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Recap

* N-gram models and teedforward architecture

o Key limitation: a very short context (N-1 tokens)



This lecture

 Recurrent neural networks 4
P(X) ~ Hpg (xt | Xy, ...,xt_l)

* |n theory, infinite context = ; X
| | Next Full context
* Motivates attention Token

e Next lecture: attention anad
transformers
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Recurrent Neural Networks
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Three Types of Sequence
Models

 Recurrence: Condition
representations on an
encoding of the history

* Convolution: Condition
representations on local
context

» Attention: Condition
representations on a weighted
average of all tokens




Recurrent neural network
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Example: sequence classification

RNN
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Example: language modeling
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Mikolov et al 2010, Recurrent neural network based language model

[softmaxj
D 4
™ t

RNN

E

J

T

]

R Bl \

movie



https://www.isca-archive.org/interspeech_2010/mikolov10_interspeech.pdf

Training RNNs

Total loss
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RNN Training

* The unrolled graph is a well-formed (DAG)
computation graph—we can run backpropagation
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total loss

* [his is historically called "backpropagation
through time” (BPTT)



Parameter tying

Same parameters; gradients
are accumulated




Training RNNs Example: Language
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Training RNNs: Language Modeling

 Maximum likelihood estimation (again!)

max Z log py(x)

xeD

train

= min — Z Z IOg Pg(x; ‘ x<t)

xeD )

train

Previous slide



What are pros and cons of RNNs as
language models?



Training RNNs: Language Modeling

« Computing the loss at step f requires computing
the hidden state A,

 Computing h, requires h,_{, h,_, ...

* As aresult, RNN training is difficult to parallelize

Loss 3

IIQIQ;!IE]
[Outputj

\

r g f 4
—» RNN -»
h s

\_ _J

?
A3



RNN Inference: Language Models

e (Generate one token, use the new hidden state for
the next step, repeat

The, cat,
C Sample ) C Sample )
DD ? ? III]
Output Output
Layer Layer |
~ N B Nt
RNN —»E — RNN —»E-»
_ ), . J
t | '
[S] The cat



RNN Inference: Language Models

 We only need to store the previous hidden state
e Constant memory as sequence length increases
« Each step is a “local” computation, O(1)

« O(T) computation for a length T sequence



Recap: RNNs

A sequence model, fg(Xy, ..., Xjy) = Ay, ooy By

Transforms a hidden state at each step

. h,=0(W,h_, + Wx,+b)
* |ntuitively, the hidden state is a "memory” mechanism

We can use It for tasks such as language modeling,
and train it with backpropagation

Recurrent hidden state makes parallelization difficult



In Code

class RNNCell(torch.nn.Module):
def __init__ (self, input_size, hidden_size):
super (RNNCell, self)._ _init_ ()
self.input_size = input_size
self.hidden_size = hidden_size
self.Wh = torch.nn.Linear(hidden_size, hidden_size)

self.Wx = torch.nn.Linear(input_size, hidden_size)
self.activation = torch.nn.Tanh()

forward(self, x, h):
= self.activation(self.Wh(h) + self.Wx(x))

return h




In Code

class RNNLM(nn.Module):
def __init_ (self, vocab_size, hidden_size):
super (RNNLM, self).__init__ ()
self.embedding = nn.Embedding(vocab_size, hidden_size)
self.rnn = RNNCell(hidden_size, hidden_size)
self.output = nn.Linear(hidden_size, vocab_size)
self.hidden_size = hidden_size

forward(self, x, hidden=None):
if hidden is None:
hidden = self.init _hidden(x.size(0))

x = self.embedding(x)

outs = []

for i in range(x.size(1)):
hidden = self.rnn(x[:, i:i+1], hidden)
out = self.output(hidden)
outs.append(out)

outs = torch.cat(outs, dim=1)
return outs, hidden

init_hidden(self, batch_size):
return torch.zeros(batch_size, 1, self.hidden_size)
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Vanishing Gradients
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* Implication: Cannot model long dependencies!



Vanishing gradient: why*

Normal RNN: i, = tanh(W, x + Wh,), y, = W
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A solution: gating and additive connections

 Basic idea: pass information across timesteps with a
learned “gate” z, = o(W_,.x + W, h,_,)

Candidate new

/ hidden state, e.Q.

h, = tanh(W.x, + W,h._,)

h _(I_Zt) ht 1+Zl‘

* Jo retain a long-term dependency, the model can set
z — 0 for multiple steps:




A solution: gating and additive connections

 Basic idea: pass information across timesteps with
a learned "gate” z,

~/

e hh=(0—-2)-h_+7z-h

« When z > 0, incorporate a new hidden state izt,
e.g. similar to a normal RNN



A solution: gating and additive connections

 Example:

* "The cat, which sat on the mat, was hungry”

= B
ll\ =
Learn to set z = 0 to retain
long term information




A solution: gating and additive connections

« No gate: learn the difference izt (“residual”)

. ht — ht—l +7;tt



Putting It all together:

Gated Recurrent Unit (GRU)
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Putting It all together:
Gated Recurrent Unit (GRU)

 "Update gate”  Recurrent update:

=0 (szt + Uzht—l) h=(0-2)0h +70 ]/%t

Va\

* "Reset gate” e h,is a “candidate state’

r,=0(Wx,+ Uh,_,) h, = tanh (W,x, + Uy(r, © h,_,)



Putting It all together: gated architectures

- Gated recurrent unit (GRU) [Cho et al 2014]:
- 2 gate architecture
- Gate 1 (update): should | update the previous hidden state?
- Gate 2 (reset): should | use the hidden state in the update?
 Long short term memory (LSTM) [Hochreiter & Schmidhuber 1997]:
- 4 gate architecture using an additional context vector
- Gate 1: should | update the previous context?

- Other gates: how should | update?



Recap: vanishing gradients

 Basic RNN: gradients vanish, so we can’'t model
long dependencies In practice

e Better recurrent models help overcome this
e £.0., GRU, LSTM

* |n practice, a drop-in replacement

class RecurrentLM(nn.Module):
def __init_ (self, vocab_size, em
super(RecurrentLM, self).__in

class RecurrentLM(nn.Module):
def __init___(self, vocab_size, embedding_size, hidden_size):

super(RecurrentLM, self).__init__ ()
self.embedding = nn.Embedding(vocab_size, hidden_size) > self.embedding = nn.Embedding
self.rnn = nn.RNN(embedding_size, hidden_size) self.rnn = nn.GRU(embedding_s
self.output = nn.Linear(hidden_size, vocab_size) self.output = nn.Linear(hidde
self.hidden_size = hidden_size self.hidden_size = hidden_siz
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Encoder-decoder



Encoder-decoder

* Motivation: conditional generation

Po(Y1s --» Y71 %)
/N

Japanese sentence English sentence
Response Chat history

o Basic idea: use a sequence model to represent x as
a vector



Encoder-decoder

Use context in the output layer:
softmax (W[ht; C] )

Context vector” ¢ € [Rd :

Output Output
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Use context to
Encoder initialize the hidden Decoder
state ;

Use context in the recurrent
update, e.g. W[h,; x,; c]

Cho et al 2014, [ earning Phrase Representations using BRNN Encoder—Decoder



https://arxiv.org/pdf/1406.1078

Encoder-decoder
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Encoder-decoder

“Context vector” ¢ € IRd P S N S
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X1 x2 x3 Yo Y1 Y2
Encoder Decoder

A single context vector is used for all tokens:
can we do better?



Attention



Basic |dea
(Bahdanau et al. 2015)

* Encode each token in the sequence into a vector

* When decoding, perform a linear combination of these
vectors, weighted by "attention weights”

Bahdanau et al 2015, Neural Machine Translation by Jointly L earning to Align and Translate



https://arxiv.org/pdf/1409.0473

Attention

Keys: Encoder states h;", ..., "

Query: Current decoder hidden state A

Compute attention scores Dot product

_ T
. a, = score(h, h{"¢) / score(q, k) = q 'k

| Bilinear
Output: a weighted sum score(q, k) = gWk

N
Nonlinear
_ enc
. ¢ = Z a”h” score(gq, k) = w' tanh(W][q; k])
n=1



Attention

Compute Context vector is a
attention scores weighted sum

------------------------------------------------------------------------------------------------------
. .
*

Ap a1 ay A3 Weighted

) . ; ; >Hm >' Key difference:
Query ~ New context vector at each
“Keys” decoder step
ok w-»m

xl x2 x3

Encoder



Attention

Compute Context vector is a
attention scores weighted sum
a a (0% as enc
4 4 4 4 Z ayh, Example usage:
& & & > l c
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A Graphical Example
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Image from Bahdanau et al. (2015)



N code

class DotAttention(nn.Module):
def __init__ (self):
super(DotAttention, self).__init_ ()

def forward(self, query, keys, values):

dot = torch.bmm(keys, query.transpose(1, 2))
weights = torch.softmax(dot, dim=1)

out = torch.bmm(weights.transpose(1, 2), values)
return out, weights




N code

def forward(self, X, Yin):
X_embed = self.embed(X)

Henc, henc_last = self.encoder(X_embed)

Yin_embed = self.embed(Yin)
Hdec, _ = self.decoder(Yin_embed, henc_last)

query = self.query(Hdec)
context, _ = self.attention(query, Henc, Henc)

out = torch.cat([Hdec, context], dim=2)
out = self.out(out)
return out




Attention Visualization
String Reversal (noise tokens in red)

Task : h

Reverse a name that A
has noise characters S .
(@)
1 B
romulus -> sulumor
g
. - - 0.4
rnommuudloutsy ->
sulumor ¢
-
- 0.2
S -
o -
. -
0.0




Recap

Basic encoder-decoder: encode a seguence into a context
vector, use it in the decoder

Attention: context vector is a weighted sum of vectors

* Using the hidden state as the "query” vector lets us
compute a new context vector at each step

Attention Iis a general idea: e.g., next lecture we'll see other
variants and uses
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Thank you!



