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Recap: adaptation by prompting
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Today’s lecture

• Thinking about pretraining: scaling laws 

• Prompting basics
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Challenge
• Given a fixed pretraining budget, how should we 

allocate the budget to achieve the best possible 
model? 

• Add more training data? 

• Make the model bigger? 

• A combination of both? 

• Other variables: architecture, hyperparameters, … 

• First: let’s be a bit more precise



Training = spending compute
• We spend compute by performing forward and 

backward passes on training sequences 

• An approximation for transformer language models: 

 
 

: number of model parameters 
: number of tokens 
: compute; floating point operations (FLOPs)

C ≈ 6ND

N
D
C

Approximation from [Kaplan et al 2020]



Training = spending compute
• We spend compute by performing forward and 

backward passes on training sequences 

• For example, Llama 2: 

 

 
 

: number of model parameters 
: number of tokens 
: compute; floating point operations (FLOPs)

C ≈ 6 × 7 billion × 2 trillion

= 8.4 × 1022FLOPs

N
D
C



Training = spending compute

• Want to know: How does performance (e.g., loss) 
vary as we modulate these variables: 

• Data scaling: change D, what happens to loss? 

• Model scaling: change N, what happens to loss? 

• Compute scaling: should we increase compute 
by increasing D or increasing N? 

• …



Scaling laws
• Simple, predictive rules for model performance 

• Helps us answer the questions on the previous slide 

• Run experiments with many configurations, 
identify trend



Power laws and log-log plots
• “Power law”:  

          

• Take logs: 
         

• Linear on a log-log plot 

• Suppose we double : 

 

 

        

=> 

y = a ⋅ xb

log y = log(a) + b ⋅ log(x)

x

y = axb

ynew = a(2x)b

= axb2b

ynew = y2b



Data scaling laws
• Language models with cross-entropy 

loss widely observed to follow a 
power law in data size 

•
 

• Building the plot: 

• Train models with varied dataset 
size  

• Ensure model size is not 
bottlenecked: use a large model 

L = ( D
Dc )

−b

D

N

[Kaplan+ 2020]

[Hestness+ 2017]

Doubling data:  => 6.4% decrease in loss2−0.095 ≈ 0.936



Data scaling laws

[Hestness+ 2017]

• Recall that cross-entropy 
loss is lower-bounded by 
the entropy (last lecture) 

• There is a power-law 
region 

• Then the power law must 
eventually level off



Data scaling laws

• Example uses: 

• Data composition 

• Effect of repeated 
data 

• …

[Kaplan+ 2020]

[Muenninghoff + 2025]



Model size scaling laws
• Similar relationships observed for model size 
• Large models require fewer samples 
• Useful for determining model hyperparameters

[Kaplan+ 2020]



Compute scaling laws

• Basic idea: 

• Train models of different 
sizes and numbers of 
tokens 

• Plot loss at each step of 
training [light blue] 

• Pick minimum loss at each 
amount of compute [black] 

• Run linear regression on the 
resulting (loss, compute) 
pairs [orange]



Scaling laws

Terminology:

• Compute optimal: black

• Scaling law: orange

• E.g. L(C) ∝ 1/C0.05



Using scaling laws

• Scaling laws are used to choose hyper parameters 

• Basic idea: 

• Run many experiments at a small scale 

• Use a scaling law to estimate the best hyper parameter for a 
large-scale model / training run



Example: choose model size and # of tokens

Run experiments Fit a line and 
predict optimal  

model size

Fit a line and 
predict optimal  

# of tokens

Training Compute-Optimal Large Language Models

https://arxiv.org/abs/2203.15556


Example: choose batch size, learning rate

Optimal batch size Optimal learning rate

DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

https://arxiv.org/abs/2401.02954


Recap

• We can think of pre-training in terms of compute, which is 
determined by model size and number of tokens 

• Scaling laws are observed relationships between a variable 
(e.g., compute) and performance (e.g., loss) 

• We can use them to extrapolate, which is helpful for making 
decisions about an expensive pretraining run



Today’s lecture

• Thinking about pretraining: scaling laws 

• Prompting basics



Prompting
• Put an input  into a format (a “prompt”) that 

encourages the model to carry out a task 

 

• x: “I love advanced NLP!” 

• f(x): Classify this sentence’s sentiment as either 
Positive or Negative: “I love advanced NLP!”. 

• Example y: The sentence is positive.

x

pθ(y | f(x)⏟
prompt

)



Aside: generation

• Given a prompt, we can generate an output  using an 
inference algorithm (we’ll go in depth in Lecture 9).  

• A simple inference algorithm is autoregressive 
sampling (Lecture 3): 

• Iteratively sample a next token, then append it to the 
context: 

Until [END] is generated: 

y

yt ∼ pθ(yt | f(x), y<t)



Strategy 1: No prompt
• After pre-training, we have an autoregressive language model 

. 

• The language model can complete text: 

• Prompt:  

• When a dog sees a squirrel, it will usually 

• Output  

• bark a lot, especially at close range. 

• start to chase after it. When it does… 

• …

p(x1, x2, …, xT)

x1:t

xt+1:T



Strategy 2: Instruction prompt 
(“zero shot”)

• We can prompt the model to perform a specific task by providing 
an instruction.  

• Prompt: f(x; instruction) 

• Called “zero-shot” because we don’t provide (x, y) examples in the 
prompt.



Instruction prompt (“zero shot”)
• Considerations: 

• The model’s generated output formatting can be varied 
and tricky to deal with. 

• Performance can vary based on the prompt wording. 

• Models may not be trained for instruction following, or 
trained only to support specific formats



Strategy 3: Instruction + examples 
(“few shot”)

• Additionally provide  examples in the prompt 

• Prompt: f( ; instruction, ) 

• Output:  

• Examples help the model understand the task format 
and expected outputs without any parameter updates 

• Referred to as “in-context learning”

(x, y)

xtest [(x, y)1, …, (x, y)K]

ytest



Instruction + examples (“few shot”)



Instruction + examples (“few shot”)



MATH dataset prompt, used in Llemma (source)

Instruction + examples (“few shot”)

https://github.com/wellecks/lm-evaluation-harness/blob/b86d67b3d6094eb304a146e29bb5f84c422a7d4c/lm_eval/tasks/minerva_math.py


In-context learning phenomena

• Sometimes only giving the 
inputs works better than giving 
the (inputs, outputs)! 

• “Task retrieval”

• ICL: (input, output) 
• Unsupervised ICL: input only 
• Reinforced ICL: (input, output) 
     where output is model-generated 

Agarwal et al 2024



Flipped: 
[negative, neutral, positive] -> 
[neutral, positive, negative]

Abstract: 
[A, B, C]

“Task retrieval”/ 
“pretraining bias”

“Unlearning pretraining bias”

Agarwal et al 2024

In-context learning phenomena



Ability to leverage many examples varies by model

Agarwal et al 2024

In-context learning phenomena



LMs are Sensitive to Small Changes in  
In-context Examples

35

• Example ordering (Lu et al. 2021) ■ Label balance (Zhang et al. 2022)

■ Label coverage (Zhang et al. 2022)



Today’s lecture

• Prompting and in-context learning basics 

• No prompt 

• Zero-shot 

• Few-shot 

• Next: prompt engineering



Chat Prompts
• Recently, many models are fine-tuned to be chatbots (next lecture) 
• Usually inputs are specified in a messages format
messages=[ 
  { 
    "role": “system", 
    "content": “Please classify movie reviews as 'positive' or ‘negative'." 
  }, 
  { 
    "role": “user", 
    "content": "This movie is a banger.” 
  }, 
] 

• Roles: 
• “system”: message provided to the system to influence behavior 
• “user”: message input by the user 
• “assistant”: message output by the system



Chat Prompts
• The series of messages is turned into a string that uses special tags.

38

Llama 3

System

User
Assistant

https://www.llama.com/docs/model-cards-and-prompt-formats/meta-llama-3/
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…

https://docs.anthropic.com/en/release-notes/system-prompts#nov-22nd-2024 

Step-by-
step 
reasoning

Knowledge 
cutoff

Example system prompt: Anthropic Claude

https://docs.anthropic.com/en/release-notes/system-prompts#nov-22nd-2024


40https://docs.anthropic.com/en/release-notes/system-prompts#nov-22nd-2024 

Harmful requests

Counting words/letters/characters
Markdown

Helps with prompting techniques

… …

Example system prompt: Anthropic Claude

https://docs.anthropic.com/en/release-notes/system-prompts#nov-22nd-2024
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Example system prompt



Example system prompt



Today’s lecture

• Prompting and in-context learning basics 

• Prompt engineering 

• Chat 

• Chain-of-thought 

• Prompt chains



Chain of Thought Prompting (Wei et al. 2022)

• Get the model to explain its reasoning before making an 
answer 
• Approach: provide hand-written few-shot examples

• Provides the model with adaptive computation time



Chain-of-thought without examples
• Models may output reasoning chains without examples 

• Chain-of-thought style data in pretraining/fine-tuning data 
• System prompts

Kojima et al 2022  
(proprietary models PaLM and Instruct-GPT)



Code example



Problem decomposition

• Decompose problems 
into multiple steps. 
Example: 
• Ask sub-question 
• Query search engine 
• Repeat 

• Approach: provide few-
shot examples



Prompt chains

48

• More generally, “chain” together multiple calls to prompted models  
(and/or external functions)



Related software

49

https://srush-minichain.hf.space/ 

https://srush-minichain.hf.space/


Recap
• Prompting and in-context learning basics 

• No prompt 

• Zero-shot 

• Few-shot 

• Prompt engineering 

• Chat and system prompts 

• Chain-of-thought 

• Prompt chaining



Thank you


