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CS11-711 Advanced NLP 

Language Modeling
Sean Welleck

Some slides adapted from Graham Neubig’s Fall 2024 course

https://cmu-l3.github.io/anlp-spring2026/ 
https://github.com/cmu-l3/anlp-spring2026-code 

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code


Types of Prediction: 
Binary, Multi-class, Structured

• Two classes (binary classification)
I   hate   this  movie positive 

negative

• Multiple classes (multi-class classification)

• Exponential/infinite labels (structured prediction)
I hate this movie PRP VBP DT NN

I hate this movie kono eiga ga kirai

I   hate   this  movie

very good 
good 

neutral 
bad 

very bad



Language Modeling

S



What is a language model?

• A language model is a probability distribution over all 
sequences 

•  

• Example probability distribution: biased coin

•

P(X)

P(X) = {0.4 x is 0
0.6 x is 1 x = 0 x = 1



What is a language model?
• A language model is a probability distribution over all 

sequences 

•  

• Example language model:

• 0.000013 if  is a. 
      0.000001 if  is aa. 
      … 
      0.019100 if  is a cat sat. 
      …

P(X)

P(X) = x
x

x

…

…

One square = one sequence 
All possible sequences — a lot!



What can we do with language models?

• Score sequences:

• Generate sequences:

P(Jane went to the store .) → high 
P(store to Jane went the .) → low

̂x ∼ P(X)



What can we do with language models?

• Conditional generation: condition on an input context

̂xt+1:T ∼ P(Xt+1:T |x1:t)

• Machine translation: 
• Context: sentence in English 
• Continuation: sentence in Japanese 

• General task: 
• Context: instructions, examples, start of output 
• Continuation: output



• Answer questions
• Score possible multiple choice answers 
• Generate a continuation of a question prompt 

• Classify text
• Score the text conditioned on a label 
• Generate a label given a classification prompt 

• Correct grammar
• Score each word and replace low-scoring ones 
• Generate a grammatical output 

• …

What can we do with language models?



Auto-regressive Language Models

Next Token Context

P(X) =
T

∏
t=1

P (xt ∣ x1, …, xt−1)

Decomposes sequence modeling into  
next-token modeling 

 is defined over  (space of all sequences). Very largeP(X) 𝒳
 is defined over  (token vocabulary). Much smallerP(xt |x<t) 𝒱



Auto-regressive Language Models

Next Token Context

Key question: modeling

P(X) =
T

∏
t=1

P (xt ∣ x1, …, xt−1)

P (xt ∣ x1, …, xt−1)



Roadmap

• Bigram models 
• Ngram models 
• Feedforward neural language model 
• Practical deep learning considerations



Bigram models

Next Token 1-token context

P(X) ≈
T

∏
t=1

pθ (xt ∣ xt−1)



Code: https://github.com/cmu-l3/anlp-fall2025-code/blob/
main/03_lm_fundamentals/lm_basics_bigrams.ipynb   

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb


Training language models

• Goal: model a data distribution, i.e.  

• We only have a dataset of samples from : 

•  

• Split the dataset into training, dev, and test sets

pθ ≈ pdata

pdata

D = {xn}N
n=1

Problem setup



Training bigram models
• Set next-token probabilities based on how often each 

token  appears after  in the training dataset: 

• We can view this as training parameters 

xt xt−1

θi,j = p(xj |xi)

p(xt ∣ xt−1) =
count(xt−1, xt)

∑x′￼
count(xt−1, x′￼)



• Model a dataset of names. Character-level tokenization.

In Code

Based on Andrej Karpathy’s lecture/video: https://youtu.be/PaCmpygFfXo  
https://github.com/cmu-l3/anlp-spring2026-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb 

https://youtu.be/PaCmpygFfXo
https://github.com/cmu-l3/anlp-spring2026-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb


Model probabilities

qu

ja

br

https://github.com/cmu-l3/anlp-spring2026-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb 

https://github.com/cmu-l3/anlp-spring2026-code/blob/main/03_lm_fundamentals/lm_basics_bigrams.ipynb


Training : why counting?

• The counting procedure corresponds to maximum 
likelihood estimation for this model: 

• Idea: set the parameters so that the model assigns 
high probability to the training data Dtrain

max
θ ∑

x∈Dtrain

log pθ(x)

Exercise: derive the update on the previous slide



• Makes  match the data distribution  (  for brevity)pθ pdata p*

min
θ

DKL(p* | |pθ) = min
θ

− ∑
x∈𝒳

p*(x)log
pθ(x)
p*(x)

≡ min
θ

− ∑
x∈𝒳

p*(x)log pθ(x) + ∑
x∈𝒳

p*(x)log p*(x)

= min
θ

− 𝔼x∼p*
log pθ(x)

≈ min
θ

−
1

|D | ∑
x∈D

log pθ(x)

≡ max
θ ∑

x∈D

log pθ(x)

Training: Why maximum likelihood?

Dataset: 
samples from p*

Maximum 
likelihood!

S

1 2



Note: using log space
• Multiplication of probabilities can be re-expressed 

as addition of log probabilities

• Why?: numerical stability, other conveniences

P (X) =

|X|Y

i=1

P (xi)

<latexit sha1_base64="Ro/RCPM+ys22eWGOZkY5FpUXn1E=">AAACCHicbVDLSsNAFJ34rPUVdenCwSK0m5JIRTeFohuXEWwbaGOYTCbt0MmDmYlY0i7d+CtuXCji1k9w5984bbPQ1gMXDufcy733eAmjQhrGt7a0vLK6tl7YKG5ube/s6nv7LRGnHJMmjlnMbQ8JwmhEmpJKRuyEExR6jLS9wdXEb98TLmgc3cphQpwQ9SIaUIykklz9yCrbFViH3YTHvpvRujm+y0b2aAyt8oNLK65eMqrGFHCRmDkpgRyWq391/RinIYkkZkiIjmkk0skQlxQzMi52U0EShAeoRzqKRigkwsmmj4zhiVJ8GMRcVSThVP09kaFQiGHoqc4Qyb6Y9ybif14nlcGFk9EoSSWJ8GxRkDIoYzhJBfqUEyzZUBGEOVW3QtxHHGGpsiuqEMz5lxdJ67Rq1qpnN7VS4zKPowAOwTEoAxOcgwa4BhZoAgwewTN4BW/ak/aivWsfs9YlLZ85AH+gff4ASzOYRQ==</latexit>

logP (X) =

|X|X

i=1

logP (xi)

<latexit sha1_base64="biCsG+T/AkMquac1uzZTo0xs48s=">AAACEXicbVDLSsNAFJ3UV62vqEs3g0VoNyWRim4KRTcuK9g20MQwmU7aoZMHMxOxpPkFN/6KGxeKuHXnzr9x2mahrQcuHM65l3vv8WJGhTSMb62wsrq2vlHcLG1t7+zu6fsHHRElHJM2jljELQ8JwmhI2pJKRqyYExR4jHS90dXU794TLmgU3spxTJwADULqU4ykkly9YrNoAFsVqwob0BZJ4Ka0YWZ36cSaZDA3H1xadfWyUTNmgMvEzEkZ5Gi5+pfdj3ASkFBihoTomUYsnRRxSTEjWclOBIkRHqEB6SkaooAIJ519lMETpfShH3FVoYQz9fdEigIhxoGnOgMkh2LRm4r/eb1E+hdOSsM4kSTE80V+wqCM4DQe2KecYMnGiiDMqboV4iHiCEsVYkmFYC6+vEw6pzWzXju7qZebl3kcRXAEjkEFmOAcNME1aIE2wOARPINX8KY9aS/au/Yxby1o+cwh+APt8we/KZu7</latexit>



Generation
• Generate from an autoregressive model by iteratively 

sampling a next token, then appending it to the context 

• Equivalent to sampling from the model’s joint 
distribution over full sequences! (More in lecture 7)

Until [S] is generated:
̂xt ∼ pθ(xt | ̂xt−1)



In Code



Evaluation
• We can evaluate a model based on the 

probabilities it assigns to a dataset 

• E.g., the training set or a held-out test set 

• Two widely used metrics in language modeling: 

• Log-likelihood 

• Perplexity



Log-likelihood and perplexity
• (Negative) Log-likelihood: 
 

            [0, 

• Per-token average NLL:

  [0,  

• Perplexity

    [1, 

NLL = −
N

∑
i=1

Ti

∑
t=1

log p(x(i)
t |x(i)

<t) ∞)

NLLavg = −
1

Ttotal

N

∑
i=1

Ti

∑
t=1

log p(x(i)
t |x(i)

<t) ∞)

PPLe = exp (−
1

Ttotal

N

∑
i=1

Ti

∑
t=1

log p(x(i)
t |x(i)

<t)) ∞)



Perplexity
• Perplexity:

Token: ' bark’ - Probability: 0.0352 
Token: ' jump' - Probability: 0.0338 
Token: ' start' - Probability: 0.0289 
Token: ' run' - Probability: 0.0277 
Token: ' try' - Probability: 0.0219

When a dog sees a squirrel it will usually ___ 

→ = 34.6e−log p

→ = 28.4e−log p

→ = 29.6e−log p

→ = 36.1e−log p

→ = 45.7e−log p



In Code



In Code



Recap: Bigram models
• A simple language model, but we saw several key 

concepts: 

• Maximum likelihood estimation 

• Log space  

• Autoregressive generation 

• Evaluating log-likelihood and perplexity 

• Next: Ngram models



Ngram models

• Use an analogous counting procedure to train

Next Token n-token context

P(X) ≈
T

∏
t=1

pθ (xt ∣ xt−1, xt−2, …, xt−n+1)



Training Ngram Models
• Use an analogous counting procedure to train

p(xt ∣ xt−n+1:t−1) =
count(xt−n+1:t−1, xt)

∑x′￼
count(xt−n+1:t−1, x′￼)



Training Ngram Models
• Add a ‘fake count’ to each possible ngram to avoid 

zero probability ngrams 

• An example of smoothing

p(xt ∣ xt−n+1:t−1) =
1 + count(xt−n+1:t−1, xt)

|V |∑x′￼
count(xt−n+1:t−1, x′￼)



Problems
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ solution: neural networks

Dr. Jane Smith
• Cannot condition on context with intervening words

Dr. Gertrude Smith
→ solution: neural networks

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

→ solution: neural networks in future lectures
for programming class he wanted to buy his own computer

S



When to use n-gram models?

• Neural language models achieve better 
performance, but 

• n-gram models are extremely fast to estimate/
apply 

• Perfect memorization can be useful 

• Toolkit: kenlm

https://github.com/kpu/kenlm 

https://github.com/kpu/kenlm


Feedforward neural language model

Bengio et al 2003, A Neural Probabilistic Language Model

Next Token n-token context

P(X) ≈
T

∏
t=1

pθ (xt ∣ xt−1, xt−2, …, xt−n+1)

Neural network parameters :)



https://github.com/cmu-l3/anlp-spring2026-code/blob/main/
03_lm_fundamentals/lm_basics_neural.ipynb 

https://github.com/cmu-l3/anlp-spring2026-code/blob/main/03_lm_fundamentals/lm_basics_neural.ipynb
https://github.com/cmu-l3/anlp-spring2026-code/blob/main/03_lm_fundamentals/lm_basics_neural.ipynb


Neural language model

• Ngram language models do not take into account 
the similarity of words or contexts 

• The cat was walking in the bedroom  

• The dog was running in a room 

• Solution: use learned, distributed representations

Bengio et al 2003, A Neural Probabilistic Language Model



cat was
lookup lookup

Embedding

tanh(W1*h + b1)

Concat

Layer

Hidden vector

W

…

Output weight matrix

Logits ∈ ℝV

softmax

… pθ(xt |cat,was)

Feedforward neural language model

h = fθ(xt−2, xt−1)

s = Wh



Feedforward neural language model

• Training: maximum likelihood estimation 

• Loss: increase probability of target next-token

arg max
θ ∑

x∈Dtrain

log pθ(x)

= ∑
x∈Dtrain

T

∑
t=1

log pθ(xt |x1:t−1)

Loss: Lt = − log pθ(xt |x1:t−1)



• Cross-entropy loss! 

• Recall from lecture 2: 

• : one-hot next-token 

• : LM probability on 
that token 

• Classes: possible next-
tokens (vocabulary)

yi

pi

Bengio et al 2003, A Neural Probabilistic Language Model

L = − log pθ(xt |x1:t−1)

LCE = −
num classes

∑
i=1

yi log(pi)

Feedforward neural language model



In code



In code



Example of Combination Features

• A row in the weight matrix can capture particular 
combinations of token embedding features 
• E.g. the 34th row in the weight matrix:

1.2
-0.1
0.7
-2.1
0.5

-0.3
2.0
0.6
-0.8
-0.4

giving

a

w34 b34
1.5
0
0
0
0

0
1.3
0
0
0

-2* + =
positive number if 

the previous word is a 
determiner and 

second-to-previous 
word is a verb

Example possibility:



cat was
lookup lookup

tanh(W1*h + b1)

W

…
softmax

…

Where is strength shared?

Similar output words get 
similar output weights

Similar contexts get 
similar hidden states 

Similar words get  
similar embeddings 



• Consider predicting word  with two similar contexts  and  

•
 

•  

•
 

• The ratio is 1 when  

w hj hk

pw
j = p(w |hj) =

1
Zj

exp (w⊤hj)
pw

k = p(w |hk) =
1
Zk

exp (w⊤hk)

pw
j

pw
k

=
Zk

Zj
exp (w⊤(hj − hk))

w⊤(hj − hk) = 0

Where is strength shared?

“make hidden vectors  and   
close to each other” 

hj hk

It’s a great
It is a wonderful

movie



• Cannot share strength among similar words
she bought a car

she purchased a car
she bought a bicycle

she purchased a bicycle

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀

→ not solved yet 😞

→ solved, and similar contexts as well! 😀

What Problems are Handled?



Recap

• Bigram language models and fundamental concepts 

• Ngram language models: count-based 

• Neural network language model 

• Next: some important practical concepts



Important practical concepts

• A deep learning system has multiple moving parts: 

• The model architecture, the optimizer, the weights, 
the hyperparameters, … 

• We want our experiments to give us data that leads 
to reliable conclusions 

• Here are a few helpful ideas that are often implicit in 
most deep learning experiments



Splitting into train, valid, and test
• Goal: fit a target distribution  

• Training data: samples from , used to fit the 
model  

• Validation data: hold out samples from  to check 
generalization. We try different configurations and 
choose one with good generalization. 

• Test data: hold out samples from  as an unbiased 
check of the final configuration’s generalization

p*

p*
pθ

p*

p*



Splitting into train, valid, and test
• In other words: 

• Training data: use it to train the model 

• Validation data: use it to tune hyperparameters, 
perform ablations, select a model 

• Test data: use it once at the end and don’t look 
at it during development



Splitting into train, valid, and test

From bow.ipynb: based on this information, which model 
would you select?

Model 1 Model 2 Model 3



Overfitting
• Goal: fit a target distribution  

• The model may fit the training data (a sample from ), 
but the model may not generalize 

• Symptom: training loss is decreasing, validation loss is 
increasing 

• Choose different hyperparameters 

• Add regularization  

• Choose the model with minimum validation loss

p*

p*



Initialization
• Weight initialization impacts the optimization trajectory

Xavier initialization [Glorot and Bengio 2010]: W ∼ 𝒰 (−
6

nin + nout
,

6
nin + nout )

Weights are drawn from a uniform distribution around zero, scaled to balance 
variance across layers.



Learning rate schedule & warmup

Training steps Training steps

LRLR

Cosine schedule With warmup

• A schedule can help balance 
between exploration (large updates) 
and convergence (small updates)

• Warmup can help stabilize 
gradients early in training



Batching
• We typically process multiple examples at once (a batch) 

• Takes advantage of parallel hardware (GPU) 

• Can smooth out noise in individual gradients

example 1
example 2
example 3

…
example B



Batching
• When inputs are of variable length, we use a pad token 

• We may need to mask out operations involving pad tokens



Batching
• When outputs are of variable length, we mask out the loss 

for pad tokens 

We’ll see a concrete example next class!



Recap: important practical concepts
• Dataset splits 

• Overfitting 

• Weight initialization 

• Optimizer 

• Learning rate schedules 

• Batching 

• (Adam optimizer in the next lecture)



Overall recap
• Language modeling 

• Basic methods: bigram/ngram, feedforward neural

Next 2 lectures 
- Recurrent architecture 
- Transformer architecture

Both of these can be used to 
parameterize a language model.



Thank you


