
CS11-711 Advanced NLP

Scaling Laws and
In-Context Learning

Sean Welleck

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code

Recap: pre-training

Data Pre-train Base
Model

Adapt
Sentiment analysis

Translation

Dialogue

Instruction following

Problem solving

…

Recap: adaptation by prompting

Base
Model

TranslationPrompt

Example:
“Translate this sentence into English:

この映画が嫌い”

+

Prompt

Prompt

Prompt

Sentiment analysis

Instruction following

Problem solving

…

Today’s lecture

• Thinking about pretraining: scaling laws

• Prompting basics

More data

Better  
Loss

Bigger
model

Challenge
• Given a fixed pretraining budget, how should we

allocate the budget to achieve the best possible
model?

• Add more training data?

• Make the model bigger?

• A combination of both?

• Other variables: architecture, hyperparameters, …

• First: let’s be a bit more precise

Training = spending compute
• We spend compute by performing forward and

backward passes on training sequences

• An approximation for transformer language models:

: number of model parameters
: number of tokens
: compute; floating point operations (FLOPs)

C ≈ 6ND

N
D
C

Approximation from [Kaplan et al 2020]

Training = spending compute
• We spend compute by performing forward and

backward passes on training sequences

• For example, Llama 2:

: number of model parameters
: number of tokens
: compute; floating point operations (FLOPs)

C ≈ 6 × 7 billion × 2 trillion

= 8.4 × 1022FLOPs

N
D
C

Training = spending compute

• Want to know: How does performance (e.g., loss)
vary as we modulate these variables:

• Data scaling: change D, what happens to loss?

• Model scaling: change N, what happens to loss?

• Compute scaling: should we increase compute
by increasing D or increasing N?

• …

Scaling laws
• Simple, predictive rules for model performance

• Helps us answer the questions on the previous slide

• Run experiments with many configurations,
identify trend

Power laws and log-log plots
• “Power law”:

• Take logs:

• Linear on a log-log plot

• Suppose we double :

=>

y = a ⋅ xb

log y = log(a) + b ⋅ log(x)

x

y = axb

ynew = a(2x)b

= axb2b

ynew = y2b

Data scaling laws
• Language models with cross-entropy

loss widely observed to follow a
power law in data size

•

• Building the plot:

• Train models with varied dataset
size

• Ensure model size is not
bottlenecked: use a large model

L = (D
Dc)

−b

D

N

[Kaplan+ 2020]

[Hestness+ 2017]

Doubling data: => 6.4% decrease in loss2−0.095 ≈ 0.936

Data scaling laws

[Hestness+ 2017]

• Recall that cross-entropy
loss is lower-bounded by
the entropy (last lecture)

• There is a power-law
region

• Then the power law must
eventually level off

Data scaling laws

• Example uses:

• Data composition

• Effect of repeated
data

• …

[Kaplan+ 2020]

[Muenninghoff + 2025]

Model size scaling laws
• Similar relationships observed for model size
• Large models require fewer samples
• Useful for determining model hyperparameters

[Kaplan+ 2020]

Compute scaling laws

• Basic idea:

• Train models of different
sizes and numbers of
tokens

• Plot loss at each step of
training [light blue]

• Pick minimum loss at each
amount of compute [black]

• Run linear regression on the
resulting (loss, compute)
pairs [orange]

Scaling laws

Terminology:

• Compute optimal: black

• Scaling law: orange

• E.g. L(C) ∝ 1/C0.05

Using scaling laws

• Scaling laws are used to choose hyper parameters

• Basic idea:

• Run many experiments at a small scale

• Use a scaling law to estimate the best hyper parameter for a
large-scale model / training run

Example: choose model size and # of tokens

Run experiments Fit a line and
predict optimal

model size

Fit a line and
predict optimal

of tokens

Training Compute-Optimal Large Language Models

https://arxiv.org/abs/2203.15556

Example: choose batch size, learning rate

Optimal batch size Optimal learning rate

DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

https://arxiv.org/abs/2401.02954

Recap

• We can think of pre-training in terms of compute, which is
determined by model size and number of tokens

• Scaling laws are observed relationships between a variable
(e.g., compute) and performance (e.g., loss)

• We can use them to extrapolate, which is helpful for making
decisions about an expensive pretraining run

Today’s lecture

• Thinking about pretraining: scaling laws

• Prompting basics

Prompting
• Put an input into a format (a “prompt”) that

encourages the model to carry out a task

• x: “I love advanced NLP!”

• f(x): Classify this sentence’s sentiment as either
Positive or Negative: “I love advanced NLP!”.

• Example y: The sentence is positive.

x

pθ(y | f(x)⏟
prompt

)

Aside: generation

• Given a prompt, we can generate an output using an
inference algorithm (we’ll go in depth in Lecture 9).

• A simple inference algorithm is autoregressive
sampling (Lecture 3):

• Iteratively sample a next token, then append it to the
context:

Until [END] is generated:

y

yt ∼ pθ(yt | f(x), y<t)

Strategy 1: No prompt
• After pre-training, we have an autoregressive language model

.

• The language model can complete text:

• Prompt:

• When a dog sees a squirrel, it will usually

• Output

• bark a lot, especially at close range.

• start to chase after it. When it does…

• …

p(x1, x2, …, xT)

x1:t

xt+1:T

Strategy 2: Instruction prompt
(“zero shot”)

• We can prompt the model to perform a specific task by providing
an instruction.

• Prompt: f(x; instruction)

• Called “zero-shot” because we don’t provide (x, y) examples in the
prompt.

Instruction prompt (“zero shot”)
• Considerations:

• The model’s generated output formatting can be varied
and tricky to deal with.

• Performance can vary based on the prompt wording.

• Models may not be trained for instruction following, or
trained only to support specific formats

Strategy 3: Instruction + examples
(“few shot”)

• Additionally provide examples in the prompt

• Prompt: f(; instruction,)

• Output:

• Examples help the model understand the task format
and expected outputs without any parameter updates

• Referred to as “in-context learning”

(x, y)

xtest [(x, y)1, …, (x, y)K]

ytest

Instruction + examples (“few shot”)

Instruction + examples (“few shot”)

MATH dataset prompt, used in Llemma (source)

Instruction + examples (“few shot”)

https://github.com/wellecks/lm-evaluation-harness/blob/b86d67b3d6094eb304a146e29bb5f84c422a7d4c/lm_eval/tasks/minerva_math.py

In-context learning phenomena

• Sometimes only giving the
inputs works better than giving
the (inputs, outputs)!

• “Task retrieval”

• ICL: (input, output)
• Unsupervised ICL: input only
• Reinforced ICL: (input, output)
 where output is model-generated

Agarwal et al 2024

Flipped:
[negative, neutral, positive] ->
[neutral, positive, negative]

Abstract:
[A, B, C]

“Task retrieval”/
“pretraining bias”

“Unlearning pretraining bias”

Agarwal et al 2024

In-context learning phenomena

Ability to leverage many examples varies by model

Agarwal et al 2024

In-context learning phenomena

LMs are Sensitive to Small Changes in
In-context Examples

35

• Example ordering (Lu et al. 2021) ■ Label balance (Zhang et al. 2022)

■ Label coverage (Zhang et al. 2022)

Today’s lecture

• Prompting and in-context learning basics

• No prompt

• Zero-shot

• Few-shot

• Next: prompt engineering

Chat Prompts
• Recently, many models are fine-tuned to be chatbots (next lecture)
• Usually inputs are specified in a messages format
messages=[
 {
 "role": “system",
 "content": “Please classify movie reviews as 'positive' or ‘negative'."
 },
 {
 "role": “user",
 "content": "This movie is a banger.”
 },
]

• Roles:
• “system”: message provided to the system to influence behavior
• “user”: message input by the user
• “assistant”: message output by the system

Chat Prompts
• The series of messages is turned into a string that uses special tags.

38

Llama 3

System

User
Assistant

https://www.llama.com/docs/model-cards-and-prompt-formats/meta-llama-3/

39

…

https://docs.anthropic.com/en/release-notes/system-prompts#nov-22nd-2024

Step-by-
step
reasoning

Knowledge
cutoff

Example system prompt: Anthropic Claude

https://docs.anthropic.com/en/release-notes/system-prompts#nov-22nd-2024

40https://docs.anthropic.com/en/release-notes/system-prompts#nov-22nd-2024

Harmful requests

Counting words/letters/characters
Markdown

Helps with prompting techniques

… …

Example system prompt: Anthropic Claude

https://docs.anthropic.com/en/release-notes/system-prompts#nov-22nd-2024

41

Example system prompt

Example system prompt

Today’s lecture

• Prompting and in-context learning basics

• Prompt engineering

• Chat

• Chain-of-thought

• Prompt chains

Chain of Thought Prompting (Wei et al. 2022)

• Get the model to explain its reasoning before making an
answer
• Approach: provide hand-written few-shot examples

• Provides the model with adaptive computation time

Chain-of-thought without examples
• Models may output reasoning chains without examples

• Chain-of-thought style data in pretraining/fine-tuning data
• System prompts

Kojima et al 2022
(proprietary models PaLM and Instruct-GPT)

Code example

Problem decomposition

• Decompose problems
into multiple steps.
Example:
• Ask sub-question
• Query search engine
• Repeat

• Approach: provide few-
shot examples

Prompt chains

48

• More generally, “chain” together multiple calls to prompted models
(and/or external functions)

Related software

49

https://srush-minichain.hf.space/

https://srush-minichain.hf.space/

Recap
• Prompting and in-context learning basics

• No prompt

• Zero-shot

• Few-shot

• Prompt engineering

• Chat and system prompts

• Chain-of-thought

• Prompt chaining

Thank you

