CS11-711 Advanced NLP
Recurrent Neural

Networks

Sean Welleck

(Carnegie A
i,

https://cmu-13.qgithub.io/anlp-spring2026/

https://github.com/cmu-I3/anlp-spring2026-code

Some slides adapted from Graham Neubig’s Fall 2024 course

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code

Recap

* N-gram models and teedforward architecture

o Key limitation: a very short context (N-1 tokens)

This lecture

 Recurrent neural networks 4
P(X) ~ Hpg (xt | Xy, ...,xt_l)

* |n theory, infinite context = ; X
| | Next Full context
* Motivates attention Token

e Next lecture: attention anad
transformers

Outline

Recurrent neural networks
Vanishing gradients and other recurrent architectures
Encoder-decoder

Attention

Recurrent Neural Networks

Seguence model

DHHDDE o

softmax
°]CH(xla °°-9x|x|) — hl, ey hl-xl [)
oW by

ek

. h, € R% hidden state e
()

 Example task: language 7
modeling: 5)

I
_ T
e py(- |x_,) = softmax (Wht) YN N

Three Types of Sequence
Models

 Recurrence: Condition
representations on an
encoding of the history

* Convolution: Condition
representations on local
context

» Attention: Condition
representations on a weighted
average of all tokens

Recurrent neural network

h, =0 (Wyh_, + W, + b)

-

o : activation function
(tanh, relu, ...)

2 B s ~
E — RNN —»E RNN —»E RNN —»E
9 _ D _ y
hy T h, T h, T h,
)
X Xy X3
a bad movie
Parameters 8 W, € R4
dxd.
W, € R n

d
S beR Elman 1980

Example: sequence classification

RNN

Output class probabilities
[P1, Pa» D3] = SOftmax(Why)
?

RNN

E

RNN

'YY]

A A A

movie

Csoftmax]

W

?

Example: language modeling

DD " DPOOD GODE oy o 444 3

[softmaxj
w
~ 1)

RNN

AE_’

>
>

Next-token probabilities
p(x, | x_,) = softmax(Wh,)

Csoftmax]

W
™ 4

RNN

AE_’

T

bad

Mikolov et al 2010, Recurrent neural network based language model

[softmaxj
D 4
™ t

RNN

E

J

T

]

R Bl \

movie

https://www.isca-archive.org/interspeech_2010/mikolov10_interspeech.pdf

Training RNNs

Total loss

|

Label 3 — Loss 3

Label 1 — Lo?s1

DDDS 4

RNN

g

N

Label 2 — Lo? 2
YOO DB f

Qutput
Layer

Output
Layer
-

?

RNN

g

N

i
b <

> <

EE

S
L4 1 3

?

441 3

L "

Output
Layer

]

RNN

(

S

?

RNN Training

* The unrolled graph is a well-formed (DAG)
computation graph—we can run backpropagation

T\

SUm

v

total loss

* [his is historically called "backpropagation
through time” (BPTT)

Parameter tying

Same parameters; gradients
are accumulated

Training RNNs Example: Language

DDDS "

Output
Layer

]

g

?

Modeling

Total loss

/ f \

—log py(x, [x25)

—log pg(x3 [x3)
VDD DDB -

Qutput
Layer

(

o
RNN
o »
]
%%)

E

]

—log py(END | x5)

ODE® DDD -

QOO

Output
Layer

J

g

RNN

?

Training RNNs: Language Modeling

 Maximum likelihood estimation (again!)

max Z log py(x)

xeD

train

= min — Z Z IOg Pg(x; ‘ x<t)

xeD)

train

Previous slide

What are pros and cons of RNNs as
language models?

Training RNNs: Language Modeling

« Computing the loss at step f requires computing
the hidden state A,

 Computing h, requires h,_{, h,_, ...

* As aresult, RNN training is difficult to parallelize

Loss 3

IIQIQ;!IE]
[Outputj

\

r g f 4
—» RNN -»
h s

_ _J

?
A3

RNN Inference: Language Models

e (Generate one token, use the new hidden state for
the next step, repeat

The, cat,
C Sample) C Sample)
DD ? ? III]
Output Output
Layer Layer |
~ N B Nt
RNN —»E — RNN —»E-»
_), . J
t | '
[S] The cat

RNN Inference: Language Models

 We only need to store the previous hidden state
e Constant memory as sequence length increases
« Each step is a “local” computation, O(1)

« O(T) computation for a length T sequence

Recap: RNNs

A sequence model, fg(Xy, ..., Xjy) = Ay, ooy By

Transforms a hidden state at each step

. h,=0(W,h_, + Wx,+b)
* |ntuitively, the hidden state is a "memory” mechanism

We can use It for tasks such as language modeling,
and train it with backpropagation

Recurrent hidden state makes parallelization difficult

In Code

class RNNCell(torch.nn.Module):
def __init__ (self, input_size, hidden_size):
super (RNNCell, self)._ _init_ ()
self.input_size = input_size
self.hidden_size = hidden_size
self.Wh = torch.nn.Linear(hidden_size, hidden_size)

self.Wx = torch.nn.Linear(input_size, hidden_size)
self.activation = torch.nn.Tanh()

forward(self, x, h):
= self.activation(self.Wh(h) + self.Wx(x))

return h

In Code

class RNNLM(nn.Module):
def __init_ (self, vocab_size, hidden_size):
super (RNNLM, self).__init__ ()
self.embedding = nn.Embedding(vocab_size, hidden_size)
self.rnn = RNNCell(hidden_size, hidden_size)
self.output = nn.Linear(hidden_size, vocab_size)
self.hidden_size = hidden_size

forward(self, x, hidden=None):
if hidden is None:
hidden = self.init _hidden(x.size(0))

x = self.embedding(x)

outs = []

for i in range(x.size(1)):
hidden = self.rnn(x[:, i:i+1], hidden)
out = self.output(hidden)
outs.append(out)

outs = torch.cat(outs, dim=1)
return outs, hidden

init_hidden(self, batch_size):
return torch.zeros(batch_size, 1, self.hidden_size)

Outline

Recurrent neural networks
Vanishing gradients and other recurrent architectures
Encoder-decoder

Attention

Vanishing Gradients

oL oL
VerY < tiny
Ohy tiny Oh,
()
E RNN —>E
_),

* (Gradients decrease as they get pushed back

T

Vanishing gradient

<

—

RNN

T

RNN

T

* Implication: Cannot model long dependencies!

Vanishing gradient: why*

Normal RNN: i, = tanh(W, x + Wh,), y, = W

out

hy

ZT: oL 0y, ohy Oh,
yT 6hT 0h 6W

=0

a_hT hy ahT—lmahtH ﬁ £'+1
o, hr_y Ohr—p Oh, -

ah t'+1
oh,

= diag (anh'(W, x,. + Wh)) W Derivative of tanh is in [0,1]

W = VDV~ when dominant eigenvalue < 1, D=t - ()

A solution: gating and additive connections

 Basic idea: pass information across timesteps with a
learned “gate” z, = o(W_,.x + W, h,_,)

Candidate new

/ hidden state, e.Q.

h, = tanh(W.x, + W,h._,)

h _(I_Zt) ht 1+Zl‘

* Jo retain a long-term dependency, the model can set
z — 0 for multiple steps:

A solution: gating and additive connections

 Basic idea: pass information across timesteps with
a learned "gate” z,

~/

e hh=(0—-2)-h_+7z-h

« When z > 0, incorporate a new hidden state izt,
e.g. similar to a normal RNN

A solution: gating and additive connections

 Example:

* "The cat, which sat on the mat, was hungry”

= B
ll\ =
Learn to set z = 0 to retain
long term information

A solution: gating and additive connections

« No gate: learn the difference izt (“residual”)

. ht — ht—l +7;tt

Putting It all together:

Gated Recurrent Unit (GRU)

— —
GRU
w
T g

GRU

—»E—»
h2

GRU

Putting It all together:
Gated Recurrent Unit (GRU)

 "Update gate” Recurrent update:

=0 (szt + Uzht—l) h=(0-2)0h +70]/%t

Va\

* "Reset gate” e h,is a “candidate state’

r,=0(Wx,+ Uh,_,) h, = tanh (W,x, + Uy(r, © h,_,)

Putting It all together: gated architectures

- Gated recurrent unit (GRU) [Cho et al 2014]:
- 2 gate architecture
- Gate 1 (update): should | update the previous hidden state?
- Gate 2 (reset): should | use the hidden state in the update?
 Long short term memory (LSTM) [Hochreiter & Schmidhuber 1997]:
- 4 gate architecture using an additional context vector
- Gate 1: should | update the previous context?

- Other gates: how should | update?

Recap: vanishing gradients

 Basic RNN: gradients vanish, so we can’'t model
long dependencies In practice

e Better recurrent models help overcome this
e £.0., GRU, LSTM

* |n practice, a drop-in replacement

class RecurrentLM(nn.Module):
def __init_ (self, vocab_size, em
super(RecurrentLM, self).__in

class RecurrentLM(nn.Module):
def __init___(self, vocab_size, embedding_size, hidden_size):

super(RecurrentLM, self).__init__ ()
self.embedding = nn.Embedding(vocab_size, hidden_size) > self.embedding = nn.Embedding
self.rnn = nn.RNN(embedding_size, hidden_size) self.rnn = nn.GRU(embedding_s
self.output = nn.Linear(hidden_size, vocab_size) self.output = nn.Linear(hidde
self.hidden_size = hidden_size self.hidden_size = hidden_siz

Outline

Recurrent neural networks
Vanishing gradients and other recurrent architectures
Encoder-decoder

Attention

Encoder-decoder

Encoder-decoder

* Motivation: conditional generation

Po(Y1s --» Y71 %)
/N

Japanese sentence English sentence
Response Chat history

o Basic idea: use a sequence model to represent x as
a vector

Encoder-decoder

Use context in the output layer:
softmax (W[ht; C])

Context vector” ¢ € [Rd :

Output Output

"\
L e

Lo B/ N

M 2 x3 Yo i V1 Y2
Use context to
Encoder initialize the hidden Decoder
state ;

Use context in the recurrent
update, e.g. W[h,; x,; c]

Cho et al 2014, [earning Phrase Representations using BRNN Encoder—Decoder

https://arxiv.org/pdf/1406.1078

Encoder-decoder

“Context vector” ¢ & [R%d

(ﬁ

TR e e
; txn J k
X1 X2 x3 Yo N Y2
Encoder Decoder
Training:

4)

IIllIl 2 2 logpe(yt|y<t X)

x,y)eD t

Encoder-decoder

“Context vector” ¢ € IRd P S N S
- TR
I’M*I N+|+N+l — [RN ~f+ ANN [+ RNN -
L4 R)
X1 x2 x3 Yo Y1 Y2
Encoder Decoder

A single context vector is used for all tokens:
can we do better?

Attention

Basic |dea
(Bahdanau et al. 2015)

* Encode each token in the sequence into a vector

* When decoding, perform a linear combination of these
vectors, weighted by "attention weights”

Bahdanau et al 2015, Neural Machine Translation by Jointly L earning to Align and Translate

https://arxiv.org/pdf/1409.0473

Attention

Keys: Encoder states h;", ..., "

Query: Current decoder hidden state A

Compute attention scores Dot product

_ T
. a, = score(h, h{"¢) / score(q, k) = q 'k

| Bilinear
Output: a weighted sum score(q, k) = gWk

N
Nonlinear
_ enc
. ¢ = Z a”h” score(gq, k) = w' tanh(W][q; k])
n=1

Attention

Compute Context vector is a
attention scores weighted sum

--
. .
*

Ap a1 ay A3 Weighted

) . ; ; >Hm >' Key difference:
Query ~ New context vector at each
“Keys” decoder step
ok w-»m

xl x2 x3

Encoder

Attention

Compute Context vector is a
attention scores weighted sum
a a (0% as enc
4 4 4 4 Z ayh, Example usage:
& & & > l c
: S(l E> S(I) S(I) S(I) ~logits = tanh(Wq 4lc;; A1)
h Snc h 1enc A zen h 3enc
S / / \ \ yl Vs y3
..Q.umu.t.. Output

| \)
& J k FiTin) r]
X1 4% X3 Yo Y1 Y2
Fncoder Decoder

A Graphical Example

T
c UV
& S E -
O o O I % A
O O €S ® L S N 2
5. 2589505 923 o
— O oS ww< 2= Hh £ I~ V
Ll
accord
sur
la
zone

économique
européenne
a

été

signé

en

aolt

1992

<end> .

Image from Bahdanau et al. (2015)

N code

class DotAttention(nn.Module):
def __init__ (self):
super(DotAttention, self).__init_ ()

def forward(self, query, keys, values):

dot = torch.bmm(keys, query.transpose(1, 2))
weights = torch.softmax(dot, dim=1)

out = torch.bmm(weights.transpose(1, 2), values)
return out, weights

N code

def forward(self, X, Yin):
X_embed = self.embed(X)

Henc, henc_last = self.encoder(X_embed)

Yin_embed = self.embed(Yin)
Hdec, _ = self.decoder(Yin_embed, henc_last)

query = self.query(Hdec)
context, _ = self.attention(query, Henc, Henc)

out = torch.cat([Hdec, context], dim=2)
out = self.out(out)
return out

Attention Visualization
String Reversal (noise tokens in red)

Task : h

Reverse a name that A
has noise characters S .
(@)
1 B
romulus -> sulumor
g
. - - 0.4
rnommuudloutsy ->
sulumor ¢
-
- 0.2
S -
o -
. -
0.0

Recap

Basic encoder-decoder: encode a seguence into a context
vector, use it in the decoder

Attention: context vector is a weighted sum of vectors

* Using the hidden state as the "query” vector lets us
compute a new context vector at each step

Attention Iis a general idea: e.g., next lecture we'll see other
variants and uses

Recap

Recurrent neural networks
Vanishing gradients and other recurrent architectures
Encoder-decoder

Attention

Thank you!

