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Recap
• Modeling/parameterization

• Classification or generation? 

• Autoregressive? 

• Which architecture? 

• Learning

• Maximum likelihood or other? 

• Pre-train first? 

• What data or supervision can I leverage? 

• Today: Inference 

• Using a model after learning



Today: generating outputs with 
a language model

Autoregressive 
Language 

Model
The weather today is cloudy with a 

chance of … 



Today’s lecture

• Basic setup 

• Decoding objectives and algorithms 

• Speeding up decoding 



Basic setup
• With an autoregressive language model, we have: 

 

• Note: we’ll use  to refer to a full sequence .

pθ(y1:T |x) =
T

∏
t=1

pθ(yt |y<t, x)

y y1:T



Basic setup
• Each term  gives us a probability 

distribution over next-tokens
pθ(yt |y<t, x)

x

pθ(y1 |x)



Basic setup
• Each term  gives us a probability 

distribution over next-tokens 

• We can choose a next token, add it to the context, 
and get a new distribution over next-tokens  

• Decoding: choose next tokens so that  
we end up with an output .

pθ(yt |y<t, x)

y1:T

x

pθ(y2 |x, y1)

y1



Decoding
• Each time-step of decoding requires a choice 

• What is the objective? How do we make local choices 
that achieve the objective?



Today’s lecture

• Basic setup 

• Decoding objectives and algorithms 

• Optimization 

• Sampling



Decoding as optimization

• Goal: find a single most likely output 

̂y = argmaxy∈𝒴pθ(y |x)



Decoding as optimization

• Goal: find a single most likely output 

̂y = argmaxy∈𝒴pθ(y |x)

• Referred to as: 

• Mode-seeking: finds a mode of the distribution 

• Maximum a-posteriori (MAP): given a prior  and 
evidence , find a mode of the posterior 

θ
x pθ(y |x)



Decoding as optimization

• Goal: find a single most likely output 

 

• Key challenge: output space  is very large

̂y = argmaxy∈𝒴pθ(y |x)

𝒴



Approach 1: greedy decoding

• Choose the most likely token at each step: 

For t = 1…End: 

       ̂yt = argmaxyt∈V pθ(yt | ̂y<t, x)

x y1

pθ(y2 |x, y1)



Approach 1: greedy decoding

• Does not guarantee the most-likely sequence:



Approach 1: greedy decoding

• Does not guarantee the most-likely sequence: 

For t = 1…End: 

       ̂yt = argmaxyt∈V pθ(yt | ̂y<t, x)



Approach 2: beam search

• Beam search is a width-limited breadth-first search 

• Key idea: maintain several likely paths



Approach 2: beam search

GPT2, beam size 2



Approach 2: beam search

GPT2, beam size 2



Approach 2: beam search

GPT2, beam size 2



Approach 2: beam search

GPT2, beam size 2



Approach 2: beam search

• Beam search is a width-limited breadth-first search 

• B = 1: greedy decoding 

• B = : exact MAP 

• Example:  

• In practice, we use B = smaller number, e.g. 16, 
treated as a hyper-parameter

|V |Tmax

50000128 = very big



Huggingface interface

• Greedy decoding 

• model.generate(do_sample=False, num_beams = 1) 

• Beam search 

• b=16 
model.generate(do_sample=False, num_beams = b)



MAP decoding

• Traditionally widely used in closed-ended tasks like 
translation or summarization



Pitfalls of MAP decoding

• 1. Degeneracy: repetition traps, short sequences 

• 2. Is the highest probability the “best”?



Degeneracy: repetition traps
• MAP decoding (greedy search) with SmolLM2-135M: 

• Models tend to assign high probability to repetitive loops 

• Mitigations: repetition penalty, modify the loss function



Degeneracy: short sequences
• [Stahlberg and Byrne, 2019]: the highest-probability 

sequence might be the empty sequence! 

• Remedy: length normalization



Degeneracy: atypicality
• Biased coin 

• What is the most likely outcome of 100 flips? 

• All heads! 

• This outcome is atypical 

• Similarly, the most likely generation may also be 
atypical 

• Remedy: sampling
[Meister et al, 2022]



Is the highest-probability output best?

• Outputs with low 
probability tend to be 
worse than those with 
high probability 

• But when you’re just 
comparing the top 
outputs, it’s less clear 



Is the highest-probability output best?

• When there are multiple ways to say the same thing, 
probability is spread across the multiple ways

Total  
0.6



Pitfalls of MAP decoding
• As a result, we often want outputs that are “likely” but 

not “maximally likely”



Today’s lecture

• Basic setup 

• Objectives 

• Optimization 

• Sampling



Sampling

• Modern LLM APIs offer settings 
for sampling

Samples



Basic sampling (“ancestral sampling”)

• Simply sample from the model’s next-token 
distribution at each step 

For t = 1…End: 

        ̂yt ∼ pθ(yt | ̂y<t, x)

x

pθ(y2 |x, y1)

y1



Basic sampling (“ancestral sampling”)

• Simply sample from the model’s next-token 
distribution at each step 

For t = 1…End: 

        ̂yt ∼ pθ(yt | ̂y<t, x)

x

pθ(y2 |x, y1)

y1



Basic sampling (“ancestral sampling”)

• Simply sample from the model’s next-token 
distribution at each step 

For t = 1…End: 

        ̂yt ∼ pθ(yt | ̂y<t, x)

x

pθ(y2 |x, y1)

y1



Basic sampling (“ancestral sampling”)

• Simply sample from the model’s next-token 
distribution at each step 

For t = 1…End: 

        

• Equivalent to sequence sampling,  

̂yt ∼ pθ(yt | ̂y<t, x)

y1:T ∼ pθ(y1:T |x)



Aside: categorical sampling

• Each next-token distribution is a categorical 
distribution over  (vocab size) items 

• Easy/fast to sample from 

• Categorical sampling is implemented in common 
libraries such as PyTorch

V



What is wrong with ancestral sampling?

• With a poorly trained model, leads to incoherence



What is wrong with ancestral sampling?

• Often leads to incoherence 

• Heavy tail: there are many choices for the next-
token (e.g., 50,000). Even if each ‘bad’ token has a 
small probability, the sum of bad tokens has a 
nontrivial probability



What is wrong with ancestral sampling?

• Compounding error: Suppose the total probability of 
sampling a bad token is .  

• Then for a length-T sequence, the probability of 
sampling no bad tokens is  

• :   p(no bad tokens): 0.276 

• :   p(no bad tokens): 0.0014 

• : p(no bad tokens): 0.000033

ϵ

(1 − ϵ)T

ϵ = 0.01, T = 128

ϵ = 0.05, T = 128

ϵ = 0.01, T = 1024



Workaround: truncate the tail
• Top-k sampling: sample only from the k most-

probable tokens at each step 

̂yt ∼ {pθ(yt |y<t, x)/Zt if yt in top k
0 otherwise

… …



Workaround: truncate the tail
• Top-p sampling: sample only from the top p 

probability mass 



Workaround: truncate the tail



Huggingface interface

• Ancestral sampling 

• model.generate(do_sample=True) 

• Top-k sampling 

• k=20  
model.generate(do_sample=True, top_k=k) 

• Top-p sampling 

• p=0.9  
model.generate(do_sample=True, top_p=p)



Workaround: truncate the tail
• Several strategies have been developed, e.g.: 



Temperature sampling
• Instead of truncation, make distribution more “peaked” 

 softmax(x, τ) =
exp(x/τ)
∑i (xi/τ)



Temperature sampling



Temperature sampling



Today’s lecture

• Decoding as optimization 

• Sampling 

• Speeding up decoding / “efficient inference”



Key value cache
• During decoding, each new token at time t attends to positions  

• The attention for step t needs the keys and values for all past tokens  

• If we recomputed those keys and values for every step, we would 
redo computations: 

•  

•  

•  

• … 

• KV caching: store the previously computed keys/values 

• Due to masking future tokens, caching is equivalent to recomputing!

≤ t

1 : t

O(T2)

k1, v1

k1, v1, k2, v2

k1, v1, k2, v2, k3, v3



Key value cache
• Consider 1 transformer layer with 1 attention head. At step t of decoding: 

•  

•  

•  

• We have the previous keys and values cached: 

•   

•  

• We append  to  and  to  and compute attention: 

•

qt = htWq ∈ ℝ1×dk

kt = htWK ∈ ℝ1×dk

vt = htWV ∈ ℝ1×dv

K1:t−1 ∈ ℝ(t−1)×dk

V1:t−1 ∈ ℝ(t−1)×dv

kt K1:t−1 vt V1:t−1

zt = softmax ( qtKT
1:t

dk ) V1:t

Without caching,  
we recompute: 

 K1:t = [h1; h2; …; ht]Wk
V1:t = [h1; h2; …; ht]Wv



Key value cache

Diagram by Hailey Schoelkopf

https://haileyschoelkopf.github.io/


Code example



• Memory: transferring data (weights, activations) 

• Compute: performing computations 

time = max ( OperationFLOPs
DeviceFLOP/s

,
DataTransferred(GB)

MemoryBandwidth(GB/s) )

Why is decoding slow?

“Compute-bound” 

e.g. A=BC: O(mkn) FLOPs,  
O(mk+kn) bytes

“Memory-bound” 

e.g. a=Bx: O(mk) FLOPs 
O(mk) bytes

Example: decoding one token



What does speeding up mean?
• Latency: how long does a user wait for a response? 

• Time to first token, time per request

• Throughput: how many requests are completed per second? 

• Tokens per second, requests per second

Next: a very quick tour of  
strategies



Speeding up a single token
Goal Strategy Examples

Reduce memory 
bandwidth 

(shrink data to 
move)

Quantization, 
distillation, 

architecture 
elements

GPTQ, AWQ (Lecture 19), 
GQA/MQA

Increase FLOP/s
Optimize how 
operations run 

on given 
hardware

FlashAttention (Lecture 22),  
torch.compile/kernel fusion

Decrease FLOPs
Reduce FLOPs 

in the 
architecture

Mixture-of-Experts (Lecture 21) 
Mamba (Lecture 22)

time = max ( OperationFLOPs
DeviceFLOP/s

,
DataTransferred(GB)

MemoryBandwidth(GB/s) )



Speeding up a full sequence

Strategy Idea Examples

Parallelize over 
time

Draft multiple 
tokens cheaply, 
verify in parallel 
with the target 

model

Speculative decoding

Parallelize over 
time

Generate 
multiple tokens 

in parallel
Non-autoregressive models, e.g. 

diffusion



Speculative decoding
• Some tokens are easier to predict than others 

• The cow jumped over the moon . <EOS> 

• Idea: 

• Use a small draft model  to generate a few tokens ahead 

• Larger model  processes the generated tokens all at once 

• Accept drafted tokens with probability: 

q

p

αi = min (1,
p(token | . . . )
q(token | . . . ) )



Speculative decoding



Speeding up multiple sequences

Strategy Idea Examples

State re-use
Shared prefixes 
=> shared KV 

cache

PagedAttention, RadixAttention 
(SGLang)

Improved 
batching

Better 
scheduling of 

concurrent 
generations

Continuous batching

Program-level 
optimization

Optimize the 
computation 

graph of the full 
generation 
program

SGLang, DSPy

Looking ahead to Lecture 23



Recap

• Decoding as optimization 

• Sampling 

• Speeding up decoding 



Thank you


