sum(emb, dim=0)
h = emb_sum.view(1l, -1)

h = torch.tanh(self.linearl(h))
out = self.output_layer(h)
return out

(One hidden-layer version)

What do Our Vectors Represent”

e \We can learn feature combinations

* £.g., anode inthe second layer might be
“feature 1 AND feature 5 are active”

* £.g. capture things such as "not” AND “hate”

e \We can learn nonlinear transformations of the
porevious layer’'s features

Recap

* Neural networks
e [earn complex, non-linear feature functions

* Next: Training neural network models

Training neural network models

Training neural network models

 We use gradient descent
* Write down a /loss function

e Calculate gradients of the loss function with
respect to the parameters

* Move the parameters in the direction that
reduces the loss function

Example Loss: Binary Cross entropy

Binary Cross-Entropy Loss Curve

« Example task: classity tweets x
as positive (1) or negative (0)

I

* Model outputs a probability
po(x) € [0,1] for the positive
class

w
T

N
T

Binary Cross-Entropy Loss

 Use a sigmoid layer:

=
I

Label =1
Slngld(S) =o0(s) = of — . — Label =0 | |
1 + exp(—s) 0.0 0.2 0.4 0.6 0.8 1.0
Predicted Probability for Positive Class

. Ground truth label y € {0,1} LBCE(®:*y) =
—ylog(pg(x)) — (1 = y)log(l — py(x))

Example Loss: Binary Cross entropy

Binary Cross-Entropy Loss Curve

« Supposey =1

I

» L = —1log(py(x))

w
T

e pyx) =0

N
T

« log py(x) very negative

Binary Cross-Entropy Loss

* L very positive (high loss)

1 -
OrO Oj2 Oj4 Oj6 018 1j0
Predicted Probability for Positive Class
e logp,(x) - 0
0
Lgced;x,y) =

* L very small (low loss) —vylog(py(x)) — (1 — y)log(1 — py(x))

Cross entropy loss (multi-class)

e Example task: classify tweets as

positive (2), neutral (1), or negative (0) K

Lep=—) ylog(p)

 Given a training example (x, y) CE lzzl l l
° Model Outputs a probablllty VeCtOr
.............. @88 probs AF
« E.g.p=10.2,0.5,0.3] [softmax)
scores RX
» Ground truth label: one-hot vector exp(z)

| K

.
] .
--

Cross entropy loss (multi-class)

K
Lep = — Z y;log(p;)
i=1

 Model assigns high probability to correct class:
e p;r 1 = logp, %~ (0 = small loss
 Model assigns low probability to correct class:

e p;r 0 = logp, ® — o0 = large loss

Where does cross entropy loss come from?

* Minimize the KL Divergence between two distributions:

1%} P2 P1 (X)

min KL (pl, pz) = min — Z p(x)log (pz(x))

= min Z pi(x)log py(x) + py(x)log p; (x)
S

(Negative) entropy

. —H(p,)
— ImMin — pP (X)lng (x) Cross entropy
1%} ; 1 . H(py, p,)

* |n our example:

- p; =10,0,1], and p, = [0.2,0.5,0.3]

Cross entropy loss (in code)

def ce_loss(logits, target):
log_probs = torch.nn.functional.log_softmax(logits, dim=1)

loss = -log_probs[:, target]
return loss

Implemented in standard libraries, e.g. nn.CrossEntropylLoss

Training neural network models

 We use gradient descent
* Write down a /loss function

- Calculate gradients of the loss function with
respect to the parameters

* Move the parameters in the direction that
reduces the loss function

Calculating gradients

1
1 + exp(—x)

p = o(wx + b), where o(x) =

<
« L=—ylogp—(1—-y)log(l—p)

oL OL dp oz
* ow dp 0z ow

oL] —
oLy 1-y

" op p 1-p

oL

. Multiplying the three terms, we get W =(p—y)x
w

Training neural network models

 We use gradient descent
* Write down a /loss function

e Calculate gradients of the loss function with
respect to the parameters

- Move the parameters in the direction that
reduces the loss function

Optimizing Parameters

e Standard stochastic gradient descent does

gt = Ve, L(0:_1)

Gradient of Loss

0y =01 — Qgt

Learning Rate

* There are many other optimization options! (e.q.,
we’ll see several in the course and HW 1)

In Code

Loss criterion = nn.CrossEntropyLoss()
()pﬂ”TﬂZEH’ optimizer = torch.optim.SGD(model.parameters(), lr=5e-4)

for EPOCH in range(10):
random.shuffle(train)
train_loss = 0.0
start = time.time()
model.train()

for x, y in train:
x = torch.tensor(x, dtype=torch.long)
y = torch.tensor([y])
logits = model(x)

Compute loss loss = criterion(logits, y)
| optimizer.zero_grad()
Compute gradients loss.backward()

Update parameters optimizer.step()

What is a Neural Net?:
Computation Graphs

‘Neural”™ Nets

Neurons in the Brain??

Current Conception: Computation Graphs

f(l'l,I'Q,ZCg) — sz

Image credit: Wikipedia

expression:
X

graph:

A node is a {tensor, matrix, vector, scalar} value

®

An edge represents a function argument. They are
just pointers to nodes.

A node with an incoming edge is a function of

that edge’s tail node.

A node knows how to compute its value and the

. . . of(u)
gradient with respect to each input, here P
u
fw) = OF _ OF df(w
ou Jf(u) Ou
Incorr;ing Local

gradient Gradient

expression:
x' A

graph:

Functions can be nullary, unary,
binary, ... n-ary. Often they are unary or binary.

f(U, V) =4V

f(u)=u' /O\@

expression:
x| Ax

graph:

f(M,v) =Mv

Computation graphs are directed and acyclic

expression:
x'Ax+b-x+c

graph:

expression:
y=xAx+b-x+c

graph:

variable names are just labelings of nodes.

Algorithms (1)

- Graph construction

- Forward propagation

* In topological order, compute the value of the
node given its inputs

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Forward Propagation

graph:

Algorithms (2)

- Back-propagation:

* Process examples in reverse topological order

* Calculate the gradients of the parameters with
respect to the final value (usually a loss function)

- Parameter update:

 Move the parameters in the direction of this

gradient
W-=a* dl/dW

Back Propagation

graph:

oL

doutput .

Basic Process in Neural
Network Frameworks

e Create a model

 [For each example

create a graph that represents the computation
you want

calculate the result of that computation

f training, perform back propagation and
update

Concrete
Implementation

Neural Network Frameworks

PYTHRCH .

/4

7 46

0,
TensorFlow Qeef™efe

Developed by FAIR/Meta Developed by Google
Most widely used in NLP Used in some NLP projects
Favors dynamic execution Favors definition+compilation

More flexibility Conceptually simple parallelization

Code Example

» Classity tweets as positive, negative, or neutral
 BoW, CBoW, DeepCBoW

tweet = "I'm learning so much in advanced NLP!"

tokens = torch.tensor(sp.encode(tweet), dtype=torch.long)
scores = model(tokens) [@].detach()

predict = scores.argmax().item()

label_to_text[predict]

'positive’

Recap

Tokenization and subword models

* Represent sequences as tokens determined based on frequency
Token embeddings

o Represent tokens as learned continuous vectors In R4

Neural networks

e Learn complex, non-linear feature functions

Training a neural network

« Choose a loss, construct a differentiable graph, take gradients

Thank you!

