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Recap: sequence model
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Three types of sequence models

 Recurrence: Condition
representations on an
encoding of the history

* Convolution: Condition
representations on local
context

» Attention: Condition
representations on a weighted
average of all tokens




Today's lecture

 Transformer: a sequence model based on attention
 Roadmap:

* Attention

* [ransformer architecture

* Improved transtormer architecture



Attention



Basic |dea
(Bahdanau et al. 2015)

* Encode each token in the sequence into a vector

* When decoding, perform a linear combination of these
vectors, weighted by "attention weights”



Cross Attention

(Bahdanau et al. 2015)

 Each element in a sequence attends to elements of
another seguence

this Is an example
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Self Attention

(Cheng et al. 2016, Vaswani et al. 2017)

 Each element in the sequence attends to elements
of that sequence

this Is an example
this B
S

an
example



Calculating Attention (1)

e Use “query” vector (decoder state) and “key” vectors (all encoder states)
* For each query-key pair, calculate weight

* Normalize to add to one using softmax
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Calculating Attention (2)

 Combine together value vectors (usually encoder
states, like key vectors) by taking the weighted sum

Kono eiga_

Value { o
Vectors E‘ E‘ E‘

* *

a1=0./6 (12—0.08 (13—0.13 a4=0.03

P«
>«

(-

B k/ra/

> <
><

(-

e Use this in any part of the model you like



Query-key-value framework

Keys ki, ..., ky

b= Woh Cross-attention example
* R = VK « Keys: based on encoder states A,
Values vy, ..., Vy « Values: based on encoder states h.

l
« Query: based on decoder state A,

- v = Wyh,
Query ¢,
Self-attention example
. .= Woh, . Keys: based on decoder states A,
N » Values: based on decoder states #;
c, = Z a, ;v; where  Query: based on decoder state £,

exp(a(g, k)
© X explalg, k)

. a(q, k) is a weighting/compatibility function, e.g. a(g, k) = g 'k




A Graphical Example
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Image from Bahdanau et al. (2015)



Attention Score Functions

Dot Product (Luong et al. 2015)
a(q, k) = qTk

 Scaled Dot Product (Vaswani et al. 2017)

* Problem: scale of dot product increases as dimensions
get larger

o Fix: scale by size of the vector
qTk

vk

a(q, k) =



Today's lecture

 Roadmap:
e Attention
- Transformer architecture

* Improved transtormer architecture



Transformers



“Attention is All You Need™
(VaSWaﬂl et a‘ 201 7) Probabilties
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Two Types of Transtormers
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Basic idea
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Core Transtormer Concepts

Positional encodings

Scaled dot product self-attention
Multi-headed attention

Residual + layer normalization

Feed-forward layer



(Review)
Inputs and Embeddings
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Positional Encoding

e The transformer model is purely attentional
. Permutation equivariant: f(w e (X, ..., X7)) = mwo f(x{,...X

 We need a way to identify the position of each token

A big [dog and a very|big|cat

A big|catiand a very big dog

* Positional encodings add an embedding
based on the word position
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Example: Learned Positional Encoding
(Shaw+ 2018)

e Just create a learnable embedding

= RTmade

° position

0 T 2
. Each positiont € {1,...,T, .} the Dbig  dog
has a learned vector representation.

* Advantages: flexibility

* Disadvantages: cannot extrapolate to longer sequences



Core Transtormer Concepts

Positional encodings

Scaled dot product self-attention
Multi-headed attention

Residual + layer normalization

Feed-forward layer

Output

Probabilities
A

Softmax

7 Y

Linear

A

Nx

Add & Norm
Feed
Forward

‘ Masked g
‘ Multi-Head | &

Attention

Positional
Encoding A

[

Input
Embedding

T

Inputs




Scaled dot product attention

qTk

viil

 As we saw on the previous slide: a(q, k) =

e Full version, efficient matrix version;
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Scaled dot product self-attention

o Apply attention to the output of the

Previous Iayer: AttentiOH(Q, K, V) — Hf
— £—1
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. WQ, W, Wy, are learned weights output of layer £-1



Core Transtormer Concepts

Output
Probabilities
A

Softmax

Positional encodings 5

Linear

A

Scaled dot product self-attention ‘ [Adi&:m]

Multi-headed attention N

‘ Masked g
‘ Multi-Head | &

Attention

Positional
Encoding A

Feed-torward layer (e )

Embedding

T

Inputs

Residual + layer normalization




INntuition for Multi-heads

Intuition: Information from different
parts of the sentence can be useful to Output

Probabilities
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Multi-head Attention Concept

MultiHead(Q, K, V) = Concat(heady, ..., head,)W®
where head; = Attention(QWiQ, KWH VIwY)

Multiply by . Run attention Concat
weights Split/rearrange over each head  and *WoO
" WA d—
JEEEE
EEEN

Typically d, = d, = d/numheads



Code Example

def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)

# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k ,v = self.c_attn(x).split(self.n_embd, dim=2)

k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)

# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) —=> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) x (1.0 / math.sqrt(k.size(-1)))
att = att.masked fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
F.softmax(att, dim=-1)
self.attn_dropout(att)
att@v # (B, nh, T, T) x (B, nh, T, hs) —> (B, nh, T, hs)
y.transpose(1l, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side

output projection
y = self.resid_dropout(self.c_proj(y))
return y

ithub.com/karpathy/minGPT/blob/master/min


https://github.com/karpathy/minGPT/blob/master/mingpt/model.py

What Happens w/ Multi-heads”

 Example from Vaswani et al.
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.

* See also BertVis: https://github.com/jessevig/bertviz



https://github.com/jessevig/bertviz

Masking for Language Model Training

 Mask the attention from future timesteps

* Prevents the model from cheating when
predicting the next token

kono eiga ga kirai | hate this movie </s>



Core Transtormer Concepts

Positional encodings

Scaled dot product self-attention
Multi-headed attention

Residual + layer normalization

Feed-forward layer
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L ayer Normalization and
Residual Connections



Reminder:
Gradients and Training Instability

* RNNSs: backpropagation can make gradients
vanish or explode

oL oL oL oL
very tiny < small «—— normal
Ohy, tiny oh oh, oh
0 1 3
r ) r A r N
E—» RNN —>E RNN —>E RNN —>E
N ) N y

 The same issue occurs in multi-layer transformers!



ayer Normalization
(Ba et al. 2016)

* Normalizes the outputs to be within a -
consistent range, preventing too Probapilties
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Residual Connections

e Add an additive connection between
the iInput and output

Residual(x, ) = f(x) +x

* Prevents vanishing gradients and
allows t to learn the difference trom
the Input
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Core Transtormer Concepts

Positional encodings

Scaled dot product self-attention
Multi-headed attention

Residual + layer normalization

Feed-forward layer
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Feed Forward Layers



Feed Forward Layers

o Extract features from the attended outputs pro%‘;?ﬁ;es
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N code

hitps://github.com/cmu-I3/anlp-tall2025-code/blob/main/

05_transtormers/transformer.ipynb



https://github.com/cmu-l3/anlp-fall2025-code/blob/main/05_transformers/transformer.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/05_transformers/transformer.ipynb

N code

import torch.nn as nn

class Block(nn.Module):
def __init__ (self, d_model, nhead, dim_ff=64, max_len=128):

super(Block, self).__init_ ()
self.attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0, batch_first=True)
self.ffl = nn.Linear(d_model, dim_ff)
self.ff2 = nn.Linear(dim_ff, d_model)
self.lnl = nn.LayerNorm(d_model)
self.ln2 = nn.LayerNorm(d_model)
self.act = nn.ReLU()
self.register_buffer('mask', torch.triu(torch.ones(max_len, max_len), diagonal=1).bool())

def forward(self, x):
B, T, D = x.size()

# Self-attention block
residual = x

x = self.lnl(x) # Pre-normalization
x = self.attn(x, x, x, is_causal=True, attn_mask=self.mask[:T,:T]) [0]
X = residual + X

# Feed-forward block

residual = x

x = self.ln2(x)

x = self.ff2(self.act(self.ff1(x)))
X = residual + Xx

return Xx



N code

class TransformerLM(nn.Module):
def __init__ (self, vocab_size, d_model, nhead, num_layers, dim_ff, max_len=128):
super(TransformerLM, self).__init__ ()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoder = nn.Embedding(max_len, d_model)
self.blocks = nn.ModuleList( [
Block(d_model, nhead, dim_ff) for _ in range(num_layers)

1)
self.fc = nn.Linear(d_model, vocab_size)
self.d_model = d_model

def forward(self, x):
pos = torch.arange(x.size(1), device=x.device).unsqueeze(0)
X = self.embedding(x) + self.pos_encoder(pos)
for block in self.blocks:
x = block(x)
logits = self.fc(x)
return logits




Today's lecture

 Roadmap:
e Attention
e Transformer architecture

- Improved transformer architecture



Transformer improvements



SiLU/Swish Activation

[Hendricks & Gimpel 2016, Ramachandran et al 2017]

1 .
. Sigmoid: o(x) = =)
1 + exp(—x)

« RelLU: f(x) = max(0,x)

o SILU/SWIShf(X) — xg(x) 057

 Unbounded above

Swish

« Bounded below

e Non-monotonic

e Smooth




SWIGLU Feed-Forward Layer (shazeer 20201

° FFNSnglu — (SWiSh(XWl) * XW3)W2

“gate”

We have extended the GLU family of layers and proposed their use in Transformer. In a transfer-learning
setup, the new variants seem to produce better perplexities for the de-noising objective used in pre-training,
as well as better results on many downstream language-understanding tasks. These architectures are simple
to implement, and have no apparent computational drawbacks. We offer no explanation as to why these
architectures seem to work; we attribute their success, as all else, to divine benevolence.




Relative Positional Encodings
(Shaw+ 2018)

* Absolute positional encodings

0 1 2

* Relative positional encodings explicitly encode relative position

« Example: inside attention layer: “Token O and token 2
are 2 - 0 = 2 tokens apart”

/

b CliTkj | q;'r i—j
o U \/d_h \/zh ~

. a; = softmax(e;;)

e R € REK+ADXA (qq



Rotary Positional Encodings (RoPE)
(Su+ 2021)

Goal: we want the dot product of embeddings to
result in a function of relative position

<f(qa t)af(ka t,)> — g(qa ka t, T t)

* |dea: leverage nice properties of rotations

we we

p know
know pknOW We\
Position independent . Embedding ; . Embedding y
embedding we know that of course we know
Rotate we by ‘0 positions’ Rotate we by ‘2 positions’
know by ‘1 positions’ Rotate know by ‘3 positions’

Credit; Tatsu Hashimoto, cs336



Rotary Positional Encodings (RoPE)

cosfd —sin 9)

Recall a rotation matrix, e.g. in 2D: Ry = | .
sinf  cosé

We have:
(Ro, @) (Rgk) = q"'Ry Ry k

|
) TR92_91k

Dot product only depends on the difference between 6, and &, !

RoOPE key idea: encode positions ¢ based on rotation matrices R,y

T —
* RteRt’e — R(t’—t)@



Rotary Positional Encodings (RoPE)

« Example:

. flg,1) = RW g where R, is

cos 0, —sint0, 0 0 0 0
sint@); costl, 0 0 0 0
0 0 cos t6, —sint6, 0 0
R, = 0 0 sint@), costl, 0 0
0 0 0 0 o cOSt0,y —sintl,
0 0 0 0 -« sintly,, costldy,

e 1 :Position in 0. = IOOOO—Zi/d  Small i: high frequency
sequence ! * Large . low frequency



Pre- Layer Norm
(e.g. Xiong et al. 2020)

xl;-l xl‘+1
o VV h e re S h O U | d Layer Norm addition
: Ty
LayerNorm be
applied? Before or N -
after? /
| yer;l m add‘ition
* Pre-layer-norm is \M d
better for gradient pop—
p ro p ag a-t i O n Attention Layer Norm
S |

post-LayerNorm pre-LayerNorm



RMSNorm
(Zhang and sennrich 2019)

o Simplifies LayerNorm by removing the mean and bias terms

1 n
RMS(x) = \ - Zzla;?

X
RMSNorm(x) = RMS(x) - g




Grouped-guery attention

Multi-head Grouped-query Multi-query

Values

Keys

~~~~~
oy Al .~
\\\\\\\\

- . ~
- -

- - . N ~ -~
- - ’ \ - -~

Queries

* Shares key and value heads for each group of query heads

e Saves on memory, which leads to faster inference



N coge

bsz, seqlen, _ = X.shape
xq, Xk, xv = self.wq(x), self.wk(x), self.wv(x)

Xgq = xg.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local kv _heads, self.head_dim)

Xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)

# repeat k/v heads 1if n_kv_heads < n_heads
keys = repeat_kv(keys, self.n_rep) # (bs,
values = repeat_kv(values, self.n_rep) #

https://github.com/meta-llama/llama/blob/main/llama/model.py



https://github.com/meta-llama/llama/blob/main/llama/model.py

Original Transformer vs. LLama

Vaswani et al. LLama Llama 2

Norm
Position

Post Pre Pre

Norm Type LayerNorm RMSNorm RMSNorm

FFN/

o Rel U SwiGLU SwiGLU
Activation
Positional Ry RoPE RoPE
Encoding
Grouped-

Attention Multi-head Multi-head
query

S: Gemma 2



How Important is [t

 “Transformer” is Vaswani et al., “Transformer++" is (basically) LLaMA?2

2x 107

Scaling Laws on The Pile (Sequence Length 2048)

Perplexity (log scale)
S
|

6x10°

Hyena
RWKV
Transformer
-=s== RetNet
e H3++
—=o== Transformer++
=== Mamba

Ll 110[19 1 1 Ll I Ll ] 1 ;020
FLOPs (log scale)

e Stronger architecture is =10x more efficient!

Image: Gu and Dao (2023)



Recap

 Transformer: a sequence model based on attention

e \We saw;
e Attention
e [ransformer architecture

* Improved transtormer architecture



Additional topics

 Adam optimizer

e Transformer vs. RNN



Optimizer: Adam

 Most standard optimization option in NLP and beyond
 Each parameter has an adaptive learning rate

* |ncorporates 2 key ideas: momentum and RMSProp



Optimizer: Adam

e Momentum

t+ 1 t t Stochastic Gradient Stochastic Gradient

Descent withhout Descen t with
Momentum Momentum

m, = pym,_; + (1 = f))Vy SOUCE

Intuition: reduces oscillations

e M, € R je per-parameter adjustment

« Running estimate of E[ V]



https://datascience.stackexchange.com/questions/84167/what-is-momentum-in-neural-network

Optimizer: Adam

RMSProp

;
\/vt + ¢
v, = Povi_1 + (1 = po)( Ve)z

V IS per-parameter

Ht+1 = 0,

Vo

Normalizes the update magnitude
o (Vg[i,j])2 large: update gets smaller
. (Ve[i,j])2 small: update gets larger

Running estimate of E[( V@)z]



Optimizer

« Running estimate of

=[ Vg

m, = pym,_; + (1 = p) Vg

« Running estimate of

= [( V@)z]

v, = Py + (1 = P V@)z

e Correction of early bias

A e . Ut
T T 1= (B
e Final update
0 = 011 — ———1i,

I1
11




Transformer vs RNN



Transformer Training

p(- | <s>)

We can compute next-token 7 p(+]<s>,lhate)

probabilities for all positions at
once using matrix multiplications

No sequential hidden state
(as in RNNSs)

Modern hardware (e.g. GPU) is
optimized for parallel operations
ike the matrix multiplications in
self-attention

.. easy-to-parallelize training <s>| hate thismovie </s>



RNNs vs. Transformers

. RNN: O(Td?)
. Ateach step 1,..., T, a O(d?) operation, e.g. Wh

. Transformer attention: O(T°d)

. Eg., OK' Key difference:
1" (RNNSs)
. O e R™ T (Transformers)

. K e R™ 5 O(T?d)



RNNs vs. Transformers

. Transformers: O(T?d)
« Quadratic in sequence length 1’
« Need to store a large 1" X 1 matrix in memory
. Need to perform O(T?*d) computations

* Easy to parallelize the training

* Long-range dependency: handled by attention



Thank you



Sinusoidal Encoding
(Vaswani+ 2017, Kazemnejad 2019)

e Calculate each dimension with a sinusoidal function

o i . Jsin(wg - t), ifi=2k B 1
1) {Cos(wk 1), ifi=2k+1 where Yk = 100002k/4

mmmmmmm

DDDDD

* Motivation: may be easy to learn relative positions, since
PE, .1 is alinear function of PL,,




