Slido

3542640

CS11-711 Advanced NLP

. anguage Modaeling

Sean Welleck

(Carnegie A
i,

https://cmu-13.qgithub.io/anlp-spring2026/

https://github.com/cmu-I3/anlp-spring2026-code

Some slides adapted from Graham Neubig’s Fall 2024 course

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code

Types of Prediction:
Binary, Multi-class, Structured

* Two classes (binary classification)

| hate this movie

—» Negative

 Multiple classes (multi-class classification)

good

| hate this movie neutral
\ bad
very bad

* Exponential/infinite labels (structured prediction)
| hate this movie » PRP VBP DT NN

| hate this movie > KOno eiga ga Kiral

. anguage Modeling

What is a language model?

* A language model is a probability distribution over all
seqguences

. P(X)

 Example probabillity distribution: biased coin

04 xis0
P(X) =
° (X) {0.6 xisl'

&
|
-

What is a language model?

* A language model is a probability distribution over all
sequences

° P(X) One square = one sequence
All possible sequences — a lot!

 Example language model:

. P(X) = 0.000013ifxisa.
0.000001 if x is aa

0.019100 if xis a cat sat.

What can we do with language models”

* Score seguences:

P(Jane went to the store .) = high
P(store to Jane went the .) = low

 Generate seqguences:

2 ~ P(X)

What can we do with language models”

-+ Conditional generation: condition on an input context

5&2‘+1:T ~ P(Xt+1:T‘x1:t)

 Machine translation:
- Context: sentence in English
- Continuation: sentence in Japanese
e General task:
- Context: instructions, examples, start of output
- Continuation: output

What can we do with language models”

- Answer questions

o Score possible multiple choice answers

e (Generate a continuation of a guestion prompt

- Classify text

e Score the text conditioned on a label

e (Fenerate a label given a classification prompt
- Correct grammar

e Score each word and replace low-scoring ones

e (Generate a grammatical output

Auto-regressive Language Models

P(X)_HP X, | Xps oo Xy)
=t/ 1

Next Token Context

Decomposes sequence modeling Into
next-token modeling

P(X) is defined over & (space of all sequences). Very large

P(x,| x_,) is defined over 7" (token vocabulary).

Auto-regressive Language Models

P(X)_HP X, | 205 s Xy)
=1/

Next Token Context

Key question: modeling

P (xt | X, ...,xt_l)

Roadmap

Bigram models
Ngram models
Feedtorward neural language model

Practical deep learning considerations

Bigram models

T
P(X) ~ HP@ (xt | xt—l)
=

Next Token 1-token context

Code: https://github.com/cmu-I3/anlp-fall2025-code/blob/
main/03_Im_fundamentals/Im_basics_bigrams.ipynb

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb

Training language models

Problem setup

« Goal: model a data distribution, i.e. pg = P,

« We only have a dataset of samples from p, .-
_ N
e D= {xn}nzl

e Split the dataset into training, dev, and test sets

Training bigram models

e Set next-token probabilities based on how often each
token X, appears after x,_; in the training dataset:

count(x,_q, X,)

Zx, count(x,_1, x")

p(xt ‘ xt—l) —

. We can view this as training parameters 6; ; = p(x;| x;)

In Code

e Model a dataset of names. Character-level tokenization.

bigram_counts = {}
data = open('names.txt').read().splitlines() for x in data:

data[:10] sequence = ['[S]'] + list(x) + ['[S]']

for x1, x2 in zip(sequence, sequence[l:]):
[*emma’, bigram = (x1, x2)

‘olivia’, bigram_counts[bigram] = bigram_counts.get(bigram, @) + 1
ava ,

'isabella', g . '
'sophia’, [((('n*, "[S]"'), 6763),

'charlotte', (('a', '[S]'), 6640),

v/ 0.0s

'mia’, (('a', 'n'), 5438),
:amelia:, ((*[s]', 'a'), 4410),
harper', (('e', '[S]'), 3983),

g lyn']
evelyn (('a', 'r'), 3264),

(('e', '1'), 3248),
(('r*, 'i'), 3033),
((*'n', 'a'), 2977),
((*[Ss1', 'k'), 2963)]

https://github.com/cmu-I3/anlp-spring2026-code/blob/main/03_Im_fundamentals/Im_basics_bigrams.ipynb

Based on Andrej Karpathy’s lecture/video: https://youtu.be/PaCmpygFfXo

https://youtu.be/PaCmpygFfXo
https://github.com/cmu-l3/anlp-spring2026-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb

Model probabilities

aa ab ac ad ae af ag ah ai aé ak al am an ao ap ag ar as at
1.64E-02 1.60E-02 1.39E-02 3.08E-02 2.04E-02 3.95E-03 4.96E-03 6.88E-02 4.87E-02 5.16E-03 1.68E-02 7.46E-02 4.82E-02 1.60E-01 1.86E-03 2.42E-03 1.77E-03 9.63E-02 3.30E-02 2.03E-02

az a[s]
-02 1.28E-02 1.96E-01

au av aw
1.12E-02 2.46E-02 4.75E

br

ba bb bc bd be bf bEg bh bi bj bk bl bm bn bo bé) bg bt bu bv bw bx bé bz b[S]
1.21E-01 1.44E-02 3.78E-04 2.46E-02 2:48E-01/0.00E+000.00E+00 1.55E-02 8.20E-02 3 78&704 0.00E+00 3.89E-02 0.00E+00 1.51E-03 3.97E-02 0.00E+00 0.00E+00 |SHi8| 02E-03 7.56E-04 1.70E-02 0.00E+000.00E+00 0.00E+00 3.14E-02 0.00E+00 4.31E-02

ca cb cc cd ce cf cg ch ci j ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz c[S]
2.31E-01 0.00E+00 1.19E-02 2.83E-04 1.56E-01 0.00E+00 5.66E-04 1.88E-01 7.67E-02 8.49E-04 8.95E-02 3.28E-02 0.00E+000.00E+00 1.08E-01 2.83E-04 3.11E-03 2.15E-02 1.42E-03 9.91E-03 9.91E-03 0.00E+00 0.00E+00 8.49E-04 2.94E-02 1.13E-03 2.75E-02

da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dg dz d[s]
2.37E-01 1.82E-04 5.46E-04 2.71E-02 [2.33E-01| 9.10E-04 4.55E-03 2.15E-02 1.23E-01 1.64E-03 5.46E-04 1.09E-02 5.46E-03 5.64E-03 6.88E-02 0.00E+00 1.82E-04 7.71E-02 5.28E-03 7.28E-04 1.67E-02 3.09E-03 4.18E-03 0.00E+00 5.77E-02 1.82E-04 9.39E-02

ea eb ec ed ee ef eg eh ei eé ek el em en eo eE eg er es et eu ev ew ex eg ez e[S]
3.32E-02 5.92E-03 7.49E-03 1.88E-02 6.22E-02 4.02E-03 6.12E-03 7.44E-03 4.01E-02 2.69E-03 8.72E-03 1.59E-01 3.77E-02 1.31E-01 1.32E-02 4.06E-03 6.86E-04 9.59E-02 4.22E-02 2.84E-02 3.38E-03 2.27E-02 2.45E-03 6.46E-03 5.24E-02 8.86E-03 1.95E-01

fa fb fc fd fe ff fg fh fi fj fk fl fm fn fo fp fq fr fs ft fu fv fw fx fy fz f[S]
2.67E-01 0.00E+00 0.00E+00 0.00E+00 1.36E-01 4.86E-02 1.10E-03 1.10E-03 1.77E-01 0.00E+00 2.21E-03 2.21E-02 0.00E+00 4.42E-03 6.63E-02 0.00E+00 0.00E+00 1.26E-01 6.63E-03 1.99E-02 1.10E-02 0.00E+00 4.42E-03 0.00E+00 1.55E-02 2.21E-03 8.84E-02

ga gb gc gd ge af 99 gh gi i gk gl gm gn 90 ap ele gr gs gt gu gv gw gx gy 9z g[s]
1.71E-01 1.56E-03 0.00E+00 9.86E-03 1.73E-01 5.19E-04 1.30E-02 1.87E-01 9.86E-02 1.56E-03 0.00E+00 1.66E-02 3.11E-03 1.40E-02 4.31E-02 0.00E+000.00E+00 1.04E-01 1.56E-02 1.61E-02 4.41E-02 5.19E-04 1.35E-02 0.00E+00 1.61E-02 5.19E-04 5.60E-02

ha hb hc hd he hf hg hh hi hj hk hi hm hn ho hp hq hr hs ht hu hv hw hx hy hz his]
2.95E-01| 1.05E-03 2.63E-04 3.15E-03 8.85E-02 2.63E-04 2.63E-04 1.31E-04 9.57E-02 1.18£-03 3.81E-03 2.43E-02 1.54E-02 1.81E-02 3.77E-02 1.31E-04 1.31E-04 2.68E-02 4.07E-03 9.32E-03 2.18E-02 5.12E-03 1.31E-03 0.00E+00 2.80E-02 2.63E-03 |SHGE-0L

ia ib ic id ie if ig ih i i ik i im in io ip iq i is it iu iv iw ix iy iz i[s]
1.38E-01 6.21E-03 2.88E-02 2.49E-02 9.34E-02 5.71E-03 2.42E-02 5.37E-03 4.63E-03 4.29E-03 2.51E-02 7.60E-02 2.41E-02 1.20E-01 3.32E-02 2.99E-03 2.94E-03 4.80E-02 7.43E-02 3.06E-02 6.16E-03 1.52E-02 4.52E-04 5.03E-03 4.40E-02 1.56E-02 1.41E-01
b c d e f j h i i k 1 m in jo p j r s t u v w jx M iz jIs]
3.48E.04 138603 1.35E-03 1.5E-01 0.00E+000.008+00 1.55E-02 4.10E-02 6.90E-04 6.90E-04 3.10E-03 1.72E-03 6.90F-04 L6SE-01 3.45¢-04 0.008+00 3.796-03 2.41E-03 6.90E-04 6.97E-02 1.73E-03 2.07E-03 0.00E+00 3.45E-03 0.00E+00 2.45E-02
K[S]
E

kb ke kd ke kf kEg kh ki kj kk ki km kn ko kp kq kr ks kt ku kv kw kx kE kz
3.97E-04 3.97E-04 3.97E-04 1.78E-01 1.98E-04 0.00E+00 6.09E-02 1.01E-01 3.97E-04 3.97E-03 2.76E-02 1.79E-03 5.16E-03 6.83E-02 0.00E+000.00E+00 2.16E-02 1.88E-02 3.37E-03 9.92E-03 3.97E-04 6.75E-03 0.00E+00 7.52E-02 3.97E-04 7.20E-02

la Ib Ic Id le If lg Ih li lj Ik Il Im In lo Ip Iq Ir Is It lu v Iw Ix ly Iz I[S]
1.88E-01 3.73E-03 1.79E-03 9.89E-03 2.09E-01 1.58E-03 4.30E-04 1.36E-03 1.78E-01 4.30E-04 1.72E-03 9.64E-02 4.30E-03 1.00E-03 4.96E-02 1.07E-03 2.15E-04 1.29E-03 6.73E-03 5.52E-03 2.32E-02 5.16E-03 1.15E-03 0.00E+00 1.14E-01 7.16E-04 9.41E-02

mb mc md me mf mg mh mi ny mk ml mm mn mo mé) mq mr ms mt mu mv mw mx mg mz m[S]
1.69E-02 7.68E-03 3.61E-03 1.23E-01 1.51E-04 0.00E+00 7.53E-04 1.89E-01 1.05E-03 1.51E-04 7.53E-04 2.53E-02 3.01E-03 6.81E-02 5.72E-03 0.00E+00 1.46E-02 5.27E-03 6.02E-04 2.09E-02 4.52E-04 3.01E-04 0.00E+00 4.32E-02 1.66E-03 7.77E-02

na nb nc nd ne nf o nh ni nj nk nl nm nn no np ng nr ns nt nu nv nw nx n
1.62E-01 4.37E-04 1.16E-02 3.84E-02 7.42E-02 6.00E-04 1.49E-02 1.42E-03 9.41E-02 2.40£-03 3.16E-03 1.06E-02 1.04E-03 104E-01 2.71E-02 2.73E-04 1.09E-04 2.40E-03 152602 2.42E-02 5.24E-03 3.00E-03 6.00E-04 3.27E-04 2.54-02

oa ob oc od oe of og oh oi] ok ol om on 00 op oq or 0s ot ou ov ow 4
1.88E-02 1.76E-02 1.44E-02 2.39E-02 1.66E-02 4.29E-03 5.55E-03 2.16E-02 8.70E-03 2.02E-03 8.57E-03 7.80E-02 3.29E-02 |SM04ES0W 1.45E-02 1.20E-02 3.78E-04 1.33E-01 6.35E-02 1.49E-02 3.47E-02 2.22E-02 1.44E-02 6.81E-03

pa pb pc pd pe pf pg ph pi pj pk pl pm pn po pp pq pr ps pt pu px py pz pls]
2.04E-01 1.95E-03 9.75E-04 0.00E+00 1.92E-01 9.75E-04 0.00E+00 1.99E-01 5.95E-02 9.75E-04 9.75E-04 1.56E-02 9.75E-04 9.75E-04 5.75E-02 3.80E-02 0.00E+00 1.47E-01 1.56E-02 1.66E-02 3.90E-03 0.00E+00 1.17E-02 0.00E+00 3.22E-02

ga gb qc qd ge af 99 gh qi qj gk ql gqm gn g0 ap qq qr gs qt qv qw qx qy 9z qls]
4.78E-02 0.00E+00 0.00E+00 0.00E+00 3.68E-03 0.00E+00 0.00E+00 0.00E+00 4.78E-02 0.00E+000.00E+00 3.68E-03 7.35E-03 0.00E+00 7.35E-03 0.00E+00 0.00E+00 3.68E-03 7.35E-03 0.00E+00) 0.00E+00 1.10E-02 0.00E+00 0.00E+00 0.00E+00 1.03E-01

ra b rc rd re f rg rh ri T rk rl m m ro p rq m rs rt ru v w o4 ry rz rS]
1.86E-01 3.23E-03 7.80E-03 1.47E-02 1.34E-01 7.09E-04 5.98E-03 9.53E-03 |2.39E-01 1.97E-03 7.09E-03 3.25E-02 1.28E-02 1.10E-02 6.84E-02 1.10E-03 1.26E-03 3.35E-02 1.50E-02 1.64E-02 1.98E-02 6.30E-03 1.65E-03 2.36E-04 6.09E-02 1.81E-03 1.08E-01

sa sb sC sd se sf 5% sh si sj sk sl sm sn S0 sp sq sr SS st su sv SW SX sy sz s[S]
1.48E-01 2.59E-03 7.40E-03 1.11E-03 1.09E-01 2.47E-04 2.47E-04 1.59E-01 8.44E-02 2.47E-04 1.01E-02 3.44E-02 1.11E-02 2.96E-03 6.55E-02 6.29E-03 1.23E-04 6.79E-03 5.69E-02 9.44E-02 2.28E-02 1.73E-03 2.96E-03 0.00E+00 2.65E-02 1.23E-03 1.44E-01

ta th tc td te tf t% th ti o] tk tl tm tn to tp tg tr ts t tu tv tw tx ty tz t[S]
1.84E-01 1.80E-04 3.05E-03 0.00E+00 1.29E-01 3.59E-04 3.59E-04 1.16E-01 9.55E-02 5.39E-04 0.00E+00 2.41E-02 7.18E-04 3.95E-03 1.20E-01 0.00E+000.00E+00 6.32E-02 6.28E-03 6.71E-02 1.40E-02 2.69E-03 1.97E-03 3.59E-04 6.12E-02 1.89E-02 8.67E-02

ua ub uc ud ue uf ug uh ui u& uk ul um un uo uE ug ur us ut uu uv uw ux ug uz u[S]
5.20E-02 3.29E-02 3.29E-02 4.34E-02 5.39E-02 6.06E-03 1.50E-02 1.85E-02 3.86E-02 4.47E-03 2.97E-02 9.60E-02 4.91E-02 8.77E-02 3.19E-03 5.10E-03 3.19E-03 1.32E-01 1.51E-01 2.62E-02 9.57E-04 1.18E-02 2.74E-02 1.08E-02 4.15E-03 1.44E-02 4.94E-02

va vb vC vd ve vf vEg vh vj vk vl vm vn vo vp vq vr Vs vt vu v W VX % vz V[S]
2.50E-01 3.89E-04 0.00E+00 3.89E-04 |2.21E-01 0.00E+00 0.00E+00 3.89E-04 0.00E+00 1.17E-03 5.44E-03 0.00E+00 3.11E-03 5.95E-02 0.00E+00 0.00E+00 1.87E-02 0.00E+000.00E+00 2.72E-03 2.72E-03 0.00E+00 0.00E+00 4. 70%702 0.00E+00 3.42E-02

wa wb wC wd we wf WE wh wi wj wk wi wm wn wo wp wq wr ws wt wu WV ww WX wg wz w[S]
SI0TE=01 1.08E-03 0.00E+00 8.61E-03 1.60E-01 2.15E-03 1.08E-03 2.48E-02 1.59E-01 0.00E+00 6.46E-03 1.40E-02 2.15E-03 6.24E-02 3.88E-02 0.00E+000.00E+00 2.37E-02 2.15E-02 8.61E-03 2.69E-02 0.00E+00 2.15E-03 0.00E+00 7.86E-02 1.08E-03 5.49E-02

xa xb xc xd xe xf xg xh xi Xj xk Xl xm xn X0 xp xq xr xs xt xu xv xw XX Xy Xz X[S]
1.48E-01 1.43E-03 5.74E-03 7.17E-03 5.16E-02 4.30E-03 0.00E+00 1.43E-03 1.46E-01 0.00E+000.00E+00 5.60E-02 1.43E-03 1.43E-03 5.88E-02 0.00E+000.00E+000.00E+00 4.45E-02 1.00E-01 7.17E-03 0.00E+00 4.30E-03 5.45E-02 4.30E-02 2.73E-02 |2.35E-01

ga yb yc yd ge 3vf e} yh é" yj yk 3" ym ;n yo ép yq gr 55 gt yu gv yw yXx yy gz [S]
2.19E-01 2.76E-03 1.18E-02 2.78E-02 3.08E-02 1.23E-03 3.07E-03 2.25E-03 1.96E-02 2.35E-03 8.80E-03 1.13E-01 1.51E-02 1.87E-01 2.77E-02 1.53E-03 6.14E-04 2.98E-02 4.10E-02 1.06E-02 1.44E-02 1.08E-02 4.09E-04 2.86E-03 2.35E-03 7.98E-03 2.05E-01

zb zc zd ze zf zg9 zh zi Zj zk 2l zm zn z0 zp zq zr zs zt zu zv zw X zy 2z Z[S]
1.67E-03 8.34E-04 8.34E-04 1.56E-01 0.00E+00 4.17E-04 1.79E-02 1.52E-01 8.34E-04 8.34E-04 5.13E-02 1.46E-02 1.67E-03 4.59E-02 8.34E-04 0.00E+00 1.33E-02 1.67E-03 1.67E-03 3.04E-02 8.34E-04 1.25E-03 4.17E-04 6.13E-02 1.88E-02 6.67E-02

[Sla [Sb [Slc [Sld [Sle [SIf [Slg [SIh [S]i [S)i [Slk [S1l [SIm [SIn [Slo [Slp [Slq [S]r [Sls [S]t [Slu [Slv [Sw [S]x [Sly [Slz [S][S]
1.38E-01 4.08E-02 4.81E-02 5.28E-02 4.78E-02 1.30E-02 2.09E-02 2.73E-02 1.84E-02 7.56E-02 9.25E-02 4.91E-02 7.92E-02 3.58E-02 1.23E-02 1.61E-02 2.87E-03 5.12E-02 6.42E-02 4.08E-02 2.43E-03 1.17E-02 9.58E-03 4.18E-03 1.67E-02 2.90E-02 0.00E+00

-spring2026-code/blob/main/03_Im_fundamentals/Im_basics_bi

https://github.com/cmu-l3/anlp-spring2026-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb

Training : why counting”?

* [he counting procedure corresponds to maximum
likelihood estimation for this model:

max). log py(x)

xeD

train

* |dea: set the parameters so that the model assigns
high probability to the training data D

trrain

Exercise: derive the update on the previous slide

Training: Why maximum likelihood”?

« Makes py match the data distribution p .. (p for brevity)

mein Dy (ps«| | pg) =

‘$
.
.
.
.
“
 J

Dataset:
samples from p.

Note: using log space

 Multiplication of probabilities can be re-expressed
as addition of log probabilities

| X | X

P(X) = HP(CEi) —p logP(X) = ZlogP(xi)

« Why?: numerical stability, other conveniences

(Generation

* (Generate from an autoregressive model by iteratively
sampling a next token, then appending it to the context

Until [S] is generated:

X; ~ Po(x, | X,_1)

 Equivalent to sampling from the model’s joint
distribution over full sequences! (More in lecture 7)

In Code

def generate_sequence():

sequence = ['[S]']

while True:
current_char = sequence[-1]
current_index = char_to_index[current_char]
next_index = torch.multinomial(P[current_index], num_samples=1).item()
next_char = index_to_char[next_index]
if next_char == '[S]':

break

sequence.append(next_char)

return ''.join(sequence[1:])

generated_sequences = [generate_sequence() for _ in range(10)]
generated_sequences

v/ 0.0s

['iciara', 'm', 'gevere', 'nri', 'ch', 'anan', 'de', 'k', 'al', 'nnn']

Evaluation

e \WWe can evaluate a model based on the
probabilities It assigns to a dataset

* £.9., the training set or a held-out test set

* [wo widely used metrics in language modeling:
* Log-likelihood

* Perplexity

L og-likelinood and perplexity

* (Negative) Log-likelihood:

N T,
NLL = — Z log p(x@] x) [0, c0)
1

i=1 t=
* Per-token average NLL:

T

NLL,,, = Z Z log p(x?|x9) [0, c0)

total i=1 =1

* Perplexity

N 1
PPL, = exp (Z Z logp(x(’) |x(’))> [1, 00)
total

=1 =1

Perplexity

Perplexity:

When a dog sees a squirrel it will usually __

KE
KE
KE
KE
KE

OO O O O

- I I I 2

. bark’ - Probabillity: 0.0352 — ¢
- jJump’ - Probabillity: 0.0338 = ¢
- start’ - Probabillity: 0.0289 — e
. run’' - Probabillity: 0.0277 — e
' try' - Probability: 0.0219 — ¢

8P = 28.4
O5P= 296

2P = 34.6

O2P= 36.1
O2P= 457

In Code

def log_likelihood(P, dataset):
n==~0
1L=20
for x in dataset:

sequence = ['[S]'] + list(x) + ['[S]']

for x1, x2 in zip(sequence, sequence[l:]):
i = char_to_index[x1]
j = char_to_index[x2]
1l += torch.log(P[i, j])

n += 1
return 11, n

11, n = log_likelihood(P, data)
print(f'Log likelihood: {1l.item():.4f}"')
print(f'Average next-token log likelihood {1l.item() / n:.4f}"')

v/ 0.bs

Log likelihood: -559891.7500
Average next-token log likelihood -2.4541

In Code

def perplexity(model, dataset):
11, n = log_likelihood(model, dataset)
return torch.exp(-11 / n).item()

perplexity(P, data)
v/ 0.bs

11.635889053344727

Recap: Bigram models

A simple language model, but we saw several key
concepts:

 Maximum likelihood estimation
 Log space
e Autoregressive generation

e Evaluating log-likelihood and perplexity

 Next: Ngram models

Ngram models

T
P(X) ~ HP@ CA R A)

=

Next Token n-token context

* Use an analogous counting procedure to train

Training Ngram Models

* Use an analogous counting procedure to train

CoUNt(X; ;4 17— 15 Xy)

PO X121 = ,
fo COUNt(X— g 1715 X)

Training Ngram Models

 Add a ‘fake count’ to each possible ngram to avoid
zero probability ngrams

1 + count(x,_, 4 1-1—15 %)

| V| Zx/ COUNt(X,y 1:7—1, X ")

PO | X p1021) =

* An example of smoothing

Problems S

e Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

— solution: neural networks

* Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

— solution: neural networks

* Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet
for programming class he wanted to buy his own computer

— solution: neural networks in future lectures

When to use n-gram models”

Neural language models achieve better
performance, but

* n-gram models are extremely fast to estimate/
apply

e Perfect memorization can be useful

Toolkit: kenlm

https://github.com/kpu/kenim

https://github.com/kpu/kenlm

Feedforward neural language model

T
700 = [y s
=1

A’xt Token n-token context

Neural network parameters :)

Bengio et al 2003, A Neural Probabilistic Language Model

https://github.com/cmu-I3/anlp-spring2026-code/blob/main/

03_Im_fundamentals/Im_basics_neural.ipynb

https://github.com/cmu-l3/anlp-spring2026-code/blob/main/03_lm_fundamentals/lm_basics_neural.ipynb
https://github.com/cmu-l3/anlp-spring2026-code/blob/main/03_lm_fundamentals/lm_basics_neural.ipynb

Neural language model

 Ngram language models do not take into account
the similarity of words or contexts

e [he cat was walking in the bedroom
e The dog was running in a room

e Solution: use learned, distributed representations

Bengio et al 2003, A Neural Probabilistic Language Model

Feedforward neural language model

s = Wh

h = fo(X;_2, X, 1)

DDHDDS "N BOOB| py(x,|cat,was)

Csoftmax]
t

DBDBS = ®BBB Logits € RY

W

T

?

[tE:lnh(W1*h + ba

Output weight matrix

Hidden vector

Layer

Concat

Embedding

Feedforward neural language model

e Jraining: maximum likelihood estimation

arg max Z log py(x)

xeD

train

Z Z log pg(x; | Xy.—1)

xeD

train

* Loss: increase probabillity of target next-token

Loss: L, = —l1ogpy(x,| x{.,_1)

Feedforward neural language model

* Cross-entropy loss! L =— 10gpe(xr‘x1:r—1)

e Recall from lecture 2:
num classes

Leg=—) ylog(p)

e y:: one-hot next-token 1

« p;: LM probapility on
that token

» Classes: possible next-
tokens (vocabulary)

Bengio et al 2003, A Neural Probabilistic Language Model

N coge

class MLPLM(nn.Module):
def __init__ (self, vocab_size, context_size, embedding_size, hidden_size):
super(MLPLM, self).__init_ ()
self.embedding = nn.Embedding(vocab_size, embedding_size)
self.fcl = nn.Linear(context_size * embedding_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, vocab_size)

forward(self, x):

X = self.embedding(x)

X = X.view(x.shapel0], -1)
X = torch.relu(self.fcl(x))
X = self.fc2(x)

return X

N coge

criterion = nn.CrossEntropyLoss()

for epoch in range(num_epochs):

perm = torch.randperm(len(X_train))
X_train = X_train[perm]
Y_train = Y_train[perm]

model.train()

total_loss = 0

for i in range(@, len(X_train), batch_size):
X_batch = X_train[i:i+batch_sizel
Y batch = Y_train[i:i+batch_size]

outputs = model(X_batch)
loss = criterion(outputs, Y_batch)

optimizer.zero_grad()
loss.backward()
optimizer.step()

total_loss += loss.item()

Example of Combination Features

* A row In the weight matrix can capture particular
combinations of token embedding features

* E.g. the 34th row In the weight matrix:

Wss Dsy
12 15 Example possibility:
giving %71 8 positive number if
0.5 0 the previous word is a
* + -2 — determiner and
03 0 second-to-previous
9 2.0 1.3 word is a verb
0.6 0
-0.8 0
-0.4 0

Where is strength shared”

- DDDD

Csoftmax]
t

Similar output words get - DODDD
similar output weights f

*
et b b [I X I X]
Similar contexts get :
similar hidden states
Eanh(Wﬁh + b1ﬂ
*
4 (0 (50 B ¢
Similar words get : I P @ ‘)
similar embeddings
4 4
Clookup) C'OOKUIO]

Where is strength shared”

. Consider predicting word w with two similar contexts /; and fy

1
W — o(w) = — ex <wTh.> t's a great
. b =p(w|h) Z p ; g . movie
It Is a wonderful
" 1 T
. P =pwlhy) =7€XP (W hk)
k

pi Z
. .1 exp (wT(hj — hk)>
pr 7

. The ratio is 1 when wT(hj —h) =0

\ “make hidden vectors h; and

close to each other”

What Problems are Handled?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

— solved, and similar contexts as well!l &

* Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

— solved! &)

 Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet
for programming class he wanted to buy his own computer

— not solved yet &

Recap

Bigram language models and fundamental concepts
Ngram language models: count-based
Neural network language model

Next: some important practical concepts

Important practical concepts

A deep learning system has multiple moving parts:

* [he model architecture, the optimizer, the weights,
the hyperparameters, ...

 We want our experiments to give us data that leads
to reliable conclusions

 Here are a tew helpful ideas that are often implicit in
most deep learning experiments

Splitting into train, valid, and test

« (Goal: fit a target distribution px

« Training data: samples from p., used to fit the
model py

- Validation data: hold out samples from p.« to check

generalization. We try difterent configurations and
choose one with good generalization.

. Test data: hold out samples from psx as an unbiased
check of the final configuration’s generalization

Splitting into train, valid, and test

* In other words:
* Training data: use it to train the model

* Validation data: use it to tune hyperparameters,
perform ablations, select a model

e Test data: use it once at the end and don't look
at it during development

Splitting into train, valid, and test

Model 1 Model 2 Model 3

: train loss/sent=0.8373, time=9.63s epoch @: train loss/sent=0.8136, time=10.15s
: dev acc=0.7094 iter 0: dev acc=0.7246
: train loss/sent=0.7401, time=11.23s epoch 1: train loss/sent=0.6855, time=11.93s
: dev acc=0.7198 iter 1: dev acc=0.7493
: train loss/sent=0.7160, time=11.52s epoch 2: train loss/sent=0.6229, time=12.35s
: dev acc=0.7286 iter 2: dev acc=0.7839
: train loss/sent=0.7048, time=9.75s epoch 3: train loss/sent=0.5654, time=10.85s
: dev acc=0.7349 iter 3: dev acc=0.8251
: train loss/sent=0.6967, time=10.02s epoch 4: train loss/sent=0.5016, time=10.30s
: dev acc=0.7227 iter 4: dev acc=0.8507

loss/sent=0.9047, time=5.91s
acc=0.6857
loss/sent=0.7726, time=5.78s
acc=0.7045
loss/sent=0.7378, time=5.77s
acc=0.7110
loss/sent=0.7223, time=5.78s
acc=0.7142
loss/sent=0.7142, time=5.83s
acc=0.7150

2 P WWNDNREREPROOOS

0:
0:
Il
11
2:
2:
=i
3:
4:
4:

From bow.ipynb: based on this information, which model
would you select?

Overtfitting

« (Goal: fit a target distribution px

« The model may fit the training data (a sample from p«),
but the model may not generalize

- Symptom: training loss is decreasing, validation 10ss is
iIncreasing

- Choose different hyperparameters
-+ Add regularization

- Choose the model with minimum validation loss

INitlalization

* Weight initialization impacts the optimization trajectory

class DeepCBoW(torch.nn.Module):
def __init__ (self, vocab_size, num_labels, emb_size, hid_size):
super(DeepCBoW, self).__init_ ()
self.embedding = nn.Embedding(vocab_size, emb_size)
self.linearl = nn.Linear(emb_size, hid_size)
self.output_layer = nn.Linear(hid_size, num_labels)

nn.init.xavier_uniform_(self.embedding.weight)
nn.init.xavier_uniform_(self.linearl.weight)
nn.init.xavier_uniform_(self.output_layer.weight)

forward(self, tokens):

emb = self.embedding(tokens)
emb_sum = torch.sum(emb, dim=0)
h = emb_sum.view(1, -1)

h = torch.tanh(self.linear1(h))
out = self.output_layer(h)
return out

V6 V6

9
\/nin + Nout \/nin + Moyt

Xavier initialization [Glorot and Bengio 2010]: w~ % | -

Weights are drawn from a uniform distribution around zero, scaled to balance
variance across layers.

L earning rate schedule & warmup

Cosine schedule With warmup
0.3 0.3 -
0.2 - 0.2 1
| R LR

0.1- 0.17

0.0 | , | 0.0 | | |
0 10 20 30 0 10 20 30

Training steps Training steps
A schedule can help balance Warmup can help stabilize
between exploration (large updates) gradients early Iin training

and convergence (small updates)

Batching

 We typically process multiple examples at once (a batch)
* Takes advantage of parallel hardware (GPU)

» (Can smooth out noise in individual gradients

X_batch = X_train[:8]

exaﬂp e 1) x(_)boatch
exaﬂp c 2 tensor([[26,

[’
example 3 =

[26,

“ [26,
example B e,

[26,

Batching
 When inputs are of variable length, we use a pad token

tensor([[26, 13, 27, 27, 27, 27],

[26, 13, 27, 27, 27, 27],

[26, 17, 19, 27, 27, 27],

7, 0, 6, 13, 0]])

['[S]"', '‘n', '[PAD]', '[PAD]"', '[PAD]', '[PAD]']
['[S1°, i*, *n', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
[*[S1°, ‘r', 't', '[PAD]', '[PAD]', '[PAD]']
['S1°, W "8ty @y "Ry A

def forward(self, words, mask):

emb = self.embedding(words)
= emb x mask.unsqueeze(—E)
torch.sum(emb, dim=1)
i in range(self.nlayers):
h = torch.relu(self.linears[i] (h))
h = self.dropout(h)

out = self.output_layer(h)

return out

Batching

 When outputs are of variable length, we mask out the loss
for pad tokens

NOTE

criterion = nn.CrossEntropyLoss(ignore_index=token_to_index[' [PAD]"'])

We'll see a concrete example next class!

Recap: Important practical concepts

Dataset splits
Overfitting

Weight initialization
Optimizer

Learning rate schedules
Batching

(Adam optimizer in the next lecture)

Overall recap
 Language modeling

e Basic methods: bigram/ngram, feedforward neural

Next 2 lectures
Recurrent architecture
- Transformer architecture

Both of these can be used to
parameterize a language model.

Thank you

