
CS11-711 Advanced NLP

Transformers
Sean Welleck

https://cmu-l3.github.io/anlp-fall2025/

Slides adapted from Graham Neubig’s Fall 2024 course

https://github.com/cmu-l3/anlp-fall2025-code

https://cmu-l3.github.io/anlp-fall2025/
https://github.com/cmu-l3/anlp-fall2025-code

Recap: sequence model

•

• : hidden state

• Language modeling:

•

fθ(x1, …, x|x|) → h1, …, h|x|

ht ∈ ℝd

pθ(⋅ |x<t) = softmax (Wh⊤
t)

fθ

x1 x2 x3 x4

h1 h2 h3 h4
W

softmax

…

Three types of sequence models

• Recurrence: Condition
representations on an
encoding of the history

• Convolution: Condition
representations on local
context

• Attention: Condition
representations on a weighted
average of all tokens

RNN RNN RNN RNN

CNNCNN CNN CNN

AttnAttn Attn Attn

Today’s lecture

• Transformer: a sequence model based on attention

• Roadmap:

• Attention

• Transformer architecture

• Improved transformer architecture

Attention

Basic Idea
(Bahdanau et al. 2015)

• Encode each token in the sequence into a vector

• When decoding, perform a linear combination of these
vectors, weighted by “attention weights”

Cross Attention
(Bahdanau et al. 2015)

• Each element in a sequence attends to elements of
another sequence

this
kore
wa
rei

desu

is an example

Self Attention
(Cheng et al. 2016, Vaswani et al. 2017)

• Each element in the sequence attends to elements
of that sequence

this is an example
this
is
an

example

Calculating Attention (1)
• Use “query” vector (decoder state) and “key” vectors (all encoder states)
• For each query-key pair, calculate weight
• Normalize to add to one using softmax

kono eiga ga kirai
Key

Vectors

I hate

Query Vector

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03

Calculating Attention (2)
• Combine together value vectors (usually encoder

states, like key vectors) by taking the weighted sum
kono eiga ga kirai

Value
Vectors

α1=0.76 α2=0.08 α3=0.13 α4=0.03
* * * *

• Use this in any part of the model you like

Query-key-value framework
• Keys

•

• Values

•

• Query

•

•
 where

•

• is a weighting/compatibility function, e.g.

k1, …, kN

ki = WKhi

v1, …, vN

vi = WVhi

qt

qt = WQht

ct =
N

∑
i=1

αt,ivi

αt,i =
exp(a(qt, ki))

∑N
j=1 exp(a(qt, kj))

a(q, k) a(q, k) = q⊤k

Cross-attention example
• Keys: based on encoder states
• Values: based on encoder states
• Query: based on decoder state

hi
hi

h̃t

Self-attention example
• Keys: based on decoder states
• Values: based on decoder states
• Query: based on decoder state

hi
hi

ht

Image from Bahdanau et al. (2015)

A Graphical Example

Attention Score Functions
• Dot Product (Luong et al. 2015)

• Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions
get larger

• Fix: scale by size of the vector

a(q,k) = q|k

a(q,k) =
q|kp
|k|

Today’s lecture

• Roadmap:

• Attention

• Transformer architecture

• Improved transformer architecture

Transformers

• A sequence-to-sequence
architecture based entirely on
attention

• Strong results on machine
translation

• Fast: leverages parallelism
from matrix multiplications

“Attention is All You Need”
(Vaswani et al. 2017)

Output
Embedding

Multi-Head
Attention

Feed
Forward

Feed
Forward

Multi-Head
Attention

Nx

Nx

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Output
Probabilities

⊕ ⊕

Input
Embedding

Add & Norm

Add & Norm

Add & Norm

Softmax

Linear

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Two Types of Transformers

Output
Embedding

Multi-Head
Attention

Feed
Forward

Feed
Forward

Multi-Head
Attention

Nx

Nx

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Output
Probabilities

⊕ ⊕

Input
Embedding

Add & Norm

Add & Norm

Add & Norm

Softmax

Linear

Add & Norm

Add & Norm

Masked
Multi-Head
Attention

Encoder-Decoder Model
(e.g. T5, MBART)

Decoder Only Model
(e.g. GPT, LLaMa)

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Basic idea

• Stack “transformer layers”

• 5 key concepts in the
layer design and how we
embed inputs

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Core Transformer Concepts

• Positional encodings

• Scaled dot product self-attention

• Multi-headed attention

• Residual + layer normalization

• Feed-forward layer

• Inputs: Generally split using
subwords

the books were improved

the book _s were improv _ed

• Input Embedding: Looked up, like in
previously discussed models

(Review)
Inputs and Embeddings

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

• The transformer model is purely attentional

• Permutation equivariant:

• We need a way to identify the position of each token

f(π ∘ (x1, …, xT)) = π ∘ f(x1, …xT)

Positional Encoding

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

• Positional encodings add an embedding
based on the word position

wbig + wpos2 wbig + wpos7

A big dog and a very big cat

A big cat and a very big dog

Example: Learned Positional Encoding
(Shaw+ 2018)

• Just create a learnable embedding

•

• Each position
has a learned vector representation.

• Advantages: flexibility

• Disadvantages: cannot extrapolate to longer sequences

Wposition ∈ ℝTmax×d

t ∈ {1,…, Tmax}
0 1 2

the big dog

S: other positional encoding techniques

Core Transformer Concepts

• Positional encodings

• Scaled dot product self-attention

• Multi-headed attention

• Residual + layer normalization

• Feed-forward layer

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

• As we saw on the previous slide:

• Full version, efficient matrix version:

Scaled dot product attention
a(q,k) =

q|kp
|k|

Attention(Q, K, V) = softmax
QK⊤

dk

V

K ∈ ℝT×d V ∈ ℝT×dQ ∈ ℝT×d

T
d

S: dimensions of (i) softmax output, (ii) attention output

Scaled dot product self-attention
• Apply attention to the output of the

previous layer:

•

•

•

• Where is the output
of the previous transformer layer

• are learned weights

Q = H(ℓ−1)WQ

K = H(ℓ−1)WK

V = H(ℓ−1)WV

H(ℓ−1) ∈ ℝT×d

WQ, WK, WV

Attention(Q, K, V) → H̃ℓ

Attention

output of layer -1ℓ

Core Transformer Concepts

• Positional encodings

• Scaled dot product self-attention

• Multi-headed attention

• Residual + layer normalization

• Feed-forward layer

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

• Intuition: Information from different
parts of the sentence can be useful to
disambiguate in different ways

Intuition for Multi-heads

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

I run a small business

I run a mile in 10 minutes

The robber made a run for it

The stocking had a run

syntax
(nearby context)

semantics
(farther context)

Multi-head Attention Concept
MultiHead(Q,K, V) = Concat(head1, ..., headh)W

O

where headi = Attention(QWQ
i , KWK

i , V W V
i)

Run attention
over each head

attn()

Concat
and *WO

T
d

* WQ

Multiply by
weights

T
d d

* WK

T
d

* WV

T
d

Split/rearrange

d/2

Typically dk = dv = d /numheads

Code Example
 def forward(self, query, key, value, mask=None):
 nbatches = query.size(0)

 # 1) Do all the linear projections
 query = self.W_q(query)
 key = self.W_k(key)
 value = self.W_v(value)

 # 2) Reshape to get h heads
 query = query.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)
 key = key.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)
 value = value.view(nbatches, -1, self.heads, self.d_k).transpose(1, 2)

 # 3) Apply attention on all the projected vectors in batch.
 x, self.attn = attention(query, key, value)

 # 4) "Concat" using a view and apply a final linear.
 x = (
 x.transpose(1, 2)
 .contiguous()
 .view(nbatches, -1, self.h * self.d_k)
)
 return self.W_o(x)

https://github.com/karpathy/minGPT/blob/master/mingpt/model.py

https://github.com/karpathy/minGPT/blob/master/mingpt/model.py

What Happens w/ Multi-heads?
• Example from Vaswani et al.

• See also BertVis: https://github.com/jessevig/bertviz

https://github.com/jessevig/bertviz

Masking for Language Model Training
• Mask the attention from future timesteps

• Prevents the model from cheating when
predicting the next token

kono eiga ga kirai I hate this movie </s>

Core Transformer Concepts

• Positional encodings

• Scaled dot product self-attention

• Multi-headed attention

• Residual + layer normalization

• Feed-forward layer

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Layer Normalization and
Residual Connections

Reminder:
Gradients and Training Instability
• RNNs: backpropagation can make gradients

vanish or explode

• The same issue occurs in multi-layer transformers!

RNN RNN RNN

W
∂L
∂h3

normal
∂L
∂h2

small
∂L
∂h1

tiny
∂L
∂h0

very  
tiny

• Normalizes the outputs to be within a
consistent range, preventing too
much variance in scale of outputs

Layer Normalization
(Ba et al. 2016)

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

LayerNorm(x;g,b) =
g

σ(x)
! (x− µ(x)) + b

gain bias

vector
mean

µ(x) =
1

n

n∑

i=1

xi

vector
stddev

σ(x) =

√

√

√

√

1

n

n
∑

i=1

(xi − µ)2

• Add an additive connection between
the input and output

Residual Connections

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & NormResidual(x, f) = f(x) + x

• Prevents vanishing gradients and
allows f to learn the difference from
the input

Core Transformer Concepts

• Positional encodings

• Scaled dot product self-attention

• Multi-headed attention

• Residual + layer normalization

• Feed-forward layer

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Feed Forward Layers

• Extract features from the attended outputs

Feed Forward Layers

Masked
Multi-Head
Attention

Feed
Forward

Nx

Positional
Encoding

Inputs

Output
Probabilities

⊕

Input
Embedding

Add & Norm

Softmax

Linear

Add & Norm

Linear1
Non-linearity

Linear2
f()

FFN(x;W1,b1,W2,b2) = f(xW1 + b1)W2 + b2

In code

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/
05_transformers/transformer.ipynb

https://github.com/cmu-l3/anlp-fall2025-code/blob/main/05_transformers/transformer.ipynb
https://github.com/cmu-l3/anlp-fall2025-code/blob/main/05_transformers/transformer.ipynb

In code

In code

Today’s lecture

• Roadmap:

• Attention

• Transformer architecture

• Improved transformer architecture

Transformer improvements

SiLU/Swish Activation
[Hendricks & Gimpel 2016, Ramachandran et al 2017]

• Sigmoid:

• ReLU:

• SiLU/Swish:

• Unbounded above

• Bounded below

• Non-monotonic

• Smooth

σ(x) =
1

1 + exp(−x)

f(x) = max(0,x)

f(x) = xσ(x)

SwiGLU Feed-Forward Layer [Shazeer 2020]

•

•

•

FFNrelu = max(0, xW1)W2

FFNswish = swish(xW1)W2

FFNswiglu = (swish(xW1) ⋅ xW3)W2

“gate”

Relative Positional Encodings
(Shaw+ 2018)

• Absolute positional encodings

• Relative positional encodings explicitly encode relative position

• Example: inside attention layer:

•

•

• , rows
 with

eij =
q⊤

i kj

dh
+

q⊤
i ri−j

dh

αij = softmaxj(eij)

R ∈ ℝ(2K+1)×d

rΔ Δ ∈ [−K, K]

“Token 0 and token 2
are 2 - 0 = 2 tokens apart”

0 1 2

Rotary Positional Encodings (RoPE)
(Su+ 2021)

• Goal: we want the dot product of embeddings to
result in a function of relative position

⟨ f(q, t), f(k, t′￼)⟩ = g(q, k, t′￼− t)
• Idea: leverage nice properties of rotations

Credit: Tatsu Hashimoto, cs336

Rotary Positional Encodings (RoPE)

• Recall a rotation matrix, e.g. in 2D:

• We have:

• Dot product only depends on the difference between and !

• RoPE key idea: encode positions based on rotation matrices :

•

Rθ = (cos θ −sin θ
sin θ cos θ)

(Rθ1
q)⊤(Rθ2

k) = q⊤R⊤
θ1

Rθ2
k

= q⊤Rθ2−θ1
k

θ2 θ1

t Rtθ

R⊤
tθRt′￼θ = R(t′￼−t)θ

• Example:

• where is f(q, t) = RtWqq Rt

Rt =

cos tθ1 −sin tθ1 0 0 ⋯ 0 0
sin tθ1 cos tθ1 0 0 ⋯ 0 0

0 0 cos tθ2 −sin tθ2 ⋯ 0 0
0 0 sin tθ2 cos tθ2 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ cos tθd/2 −sin tθd/2

0 0 0 0 ⋯ sin tθd/2 cos tθd/2

Rotary Positional Encodings (RoPE)

θi = 10000−2i/d • Small i: high frequency
• Large i: low frequency

• Position in
sequence
t :

Pre- Layer Norm
(e.g. Xiong et al. 2020)

• Where should
LayerNorm be
applied? Before or
after?

• Pre-layer-norm is
better for gradient
propagation

post-LayerNorm pre-LayerNorm

RMSNorm
(Zhang and Sennrich 2019)

• Simplifies LayerNorm by removing the mean and bias terms

RMS(x) =

√

√

√

√

1

n

n
∑

i=1

x
2
i

RMSNorm(x) =
x

RMS(x)
· g

Grouped-query attention

• Shares key and value heads for each group of query heads

• Saves on memory, which leads to faster inference

In code

https://github.com/meta-llama/llama/blob/main/llama/model.py

https://github.com/meta-llama/llama/blob/main/llama/model.py

Original Transformer vs. LLama

Vaswani et al. LLama Llama 2

Norm
Position Post Pre Pre

Norm Type LayerNorm RMSNorm RMSNorm

FFN/
Activation ReLU SwiGLU SwiGLU

Positional
Encoding Sinusoidal RoPE RoPE

Attention Multi-head Multi-head Grouped-
query

S: Gemma 2

How Important is It?
• “Transformer” is Vaswani et al., “Transformer++” is (basically) LLaMA2

Image: Gu and Dao (2023)

• Stronger architecture is ≈10x more efficient!

Recap

• Transformer: a sequence model based on attention

• We saw:

• Attention

• Transformer architecture

• Improved transformer architecture

Additional topics

• Adam optimizer

• Transformer vs. RNN

Optimizer: Adam
• Most standard optimization option in NLP and beyond

• Each parameter has an adaptive learning rate
• Incorporates 2 key ideas: momentum and RMSProp

Optimizer: Adam
• Momentum

Intuition: reduces oscillations

• , i.e. per-parameter adjustment

• Running estimate of

θt+1 = θt − αmt

mt = β1mt−1 + (1 − β1)∇θ

mt ∈ ℝ|θ|

𝔼[∇θ]

source

https://datascience.stackexchange.com/questions/84167/what-is-momentum-in-neural-network

Optimizer: Adam
• RMSProp

• is per-parameter

• Normalizes the update magnitude

• large: update gets smaller

• small: update gets larger

• Running estimate of

θt+1 = θt −
αt

vt + ϵ
∇θ

vt = β2vt−1 + (1 − β2)(∇θ)2

v

(∇θ[i, j])2

(∇θ[i, j])2

𝔼[(∇θ)2]

• Final update

Optimizer: Adam
• Running estimate of

• Running estimate of

𝔼[∇θ]
mt = β1mt−1 + (1 − β1)∇θ

𝔼[(∇θ)2]
vt = β2vt−1 + (1 − β2)(∇θ)2

• Correction of early bias

m̂t =
mt

1� (�1)t
<latexit sha1_base64="uU/7wIbYkpNLdU8wOtlDEbAhmgY=">AAACDXicbVA9SwNBEJ3z2/gVtbRZlEAsDHc2aiEEbSwVjAq5eOxt9pIlu3fH7pwQjvsFNv4VGwsVsbO38x/Y+RfcJBZ+PRh4vDfDzLwwlcKg6745Y+MTk1PTM7OlufmFxaXy8sqZSTLNeIMlMtEXITVcipg3UKDkF6nmVIWSn4e9w4F/fsW1EUl8iv2UtxTtxCISjKKVgnLF71LMVREg2Sd+pCnLVYBF7m1V/ZAjDbzNSyyC8oZbc4cgf4n3RTbq9Y/3ZwA4DsqvfjthmeIxMkmNaXpuiq2cahRM8qLkZ4anlPVohzctjanippUP3ylIxSptEiXaVoxkqH6fyKkypq9C26kods1vbyD+5zUzjHZbuYjTDHnMRouiTBJMyCAb0haaM5R9SyjTwt5KWJfaTNAmWLIheL9f/ksa27W9mndiwziAEWZgDdahCh7sQB2O4BgawOAabuEeHpwb5855dJ5GrWPO18wq/IDz8gnWbp6D</latexit><latexit sha1_base64="ebyssrkgbrz8OmYYTlFMkBtIdy4=">AAACDXicbVC7SgNBFJ31bXxFBRubwRiIhWHXRi2EoI1lBGMC2bjMTmbN4MzuMnNXCMt+gY0f4E/YWGiwtbfzD+z8BSePQhMPXDiccy/33uPHgmuw7U9ranpmdm5+YTG3tLyyupZf37jSUaIoq9FIRKrhE80ED1kNOAjWiBUj0hes7t+e9f36HVOaR+EldGPWkuQm5AGnBIzk5Ytuh0AqMw/wCXYDRWgqPchSZ7/k+gyI5+xdQ+blC3bZHgBPEmdECpXK91dv63G36uU/3HZEE8lCoIJo3XTsGFopUcCpYFnOTTSLCb0lN6xpaEgk06108E6Gi0Zp4yBSpkLAA/X3REqk1l3pm05JoKPHvb74n9dMIDhqpTyME2AhHS4KEoEhwv1scJsrRkF0DSFUcXMrph1iMgGTYM6E4Iy/PElqB+XjsnNhwjhFQyygbbSDSshBh6iCzlEV1RBF9+gJvaBX68F6tnrW27B1yhrNbKI/sN5/AO4hn1U=</latexit><latexit sha1_base64="tX+KmExHPpLLt2r1vquyYOWnxPw=">AAACDXicbVA9SwNBEN2LXzF+nVraLIZALAx3NmohBG0sIxgTyMVjb7OXLNm9O3bnhHDcL7Dxr9hYqNja2/lv3HwUmvhg4PHeDDPzgkRwDY7zbRWWlldW14rrpY3Nre0de3fvTsepoqxJYxGrdkA0EzxiTeAgWDtRjMhAsFYwvBr7rQemNI+jWxglrCtJP+IhpwSM5NsVb0Agk7kP+AJ7oSI0kz7kmXtc9QIGxHeP7iH37bJTcybAi8SdkTKaoeHbX14vpqlkEVBBtO64TgLdjCjgVLC85KWaJYQOSZ91DI2IZLqbTd7JccUoPRzGylQEeKL+nsiI1HokA9MpCQz0vDcW//M6KYRn3YxHSQosotNFYSowxHicDe5xxSiIkSGEKm5uxXRATCZgEiyZENz5lxdJ86R2XnNvnHL9cpZGER2gQ1RFLjpFdXSNGqiJKHpEz+gVvVlP1ov1bn1MWwvWbGYf/YH1+QOt25ts</latexit>

v̂t =
vt

1� (�2)t
<latexit sha1_base64="3k3UytFXUZZXN9xAvbSC1KbMZCk=">AAACDXicbVC7SgNBFL3r2/iKWtoMSiAWht00aiEEbSwVjBGycZmdzCZDZh/M3A2EZb/Axl+xsVARO3s7/8DOX3DyKHwduHA4517uvcdPpNBo2+/W1PTM7Nz8wmJhaXllda24vnGp41QxXmexjNWVTzWXIuJ1FCj5VaI4DX3JG37vZOg3+lxpEUcXOEh4K6SdSASCUTSSVyy5XYpZP/eQHBE3UJRlfQ/zzNkruz5H6lV3rzH3ijt2xR6B/CXOhOzUap8fLwBw5hXf3HbM0pBHyCTVuunYCbYyqlAwyfOCm2qeUNajHd40NKIh161s9E5OSkZpkyBWpiIkI/X7REZDrQehbzpDil392xuK/3nNFIODViaiJEUesfGiIJUEYzLMhrSF4gzlwBDKlDC3EtalJhM0CRZMCM7vl/+SerVyWHHOTRjHMMYCbME2lMGBfajBKZxBHRjcwB08wKN1a91bT9bzuHXKmsxswg9Yr1/05J6W</latexit><latexit sha1_base64="inXyXnDDlmalxS+brMkBon+upyE=">AAACDXicbVC7SgNBFJ31bXytCjY2gzEQC8OujVoIQRtLBWMC2XWZncyaIbMPZu4GwrJfYOMH+BM2Fiq29nb+gZ2/4ORRaOKBC4dz7uXee/xEcAWW9WlMTc/Mzs0vLBaWlldW18z1jWsVp5KyGo1FLBs+UUzwiNWAg2CNRDIS+oLV/c5Z3693mVQ8jq6glzA3JLcRDzgloCXPLDltAlk39wCfYCeQhGZdD/LM3i87PgPiHezdQO6ZRatiDYAniT0ixWr1++t162H3wjM/nFZM05BFQAVRqmlbCbgZkcCpYHnBSRVLCO2QW9bUNCIhU242eCfHJa20cBBLXRHggfp7IiOhUr3Q150hgbYa9/rif14zheDIzXiUpMAiOlwUpAJDjPvZ4BaXjILoaUKo5PpWTNtEZwI6wYIOwR5/eZLUDirHFftSh3GKhlhA22gHlZGNDlEVnaMLVEMU3aFH9IxejHvjyXg13oatU8ZoZhP9gfH+Awymn2g=</latexit><latexit sha1_base64="4PRu3kPKoHVfeG6bK0+b+RrguA0=">AAACDXicbVC7SgNBFJ2NrxhfUUubwRCIhWE3jVoIQRvLCK4JZNdldjKbDJl9MHM3EJb9Aht/xcZCxdbezr9x8ig08cCFwzn3cu89fiK4AtP8Ngorq2vrG8XN0tb2zu5eef/gXsWppMymsYhlxyeKCR4xGzgI1kkkI6EvWNsfXk/89ohJxePoDsYJc0PSj3jAKQEteeWqMyCQjXIP8CV2AkloNvIgz6zTmuMzIF7j5AFyr1wx6+YUeJlYc1JBc7S88pfTi2kasgioIEp1LTMBNyMSOBUsLzmpYgmhQ9JnXU0jEjLlZtN3clzVSg8HsdQVAZ6qvycyEio1Dn3dGRIYqEVvIv7ndVMIzt2MR0kKLKKzRUEqMMR4kg3ucckoiLEmhEqub8V0QHQmoBMs6RCsxZeXid2oX9StW7PSvJqnUURH6BjVkIXOUBPdoBayEUWP6Bm9ojfjyXgx3o2PWWvBmM8coj8wPn8AzFGbfw==</latexit>

✓t = ✓t�1 �
⌘p

v̂t + ✏
m̂t

<latexit sha1_base64="vFWgf8Z25xhNy/8deLRj2WaSIkw=">AAACM3icbZDLSgMxFIYz3q23qks3wSIIYpkRQV0IohvBjYJVoVOGTHrGBjOZMTkjlDAP5cYHcSOCCxW3voNpLeLth8Cf75xDcv44l8Kg7z96Q8Mjo2PjE5OVqemZ2bnq/MKZyQrNocEzmemLmBmQQkEDBUq4yDWwNJZwHl8d9OrnN6CNyNQpdnNopexSiURwhg5F1aMQO4AssljSXfp1WQ9Kuk7DRDNuQ4dKG5prjTbsMLQ3ZYTlWgi5ETJTZZ+ljkXVml/3+6J/TTAwNTLQcVS9D9sZL1JQyCUzphn4ObYs0yi4hLISFgZyxq/YJTSdVSwF07L9pUu64kibJpl2RyHt0+8TlqXGdNPYdaYMO+Z3rQf/qzULTLZbVqi8QFD886GkkBQz2kuQtoUGjrLrDONauL9S3mEuKXQ5V1wIwe+V/5rGRn2nHpxs1vb2B2lMkCWyTFZJQLbIHjkkx6RBOLklD+SZvHh33pP36r19tg55g5lF8kPe+wel+6z3</latexit><latexit sha1_base64="vFWgf8Z25xhNy/8deLRj2WaSIkw=">AAACM3icbZDLSgMxFIYz3q23qks3wSIIYpkRQV0IohvBjYJVoVOGTHrGBjOZMTkjlDAP5cYHcSOCCxW3voNpLeLth8Cf75xDcv44l8Kg7z96Q8Mjo2PjE5OVqemZ2bnq/MKZyQrNocEzmemLmBmQQkEDBUq4yDWwNJZwHl8d9OrnN6CNyNQpdnNopexSiURwhg5F1aMQO4AssljSXfp1WQ9Kuk7DRDNuQ4dKG5prjTbsMLQ3ZYTlWgi5ETJTZZ+ljkXVml/3+6J/TTAwNTLQcVS9D9sZL1JQyCUzphn4ObYs0yi4hLISFgZyxq/YJTSdVSwF07L9pUu64kibJpl2RyHt0+8TlqXGdNPYdaYMO+Z3rQf/qzULTLZbVqi8QFD886GkkBQz2kuQtoUGjrLrDONauL9S3mEuKXQ5V1wIwe+V/5rGRn2nHpxs1vb2B2lMkCWyTFZJQLbIHjkkx6RBOLklD+SZvHh33pP36r19tg55g5lF8kPe+wel+6z3</latexit><latexit sha1_base64="vFWgf8Z25xhNy/8deLRj2WaSIkw=">AAACM3icbZDLSgMxFIYz3q23qks3wSIIYpkRQV0IohvBjYJVoVOGTHrGBjOZMTkjlDAP5cYHcSOCCxW3voNpLeLth8Cf75xDcv44l8Kg7z96Q8Mjo2PjE5OVqemZ2bnq/MKZyQrNocEzmemLmBmQQkEDBUq4yDWwNJZwHl8d9OrnN6CNyNQpdnNopexSiURwhg5F1aMQO4AssljSXfp1WQ9Kuk7DRDNuQ4dKG5prjTbsMLQ3ZYTlWgi5ETJTZZ+ljkXVml/3+6J/TTAwNTLQcVS9D9sZL1JQyCUzphn4ObYs0yi4hLISFgZyxq/YJTSdVSwF07L9pUu64kibJpl2RyHt0+8TlqXGdNPYdaYMO+Z3rQf/qzULTLZbVqi8QFD886GkkBQz2kuQtoUGjrLrDONauL9S3mEuKXQ5V1wIwe+V/5rGRn2nHpxs1vb2B2lMkCWyTFZJQLbIHjkkx6RBOLklD+SZvHh33pP36r19tg55g5lF8kPe+wel+6z3</latexit>

Transformer vs RNN

Transformer Training
• We can compute next-token

probabilities for all positions at
once using matrix multiplications

• No sequential hidden state
(as in RNNs)

• Modern hardware (e.g. GPU) is
optimized for parallel operations
like the matrix multiplications in
self-attention

• easy-to-parallelize training∴ I hate thismovie </s>

⊕

……

p(⋅ |<s>)

<s>

p(⋅ |<s>,I,hate)

…… …… …… ……

RNNs vs. Transformers
• RNN:

• At each step , a operation, e.g.

• Transformer attention:

• E.g.,

•

• =>

O(Td2)

1,…, T O(d2) Wh

O(T2d)

QK⊤

Q ∈ ℝT×d

K ∈ ℝT×d O(T2d)

Key difference:
 (RNNs)

 (Transformers)
T

T2

RNNs vs. Transformers
• Transformers:

• Quadratic in sequence length

• Need to store a large matrix in memory

• Need to perform computations

• Easy to parallelize the training

• Long-range dependency: handled by attention

O(T2d)

T

T × T

O(T2d)

Thank you

Sinusoidal Encoding
(Vaswani+ 2017, Kazemnejad 2019)

• Calculate each dimension with a sinusoidal function

p
(i)
t = f(t)(i) :=

{

sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1 where ωk =
1

100002k/d

• Motivation: may be easy to learn relative positions, since
 is a linear function of PEpos+k PEpos

