
CS11-711 Advanced NLP

Decoding Algorithms
Sean Welleck

Slides adapted from:
Matthew Finlayson (NeurIPS 2024 Tutorial) and Amanda Bertsch (Spring 2025 Guest Lecture)

https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code

https://mattf1n.github.io/
https://cmu-l3.github.io/neurips2024-inference-tutorial/
https://cmu-l3.github.io/anlp-spring2026/
https://github.com/cmu-l3/anlp-spring2026-code

Recap
• Modeling/parameterization

• Classification or generation?

• Autoregressive?

• Which architecture?

• Learning

• Maximum likelihood or other?

• Pre-train first?

• What data or supervision can I leverage?

• Today: Inference

• Using a model after learning

Today: generating outputs with
a language model

Autoregressive
Language

Model
The weather today is cloudy with a

chance of …

Today’s lecture

• Basic setup

• Decoding objectives and algorithms

• Speeding up decoding

Basic setup
• With an autoregressive language model, we have:

• Note: we’ll use to refer to a full sequence .

pθ(y1:T |x) =
T

∏
t=1

pθ(yt |y<t, x)

y y1:T

Basic setup
• Each term gives us a probability

distribution over next-tokens
pθ(yt |y<t, x)

x

pθ(y1 |x)

Basic setup
• Each term gives us a probability

distribution over next-tokens

• We can choose a next token, add it to the context,
and get a new distribution over next-tokens

• Decoding: choose next tokens so that
we end up with an output .

pθ(yt |y<t, x)

y1:T

x

pθ(y2 |x, y1)

y1

Decoding
• Each time-step of decoding requires a choice

• What is the objective? How do we make local choices
that achieve the objective?

Today’s lecture

• Basic setup

• Decoding objectives and algorithms

• Optimization

• Sampling

Decoding as optimization

• Goal: find a single most likely output

̂y = argmaxy∈𝒴pθ(y |x)

Decoding as optimization

• Goal: find a single most likely output

̂y = argmaxy∈𝒴pθ(y |x)

• Referred to as:

• Mode-seeking: finds a mode of the distribution

• Maximum a-posteriori (MAP): given a prior and
evidence , find a mode of the posterior

θ
x pθ(y |x)

Decoding as optimization

• Goal: find a single most likely output

• Key challenge: output space is very large

̂y = argmaxy∈𝒴pθ(y |x)

𝒴

Approach 1: greedy decoding

• Choose the most likely token at each step:

For t = 1…End:

 ̂yt = argmaxyt∈V pθ(yt | ̂y<t, x)

x y1

pθ(y2 |x, y1)

Approach 1: greedy decoding

• Does not guarantee the most-likely sequence:

Approach 1: greedy decoding

• Does not guarantee the most-likely sequence:

For t = 1…End:

 ̂yt = argmaxyt∈V pθ(yt | ̂y<t, x)

Approach 2: beam search

• Beam search is a width-limited breadth-first search

• Key idea: maintain several likely paths

Approach 2: beam search

GPT2, beam size 2

Approach 2: beam search

GPT2, beam size 2

Approach 2: beam search

GPT2, beam size 2

Approach 2: beam search

GPT2, beam size 2

Approach 2: beam search

• Beam search is a width-limited breadth-first search

• B = 1: greedy decoding

• B = : exact MAP

• Example:

• In practice, we use B = smaller number, e.g. 16,
treated as a hyper-parameter

|V |Tmax

50000128 = very big

Huggingface interface

• Greedy decoding

• model.generate(do_sample=False, num_beams = 1)

• Beam search

• b=16
model.generate(do_sample=False, num_beams = b)

MAP decoding

• Traditionally widely used in closed-ended tasks like
translation or summarization

Pitfalls of MAP decoding

• 1. Degeneracy: repetition traps, short sequences

• 2. Is the highest probability the “best”?

Degeneracy: repetition traps
• MAP decoding (greedy search) with SmolLM2-135M:

• Models tend to assign high probability to repetitive loops

• Mitigations: repetition penalty, modify the loss function

Degeneracy: short sequences
• [Stahlberg and Byrne, 2019]: the highest-probability

sequence might be the empty sequence!

• Remedy: length normalization

Degeneracy: atypicality
• Biased coin

• What is the most likely outcome of 100 flips?

• All heads!

• This outcome is atypical

• Similarly, the most likely generation may also be
atypical

• Remedy: sampling
[Meister et al, 2022]

Is the highest-probability output best?

• Outputs with low
probability tend to be
worse than those with
high probability

• But when you’re just
comparing the top
outputs, it’s less clear

Is the highest-probability output best?

• When there are multiple ways to say the same thing,
probability is spread across the multiple ways

Total
0.6

Pitfalls of MAP decoding
• As a result, we often want outputs that are “likely” but

not “maximally likely”

Today’s lecture

• Basic setup

• Objectives

• Optimization

• Sampling

Sampling

• Modern LLM APIs offer settings
for sampling

Samples

Basic sampling (“ancestral sampling”)

• Simply sample from the model’s next-token
distribution at each step

For t = 1…End:

 ̂yt ∼ pθ(yt | ̂y<t, x)

x

pθ(y2 |x, y1)

y1

Basic sampling (“ancestral sampling”)

• Simply sample from the model’s next-token
distribution at each step

For t = 1…End:

 ̂yt ∼ pθ(yt | ̂y<t, x)

x

pθ(y2 |x, y1)

y1

Basic sampling (“ancestral sampling”)

• Simply sample from the model’s next-token
distribution at each step

For t = 1…End:

 ̂yt ∼ pθ(yt | ̂y<t, x)

x

pθ(y2 |x, y1)

y1

Basic sampling (“ancestral sampling”)

• Simply sample from the model’s next-token
distribution at each step

For t = 1…End:

• Equivalent to sequence sampling,

̂yt ∼ pθ(yt | ̂y<t, x)

y1:T ∼ pθ(y1:T |x)

Aside: categorical sampling

• Each next-token distribution is a categorical
distribution over (vocab size) items

• Easy/fast to sample from

• Categorical sampling is implemented in common
libraries such as PyTorch

V

What is wrong with ancestral sampling?

• With a poorly trained model, leads to incoherence

What is wrong with ancestral sampling?

• Often leads to incoherence

• Heavy tail: there are many choices for the next-
token (e.g., 50,000). Even if each ‘bad’ token has a
small probability, the sum of bad tokens has a
nontrivial probability

What is wrong with ancestral sampling?

• Compounding error: Suppose the total probability of
sampling a bad token is .

• Then for a length-T sequence, the probability of
sampling no bad tokens is

• : p(no bad tokens): 0.276

• : p(no bad tokens): 0.0014

• : p(no bad tokens): 0.000033

ϵ

(1 − ϵ)T

ϵ = 0.01, T = 128

ϵ = 0.05, T = 128

ϵ = 0.01, T = 1024

Workaround: truncate the tail
• Top-k sampling: sample only from the k most-

probable tokens at each step

̂yt ∼ {pθ(yt |y<t, x)/Zt if yt in top k
0 otherwise

… …

Workaround: truncate the tail
• Top-p sampling: sample only from the top p

probability mass

Workaround: truncate the tail

Huggingface interface

• Ancestral sampling

• model.generate(do_sample=True)

• Top-k sampling

• k=20
model.generate(do_sample=True, top_k=k)

• Top-p sampling

• p=0.9
model.generate(do_sample=True, top_p=p)

Workaround: truncate the tail
• Several strategies have been developed, e.g.:

Temperature sampling
• Instead of truncation, make distribution more “peaked”

 softmax(x, τ) =
exp(x/τ)
∑i (xi/τ)

Temperature sampling

Temperature sampling

Today’s lecture

• Decoding as optimization

• Sampling

• Speeding up decoding / “efficient inference”

Key value cache
• During decoding, each new token at time t attends to positions

• The attention for step t needs the keys and values for all past tokens

• If we recomputed those keys and values for every step, we would
redo computations:

•

•

•

• …

• KV caching: store the previously computed keys/values

• Due to masking future tokens, caching is equivalent to recomputing!

≤ t

1 : t

O(T2)

k1, v1

k1, v1, k2, v2

k1, v1, k2, v2, k3, v3

Key value cache
• Consider 1 transformer layer with 1 attention head. At step t of decoding:

•

•

•

• We have the previous keys and values cached:

•

•

• We append to and to and compute attention:

•

qt = htWq ∈ ℝ1×dk

kt = htWK ∈ ℝ1×dk

vt = htWV ∈ ℝ1×dv

K1:t−1 ∈ ℝ(t−1)×dk

V1:t−1 ∈ ℝ(t−1)×dv

kt K1:t−1 vt V1:t−1

zt = softmax (qtKT
1:t

dk) V1:t

Without caching,
we recompute:

 K1:t = [h1; h2; …; ht]Wk
V1:t = [h1; h2; …; ht]Wv

Key value cache

Diagram by Hailey Schoelkopf

https://haileyschoelkopf.github.io/

Code example

• Memory: transferring data (weights, activations)

• Compute: performing computations

time = max (OperationFLOPs
DeviceFLOP/s

,
DataTransferred(GB)

MemoryBandwidth(GB/s))

Why is decoding slow?

“Compute-bound”

e.g. A=BC: O(mkn) FLOPs,
O(mk+kn) bytes

“Memory-bound”

e.g. a=Bx: O(mk) FLOPs
O(mk) bytes

Example: decoding one token

What does speeding up mean?
• Latency: how long does a user wait for a response?

• Time to first token, time per request

• Throughput: how many requests are completed per second?

• Tokens per second, requests per second

Next: a very quick tour of
strategies

Speeding up a single token
Goal Strategy Examples

Reduce memory
bandwidth

(shrink data to
move)

Quantization,
distillation,

architecture
elements

GPTQ, AWQ (Lecture 19),
GQA/MQA

Increase FLOP/s
Optimize how
operations run

on given
hardware

FlashAttention (Lecture 22),
torch.compile/kernel fusion

Decrease FLOPs
Reduce FLOPs

in the
architecture

Mixture-of-Experts (Lecture 21)
Mamba (Lecture 22)

time = max (OperationFLOPs
DeviceFLOP/s

,
DataTransferred(GB)

MemoryBandwidth(GB/s))

Speeding up a full sequence

Strategy Idea Examples

Parallelize over
time

Draft multiple
tokens cheaply,
verify in parallel
with the target

model

Speculative decoding

Parallelize over
time

Generate
multiple tokens

in parallel
Non-autoregressive models, e.g.

diffusion

Speculative decoding
• Some tokens are easier to predict than others

• The cow jumped over the moon . <EOS>

• Idea:

• Use a small draft model to generate a few tokens ahead

• Larger model processes the generated tokens all at once

• Accept drafted tokens with probability:

q

p

αi = min (1,
p(token | . . .)
q(token | . . .))

Speculative decoding

Speeding up multiple sequences

Strategy Idea Examples

State re-use
Shared prefixes
=> shared KV

cache

PagedAttention, RadixAttention
(SGLang)

Improved
batching

Better
scheduling of

concurrent
generations

Continuous batching

Program-level
optimization

Optimize the
computation

graph of the full
generation
program

SGLang, DSPy

Looking ahead to Lecture 23

Recap

• Decoding as optimization

• Sampling

• Speeding up decoding

Thank you

