
CS11-711 Advanced NLP

Recurrent Neural
Networks

Sean Welleck

Some slides adapted from Graham Neubig’s Fall 2024 course

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code

Recap

• N-gram models and feedforward architecture

• Key limitation: a very short context (N-1 tokens)

This lecture

• Recurrent neural networks

• In theory, infinite context

• Motivates attention

• Next lecture: attention and
transformers

Next
Token

Full context

P(X) ≈
T

∏
t=1

pθ (xt ∣ x1, …, xt−1)

Outline

• Recurrent neural networks

• Vanishing gradients and other recurrent architectures

• Encoder-decoder

• Attention

Recurrent Neural Networks

Sequence model

•

• : hidden state

• Example task: language
modeling:

•

fθ(x1, …, x|x|) → h1, …, h|x|

ht ∈ ℝd

pθ(⋅ |x<t) = softmax (Wh⊤
t)

fθ

W
softmax

…

x1 x2 x3 x4

h1 h2 h3 h4

Three Types of Sequence
Models

• Recurrence: Condition
representations on an
encoding of the history

• Convolution: Condition
representations on local
context

• Attention: Condition
representations on a weighted
average of all tokens

RNN RNN RNN RNN

CNNCNN CNN CNN

AttnAttn Attn Attn

Recurrent neural network

RNN

x1

RNN

x2

RNN

x3

…

Wh ∈ ℝd×d

Wx ∈ ℝd×din

b ∈ ℝd

Parameters θ

Elman 1980

ht = σ (Whht−1 + Wxxt + b) : activation function
(tanh, relu, …)

σ

h1 h2 h3h0

a bad movie

S

Example: sequence classification

RNN

a

RNN

bad

RNN

movie

softmax

W

Output class probabilities
[p1, p2, p3] = softmax(WhT)

Example: language modeling

RNN

a

RNN

bad

RNN

movie

Next-token probabilities

W
softmax

…

W
softmax

…

W
softmax

…

Mikolov et al 2010, Recurrent neural network based language model

p(xt |x<t) = softmax(Wht)

https://www.isca-archive.org/interspeech_2010/mikolov10_interspeech.pdf

Training RNNs

RNN

x1

RNN RNN

Output
Layer

Output
Layer

Output
Layer

x2 x3

…
Label 1 Loss 1

…
Label 2 Loss 2

…
Label 3 Loss 3

+
Total loss

RNN Training

• The unrolled graph is a well-formed (DAG)
computation graph—we can run backpropagation

• This is historically called “backpropagation
through time” (BPTT)

sum

total loss

Parameter tying

RNN

x1

RNN RNN

…

Output
Layer

…

Output
Layer

…

Output
Layer

Label 1

x2 x3

Loss 1 Label 2 Loss 2 Label 3 Loss 3

+
Total lossSame parameters; gradients

are accumulated

Training RNNs Example: Language
Modeling

RNN

x1

RNN RNN

…

Output
Layer

…

Output
Layer

…

Output
Layer

x2 x3

+
Total loss

−log pθ(x2 |x<2) −log pθ(x3 |x<3) −log pθ(END |x≤3)

• Maximum likelihood estimation (again!)

•
 max ∑

x∈Dtrain

log pθ(x)

≡ min − ∑
x∈Dtrain

∑
t

log pθ(xt |x<t)

Training RNNs: Language Modeling

Previous slide

What are pros and cons of RNNs as
language models?

S

Training RNNs: Language Modeling

RNN

x1

RNN RNN

Output Output
…

Output

x2 x3

Loss 3

• Computing the loss at step requires computing
the hidden state

• Computing requires

• As a result, RNN training is difficult to parallelize

t
ht

ht ht−1, ht−2, …

h1 h2 h3

Loss 2Loss 1

RNN Inference: Language Models

• Generate one token, use the new hidden state for
the next step, repeat

RNN

The

RNN

[S]

…

Output
Layer

The
Sample

…

Output
Layer

cat

…

cat

Sample

RNN Inference: Language Models

• We only need to store the previous hidden state

• Constant memory as sequence length increases

• Each step is a “local” computation,

• computation for a length sequence

O(1)

O(T) T

Recap: RNNs
• A sequence model,

• Transforms a hidden state at each step

•

• Intuitively, the hidden state is a “memory” mechanism

• We can use it for tasks such as language modeling,
and train it with backpropagation

• Recurrent hidden state makes parallelization difficult

fθ(x1, …, x|x|) → h1, …, h|x|

ht = σ (Whht−1 + Wxxt + b)

In Code

In Code

Outline

• Recurrent neural networks

• Vanishing gradients and other recurrent architectures

• Encoder-decoder

• Attention

Vanishing Gradients

Vanishing gradient

• Gradients decrease as they get pushed back

• Implication: Cannot model long dependencies!

RNN RNN RNN

softmax

W
∂L
∂h3

normal
∂L
∂h2

small
∂L
∂h1

tiny
∂L
∂h0

very  
tiny

Vanishing gradient: why?

Normal RNN: ,

: when dominant eigenvalue < 1,

ht = tanh(Winx + Wht) yT = WouthT

∂L
∂W

=
T

∑
t=0

∂L
∂yT

∂yT

∂hT

∂hT

∂ht

∂ht

∂W

∂hT

∂ht
=

hT

hT−1

∂hT−1

∂hT−2
⋯

∂ht+1

∂ht
=

T

∏
t′￼=t

∂ht′￼+1

∂ht′￼

∂ht′￼+1

∂ht′￼

= diag (tanh′￼(Winxt′￼+1 + Wht′￼
)) W

W = VDV−1 DT−t → 0

Derivative of is in [0,1]tanh

A solution: gating and additive connections
• Basic idea: pass information across timesteps with a

learned “gate”

•

• To retain a long-term dependency, the model can set
 for multiple steps:

•

zt = σ(Wzxx + Wzhht−1)

ht = (1 − zt) ⋅ ht−1 + zt ⋅ h̃t

z → 0

∂ht2

∂ht1
=

t2

∏
t=t1

∂ht

∂ht−1
ht−1

1

= 1

Candidate new
hidden state, e.g.

h̃t = tanh(Wxxt + Whht−1)

• Basic idea: pass information across timesteps with
a learned “gate”

•

• When , incorporate a new hidden state ,
e.g. similar to a normal RNN

zt

ht = (1 − zt) ⋅ ht−1 + zt ⋅ h̃t

z > 0 h̃t

A solution: gating and additive connections

• Example:

• “The cat, which sat on the mat, was hungry”

A solution: gating and additive connections

Learn to set z = 0 to retain
long term information

• No gate: learn the difference (“residual”)

•

h̃t

ht = ht−1 + h̃t

A solution: gating and additive connections

Putting it all together:
Gated Recurrent Unit (GRU)

GRU
RNN

x1

GRU
RNN

x2

GRU
RNN

x3

…

h1 h2 h3

• “Update gate”

• “Reset gate”

zt = σ (Wzxt + Uzht−1)

rt = σ (Wrxt + Urht−1)

Putting it all together:
Gated Recurrent Unit (GRU)

• Recurrent update:

• is a “candidate state”

ht = (1 − zt) ⊙ ht−1 + zt ⊙ ĥt

ĥt

ĥt = tanh (Whxt + Uh(rt ⊙ ht−1)

Putting it all together: gated architectures

• Gated recurrent unit (GRU) [Cho et al 2014]:

• 2 gate architecture

• Gate 1 (update): should I update the previous hidden state?

• Gate 2 (reset): should I use the hidden state in the update?

• Long short term memory (LSTM) [Hochreiter & Schmidhuber 1997]:

• 4 gate architecture using an additional context vector

• Gate 1: should I update the previous context?

• Other gates: how should I update?

Recap: vanishing gradients

• Basic RNN: gradients vanish, so we can’t model
long dependencies in practice

• Better recurrent models help overcome this

• E.g., GRU, LSTM

• In practice, a drop-in replacement

Outline

• Recurrent neural networks

• Vanishing gradients and other recurrent architectures

• Encoder-decoder

• Attention

Encoder-decoder

Encoder-decoder
• Motivation: conditional generation

• Basic idea: use a sequence model to represent as
a vector

x

pθ(y1, …, yT |x)

English sentence
Chat historyResponse

Japanese sentence

… …

Encoder-decoder

RNN RNN RNN

Encoder Decoder
x1 x2 x3

c ∈ ℝd“Context vector”

RNN RNN RNN

Output Output Output

y0

y1

y1

y2

y2

y3

Use context to
initialize the hidden
state

Use context in the recurrent
update, e.g. W[ht; xt; c]

Use context in the output layer:
softmax (W[ht; c])

Cho et al 2014, Learning Phrase Representations using RNN Encoder–Decoder

https://arxiv.org/pdf/1406.1078

Encoder-decoder

RNN RNN RNN

Encoder Decoder
x1 x2 x3

c ∈ ℝd“Context vector”

RNN RNN RNN

Output Output Output

y0

y1

y1

y2

y2

y3

Training:
min

θ ∑
(x,y)∈D

∑
t

− log pθ(yt |y<t, x)

Encoder-decoder

RNN RNN RNN

Encoder Decoder
x1 x2 x3

c ∈ ℝd“Context vector”

RNN RNN RNN

Output Output Output

y0

y1

y1

y2

y2

y3

A single context vector is used for all tokens:
can we do better?

Attention

Basic Idea
(Bahdanau et al. 2015)

• Encode each token in the sequence into a vector

• When decoding, perform a linear combination of these
vectors, weighted by “attention weights”

Bahdanau et al 2015, Neural Machine Translation by Jointly Learning to Align and Translate

https://arxiv.org/pdf/1409.0473

Attention
• Keys: Encoder states

• Query: Current decoder hidden state

• Compute attention scores

•

• Output: a weighted sum

•

henc
1 , …, henc

N

h

αn = score(h, henc
n)

c =
N

∑
n=1

αnhenc
n

score(q, k) = q⊤k
Dot product

score(q, k) = qWk
Bilinear

score(q, k) = w⊤ tanh(W[q; k])
Nonlinear

Attention

RNN RNN RNN

x1 x2 x3

RNN RNN RNN

Output Output Output

y0

y1

y1

y2

y2

y3

Context vector is a
weighted sum

α0 α1 α2 α3

“Query”
“Keys”

Weighted
sum

Compute
attention scores

Encoder Decoder

Key difference:
New context vector at each

decoder step

s() s()

Attention

RNN RNN RNN

Encoder Decoder
x1 x2 x3

RNN RNN RNN

Output Output Output

y0

y1

y1

y2

y2

y3

henc
0

Context vector is a
weighted sum

∑
n

αnhenc
n

Compute
attention scores

α0 α1 α2 α3

c
henc

1 henc
2

henc
3

Example usage:

logits = tanh(Wout[ct; ht])
s() s()

Image from Bahdanau et al. (2015)

A Graphical Example

In code

In code

In code
Task

Reverse a name that
has noise characters

romulus -> sulumor

rnommuudloutsv ->
sulumor

Recap

• Basic encoder-decoder: encode a sequence into a context
vector, use it in the decoder

• Attention: context vector is a weighted sum of vectors

• Using the hidden state as the “query” vector lets us
compute a new context vector at each step

• Attention is a general idea: e.g., next lecture we’ll see other
variants and uses

Recap

• Recurrent neural networks

• Vanishing gradients and other recurrent architectures

• Encoder-decoder

• Attention

Thank you!

