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Recap
• Goal: learn a good scoring function  

• => good probabilistic models  

• Three key ingredients 

• Modeling/Parameterization: how  (or ) is implemented (e.g., the architecture) 

• Learning: setting the parameters  using supervision 

• Inference: making a decision after learning 

• We saw an example classification model based on: 

• Bag-of-words and word identities 

• Structured perceptron learning 

• A simple inference algorithm

sθ(x, y)

pθ(y |x) ∝ sθ(x, y)

sθ pθ

θ



Today’s lecture

• We will still focus on classification:  

• We will go over fundamentals that underlie any state-of-
the-art NLP system: 

• Continuous representations of subwords 

• Parameterization based on neural networks 

• Learning by optimizing a loss function with back 
propagation and gradient descent

g(x) → {1,2,…, K}



Recap: Bag of Words (BoW)

Features: sum of 1-hot vectors 
Weights: learned

lookup lookup lookup

hate moviethisI
lookup

+
·



Bag of Words: Symptoms
• Handling of conjugated or compound words 

• I love this move -> I loved this movie 

• Handling of word similarity 

• I love this move -> I adore this movie 

• Handling of combination features 

• I love this movie -> I don’t love this movie 

• I hate this movie -> I don’t hate this movie 

• Handling of sentence structure 

• It has an interesting story, but is boring overall

Subword 
Models

Neural 
Networks

Sequence 
Models

Word 
Embeddings



Subword Models



Basic Idea

• Split less common words into multiple subword tokens

• Benefits: 
• Share parameters between subwords 
• Reduce parameter size, save compute+memory

the companies are expanding

the compan _ies are expand _ing



Core problem: tokenization
• Map text into a sequence of discrete tokens from a vocabulary

• We want a vocabulary  that is: 

• Expressive: represent any text (English, Japanese, code, …) 

• Efficient 

• Not too large: larger vocabulary means more parameters to learn/store 

• Not too small: smaller vocabulary means longer inputs

𝒱

the companies are expanding the, compan ,_ies, are, expand, _ing

t, h, e, c, o, m, p, a, n, ….

the, companies, are, expandingx

x1, …, xT xt ∈ 𝒱



Core problem: tokenization
• Demo: https://tiktokenizer.vercel.app/ 

https://tiktokenizer.vercel.app/


Idea 1: UTF-8

• Tokenize text as UTF-8 bytes 

• Expressive: any Unicode string (Japanese, English, Latex, …) 

• Vocabulary is too small: sequences are very long (inefficient)

Unicode string

UTF-8 
(Vocabulary = 256 byte choices)

元気ですか。Hello!



Idea 2: Byte Pair Encoding
• Key idea: merge the most common 

token pairs into new tokens 

• Start with a base vocabulary (e.g., 
UTF-8) and a training set 

• Repeat: 

• Find the token pair that occurs 
most often 

• Introduce a new token and 
replace the token pair 

• Stop when a desired vocab size is 
reached.



Practical tools: tiktoken
• Load pre-existing OpenAI 

vocabularies (e.g., GPT-2, GPT-4) 

• Tokenize and decode text



Practical tools: SentencePiece
• Also supports training a tokenizer 

• Uses Unicode as the base vocabulary 

• byte_fallback=True: tokenize as UTF-8 bytes when a Unicode 
character is out-of-vocabulary 



Subword Considerations

• Vocabulary depends on the BPE training data: 

• Under-represented languages: merged less, hence longer sequences 

• Work-around: upsample under-represented languages 
 

• Inconsistent numbers: 123 -> “123”  vs. 927 -> “92” “7” 

• Work-around: Hand-defined rules, e.g. never group digits together



Recap

• Tokenization and subword models  

• Represent sequences as tokens determined based on 
frequency 

• Next: Token embeddings



Continuous Word Embeddings



Basic Idea
• Previously: one-hot vectors (sparse) 

• Continuous embeddings: dense vectors in ℝdemb

I
lookup

like
lookup

One-hot

xt : [0,…1,…,0] ∈ {0,1}V

V: vocabulary size

Dense

xt : [0.2, − 1.3,…,0.6] ∈ ℝdemb

: “embedding dimension”demb

I
lookup

like
lookup



Embedding Layer
• Embedding layer: matrix with a row/column for each 

vocabulary token. “Lookup”: select a row/column. 

lookup(2)

V

demb

• Equivalent to multiplying by a one-hot vector

V

demb

0 
0 
1
0 
0 
…

*



Continuous Bag of Words (CBoW)

embed embed embed

hate
x2

movie
xT

this
x3

I
x1

embed

: number of 
output classes
K

W

W ∈ ℝK×d

+

Bias
scores

ℝK

ℝK

Linear layer
Weights

Parameters  
- Embedding layer 
- Weights  
- Bias

θ

W

+
h ∈ ℝd



In Code

In practice, implemented in libraries (e.g., nn.Embedding)



In Code



What do Our Vectors Represent?

• No guarantees, but we hope that: 
• Words that are similar are close in vector space  
• Each vector element is a feature

monster

cat

dog

angel

great
excellent

nice

bad disease

basket

sun Shown in 2D, but 
in reality we use 
512, 1024, etc.



Recap

• Tokenization and subword models  

• Represent sequences as tokens determined based on 
frequency 

• Token embeddings 

• Represent tokens as learned continuous vectors 

• Next: Neural networks



Neural Network Features



Motivation: combination features

There’s nothing I don’t 
love about this movie

very good 
good 

neutral 
bad 

very bad

I don’t love this movie

very good 
good 

neutral 
bad 

very bad



Deep CBoW

: number of 
output classes
K

x2 xTx3x1

+
h(1) ∈ ℝdemb

scores ℝK

Linear layer 
W ∈ ℝK×d

embed embed embedembed

Parameters  
- Embedding layer 
- Weights  
- Biases

θ

W(1), W(2), W
tanh(W(1)h + b(1))

h(2) ∈ ℝd

Layer

tanh(W(2)h + b(2))

h(3) ∈ ℝd

Layer

Why tanh? 
Why do these layers help?



Nonlinearities

• Activation functions such as 
tanh introduce nonlinearity  

• Non-linearities allow the 
neural network to model more 
complex patterns 

• Without activation functions, 
stacking matrices collapses to 
a linear transformation

tanh(W*h + b)

W1 W2 W’

Linear Linear Linear

≡

W1 W2

LinearLinear Nonlinear

≡ W2

Nonlinear

Other activation functions: sigmoid, ReLU, GELU, see PyTorch list 

https://pytorch.org/docs/main/nn.html#non-linear-activations-weighted-sum-nonlinearity


Deep CBoW In Code

(One hidden-layer version)



What do Our Vectors Represent?

• We can learn feature combinations  

• E.g., a node in the second layer might be 
“feature 1 AND feature 5 are active” 

• E.g. capture things such as “not” AND “hate” 

• We can learn nonlinear transformations of the 
previous layer’s features



Recap
• Tokenization and subword models  

• Represent sequences as tokens determined based on 
frequency 

• Token embeddings 

• Represent tokens as learned continuous vectors 

• Neural networks 

• Learn complex, non-linear feature functions 

• Next: Training neural network models



Training neural network models



Training neural network models

• We use gradient descent 

• Write down a loss function 

• Calculate gradients of the loss function with 
respect to the parameters 

• Move the parameters in the direction that 
reduces the loss function



Example Loss: Binary Cross entropy

• Example task: classify tweets 
as positive (1) or negative (0)  

• Model outputs a probability 
 for the positive 

class 

• Use a sigmoid layer: 

 

• Ground truth label 

x

pθ(x) ∈ [0,1]

Sigmoid(s) = σ(s) =
1

1 + exp(−s)

y ∈ {0,1} LBCE(θ; x, y) =

−y log(pθ(x)) − (1 − y)log(1 − pθ(x))



Example Loss: Binary Cross entropy

• Suppose  

•  

•  

•  very negative 

• L very positive (high loss) 

•  

•  

• L very small (low loss)

y = 1

L = − log(pθ(x))

pθ(x) → 0

log pθ(x)

pθ(x) → 1

log pθ(x) → 0
LBCE(θ; x, y) =

−y log(pθ(x)) − (1 − y)log(1 − pθ(x))



Cross entropy loss (multi-class)
• Example task: classify tweets as 

positive (2), neutral (1), or negative (0) 

• Given a training example  

• Model outputs a probability vector 

• E.g.  

• Ground truth label: one-hot vector 

• E.g. 

(x, y)

p = [0.2,0.5,0.3]

y = [0,0,1]

LCE = −
K

∑
i=1

yi log(pi)

pi =
exp(zi)

∑K
j=1 exp(zj)

scores ℝK

probs ΔK

softmax



Cross entropy loss (multi-class)

• Model assigns high probability to correct class: 

• small loss 

• Model assigns low probability to correct class: 

• large loss

pi ≈ 1 ⟹ log pi ≈ 0 ⟹

pi ≈ 0 ⟹ log pi ≈ − ∞ ⟹

LCE = −
K

∑
i=1

yi log(pi)



Where does cross entropy loss come from?

• Minimize the KL Divergence between two distributions: 

•
 

                                  

                                   

• In our example: 

• , and 

min
p2

KL (p1, p2) = min
p2

− ∑
x

p1(x)log ( p2(x)
p1(x) )

≡ min
p2

∑
x

− p1(x)log p2(x) + p1(x)log p1(x)

≡ min
p2

− ∑
x

p1(x)log p2(x)

p1 = [0,0,1] p2 = [0.2,0.5,0.3]

Cross entropy 
H(p1, p2)

(Negative) entropy 
−H(p1)



Cross entropy loss (in code)

Implemented in standard libraries, e.g. nn.CrossEntropyLoss



Training neural network models

• We use gradient descent 

• Write down a loss function 

• Calculate gradients of the loss function with 
respect to the parameters

• Move the parameters in the direction that 
reduces the loss function



Calculating gradients
•

, where  

•  

•  

•  

          

•  

•  

• Multiplying the three terms, we get 

p = σ(wx + b
z

) σ(x) =
1

1 + exp(−x)

L = − y log p − (1 − y)log(1 − p)

∂L
∂w

=
∂L
∂p

∂p
∂z

∂z
∂w

∂L
∂p

= −
y
p

+
1 − y
1 − p

=
p − y

p(1 − p)

∂p
∂z

= p(1 − p)

∂z
∂w

= x

∂L
∂w

= (p − y)x



Training neural network models

• We use gradient descent 

• Write down a loss function 

• Calculate gradients of the loss function with 
respect to the parameters 

• Move the parameters in the direction that 
reduces the loss function



Optimizing Parameters

• Standard stochastic gradient descent does

Learning Rate

Gradient of Loss

• There are many other optimization options! (e.g., 
we’ll see several in the course and HW 1)
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In Code
Loss

Compute loss

Optimizer

Compute gradients
Update parameters



What is a Neural Net?: 
Computation Graphs



“Neural” Nets
Neurons in the Brain??

Image credit: Wikipedia

Current Conception: Computation Graphs

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi



y = x>Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:



y = x>Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument. They are 
just pointers to nodes.

A node with an incoming edge is a function of 
that edge’s tail node.

f(u) = u>

A node knows how to compute its value and the 
gradient with respect to each input, here 

∂f(u)
∂u

∂F
∂u

=
∂F

∂f(u)
∂f(u)
∂u

Local 
Gradient

Incoming 
gradient



y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary, 
binary, … n-ary. Often they are unary or binary.



y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directed and acyclic



y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:



y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.



Algorithms (1)

• Graph construction

• Forward propagation

• In topological order, compute the value of the 
node given its inputs



x

f(u) = u>

A
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graph:

Forward Propagation
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f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

Forward Propagation

x>Ax+ b · x+ c



Algorithms (2)

• Back-propagation:
• Process examples in reverse topological order 
• Calculate the gradients of the parameters with 

respect to the final value (usually a loss function) 
• Parameter update:

• Move the parameters in the direction of this 
gradient 
W -= α * dl/dW



x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Back Propagation

∂L
∂output

∂output
∂input



Basic Process in Neural 
Network Frameworks

• Create a model 

• For each example 

• create a graph that represents the computation 
you want 

• calculate the result of that computation 

• if training, perform back propagation and 
update



Concrete 
Implementation



Neural Network Frameworks

Most widely used in NLP Used in some NLP projects

Favors dynamic execution Favors definition+compilation

Developed by GoogleDeveloped by FAIR/Meta

More flexibility Conceptually simple parallelization



Code Example
• Classify tweets as positive, negative, or neutral 
• BoW, CBoW, DeepCBoW



Recap
• Tokenization and subword models  

• Represent sequences as tokens determined based on frequency 

• Token embeddings 

• Represent tokens as learned continuous vectors in  

• Neural networks 

• Learn complex, non-linear feature functions 

• Training a neural network 

• Choose a loss, construct a differentiable graph, take gradients

ℝd



Thank you!


