

CS11-711 Advanced NLP Retrieval and RAG

Akari Asai

<https://cmu-l3.github.io/anlp-spring2026/>

Limitations of LMs: Hallucinations

(GPT 5.1, 2026/01/20)

Limitations of LMs: Hallucinations

(GPT 5.1, 2026/01/20)

Who is Akari Asai?

Limitations of LMs: Hallucinations

(GPT 5.1, 2026/01/20)

Who is Akari Asai?

Akari Asai is a prominent researcher in the field of **Natural Language Processing (NLP)** and **Artificial Intelligence (AI)**. She is particularly known for her work on **open-domain question answering**, **retrieval-augmented generation**, and **large language models**. Her research focuses on enabling machines to retrieve, understand, and reason over large corpora of unstructured text — a critical area for building systems like ChatGPT and other advanced NLP applications.

Limitations of LMs: Hallucinations

(GPT 5.1, 2026/01/20)

Who is Akari Asai?

Akari Asai is a prominent researcher in the field of **Natural Language Processing (NLP)** and **Artificial Intelligence (AI)**. She is particularly known for her work on **open-domain question answering**, **retrieval-augmented generation**, and **large language models**. Her research focuses on enabling machines to retrieve, understand, and reason over large corpora of unstructured text — a critical area for building systems like ChatGPT and other advanced NLP applications.

📄 Representative Papers by Akari Asai

Here are **five representative papers** by Akari Asai, with their **publication venues**:

1. "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks"

Venue: Proceedings of NeurIPS 2020 (Conference on Neural Information Processing Systems)

2. "Learning to Retrieve Passages without Supervision"

Venue: Proceedings of ACL 2021 (Annual Meeting of the Association for Computational Linguistics)

3. "Task-Aware Query Reformulation with Reinforcement Learning for Open-Domain Question Answering"

Venue: Proceedings of EMNLP 2019 (Conference on Empirical Methods in Natural Language Processing)

Limitations of LMs: Hallucinations

(GPT 5.1, 2026/01/20)

Who is Akari Asai?

Akari Asai is a prominent researcher in the field of **Natural Language Processing (NLP)** and **Artificial Intelligence (AI)**. She is particularly known for her work on **open-domain question answering**, **retrieval-augmented generation**, and **large language models**. Her research focuses on enabling machines to retrieve, understand, and reason over large corpora of unstructured text — a critical area for building systems like ChatGPT and other advanced NLP applications.

Representative Papers by Akari Asai

Here are **five representative papers** by Akari Asai, with their **publication venues**:

1. **~~Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks~~**

Venue: Proceedings of NeurIPS 2020 (Conference on Neural Information Processing Systems)

2. **"Learning to Retrieve Passages without Supervision"**

Venue: Proceedings of ACL 2021 (Annual Meeting of the Association for Computational Linguistics)

3. **"Task-Aware Query Reformulation with Reinforcement Learning for Open-Domain Question Answering"**

Venue: Proceedings of EMNLP 2019 (Conference on Empirical Methods in Natural Language Processing)

Limitations of LMs: Hallucinations

(GPT 5.1, 2026/01/20)

Who is Akari Asai?

Akari Asai is a prominent researcher in the field of **Natural Language Processing (NLP)** and **Artificial Intelligence (AI)**. She is particularly known for her work on **open-domain question answering**, **retrieval-augmented generation**, and **large language models**. Her research focuses on enabling machines to retrieve, understand, and reason over large corpora of unstructured text — a critical area for building systems like ChatGPT and other advanced NLP applications.

Representative Papers by Akari Asai

Here are **five representative papers** by Akari Asai, with their **publication venues**:

1. **~~Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks~~**

Venue: Proceedings of NeurIPS 2020 (Conference on Neural Information Processing Systems)

2. **"Learning to Retrieve Passages without Supervision"**

Venue: Proceedings of ACL 2021 (Annual Meeting of the Association for Computational Linguistics)

3. **"Task-Aware Query Reformulation with Reinforcement Learning for Open-Domain Question Answering"**

Venue: Proceedings of EMNLP 2019 (Conference on Empirical Methods in Natural Language Processing)

Paper exists but not by me

Limitations of LMs: Hallucinations

(GPT 5.1, 2026/01/20)

Who is Akari Asai?

Akari Asai is a prominent researcher in the field of **Natural Language Processing (NLP)** and **Artificial Intelligence (AI)**. She is particularly known for her work on **open-domain question answering**, **retrieval-augmented generation**, and **large language models**. Her research focuses on enabling machines to retrieve, understand, and reason over large corpora of unstructured text — a critical area for building systems like ChatGPT and other advanced NLP applications.

Representative Papers by Akari Asai

Here are **five representative papers** by Akari Asai, with their **publication venues**:

Paper exists but not by me

1. ~~"Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks"~~

Venue: Proceedings of NeurIPS 2020 (Conference on Neural Information Processing Systems)

2. ~~"Learning to Retrieve Passages without Supervision"~~

Venue: Proceedings of ACL 2021 (Annual Meeting of the Association for Computational Linguistics)

3. **"Task-Aware Query Reformulation with Reinforcement Learning for Open-Domain Question Answering"**

Venue: Proceedings of EMNLP 2019 (Conference on Empirical Methods in Natural Language Processing)

Limitations of LMs: Hallucinations

(GPT 5.1, 2026/01/20)

Who is Akari Asai?

Akari Asai is a prominent researcher in the field of **Natural Language Processing (NLP)** and **Artificial Intelligence (AI)**. She is particularly known for her work on **open-domain question answering**, **retrieval-augmented generation**, and **large language models**. Her research focuses on enabling machines to retrieve, understand, and reason over large corpora of unstructured text — a critical area for building systems like ChatGPT and other advanced NLP applications.

Representative Papers by Akari Asai

Here are **five representative papers** by Akari Asai, with their **publication venues**:

1. ~~"Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks"~~

Venue: Proceedings of NeurIPS 2020 (Conference on Neural Information Processing Systems)

2. ~~"Learning to Retrieve Passages without Supervision"~~

Venue: Proceedings of ACL 2021 (Annual Meeting of the Association for Computational Linguistics)

3. **"Task-Aware Query Reformulation with Reinforcement Learning for Open-Domain Question Answering"**

Venue: Proceedings of EMNLP 2019 (Conference on Empirical Methods in Natural Language Processing)

Paper exists but not by me

Paper exists but not by me

Limitations of LMs: Hallucinations

(GPT 5.1, 2026/01/20)

Who is Akari Asai?

Akari Asai is a prominent researcher in the field of **Natural Language Processing (NLP)** and **Artificial Intelligence (AI)**. She is particularly known for her work on **open-domain question answering**, **retrieval-augmented generation**, and **large language models**. Her research focuses on enabling machines to retrieve, understand, and reason over large corpora of unstructured text — a critical area for building systems like ChatGPT and other advanced NLP applications.

Representative Papers by Akari Asai

Here are **five representative papers** by Akari Asai, with their **publication venues**:

1. ~~"Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks"~~

Venue: Proceedings of NeurIPS 2020 (Conference on Neural Information Processing Systems)

2. ~~"Learning to Retrieve Passages without Supervision"~~

Venue: Proceedings of ACL 2021 (Annual Meeting of the Association for Computational Linguistics)

3. ~~"Task-Aware Query Reformulation with Reinforcement Learning for Open-Domain Question Answering"~~

Venue: Proceedings of EMNLP 2019 (Conference on Empirical Methods in Natural Language Processing)

Paper exists but not by me

Paper exists but not by me

Limitations of LMs: Hallucinations

(GPT 5.1, 2026/01/20)

Who is Akari Asai?

Akari Asai is a prominent researcher in the field of **Natural Language Processing (NLP)** and **Artificial Intelligence (AI)**. She is particularly known for her work on **open-domain question answering**, **retrieval-augmented generation**, and **large language models**. Her research focuses on enabling machines to retrieve, understand, and reason over large corpora of unstructured text — a critical area for building systems like ChatGPT and other advanced NLP applications.

Representative Papers by Akari Asai

Here are **five representative papers** by Akari Asai, with their **publication venues**:

1. ~~"Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks"~~

Venue: Proceedings of NeurIPS 2020 (Conference on Neural Information Processing Systems)

Paper exists but not by me

2. ~~"Learning to Retrieve Passages without Supervision"~~

Venue: Proceedings of ACL 2021 (Annual Meeting of the Association for Computational Linguistics)

Paper exists but not by me

3. ~~"Task-Aware Query Reformulation with Reinforcement Learning for Open-Domain Question Answering"~~

Venue: Proceedings of EMNLP 2019 (Conference on Empirical Methods in Natural Language Processing)

Doesn't exist

Limitations of LMs: Hallucinations

ICLR

<https://gptzero.me/news/iclr-2026/>

Title	Average Review Rating	Paper Link	Citation Check Scan Link	Example of Verified Hallucination	Comment
TamperTok: Forensics-Driven Tokenized Autoregressive Framework for Image Tampering Localization	8.0	TamperTok: Forensics-Driven Tokenized Autoregressive Framework for Image Tampering Localization OpenReview	https://app.gptzero.me/documents/4645494f-70eb-40bb-aea7-0007e13f7179/share	Chong Zou, Zhipeng Wang, Ziyu Li, Nan Wu, Yuling Cai, Shan Shi, Jiawei Wei, Xia Sun, Jian Wang, and Yizhou Wang. Segment everything everywhere all at once. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, 2023.	This paper exists, but all authors are wrong.
MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive Text Sources	8.0	MixtureVitae: Open Web-Scale Pretraining Dataset With High Quality Instruction and Reasoning Data Built from Permissive Text Sources OpenReview	https://app.gptzero.me/documents/bfd10666-ea2d-454c-9ab2-75faa8b84281/share	Dan Hendrycks, Collin Burns, Steven Basart, Andy Critch, Jerry Li, Dawn Ippolito, Aina Lapedriza, Florian Tramer, Rylan Macfarlane, Eric Jiang, et al. Measuring massive multitask language understanding. In Proceedings of the International Conference on Learning Representations (ICLR), 2021.	The paper and first 3 authors match. The last 7 authors are not on the paper, and some of them do not exist
Catch-Only-One: Non-Transferable Examples for Model-Specific Authorization	6.0	Catch-Only-One: Non-Transferable Examples for Model-Specific Authorization OpenReview	https://app.gptzero.me/documents/9afb1d51-c5c8-48f2-9b75-250d95062521/share	Dinghuai Zhang, Yang Song, Inderjit Dhillon, and Eric Xing. Defense against adversarial attacks using spectral regularization. In International Conference on Learning Representations (ICLR), 2020.	No Match

Limitations of LMs: Obsolete knowledge

When did GPT 5.2 come out?

(GPT 5.2, 2026/01/20)

There's **no confirmed public release date for "GPT-5.2"** in the information I was trained on.

As of mid-2024, OpenAI hadn't officially announced a version named GPT-5.2, so I don't have a specific release date for it. If it was released after that, the exact date isn't in my training.

OpenAI

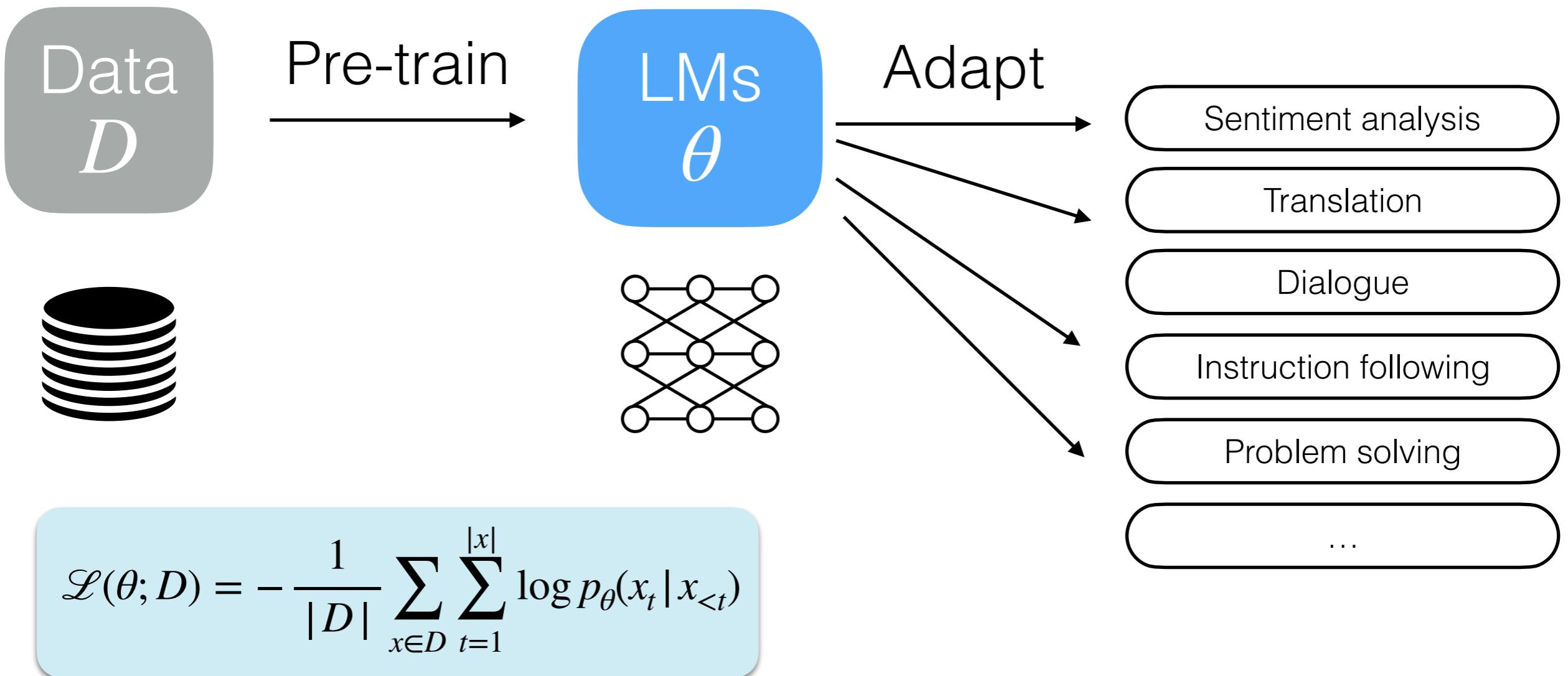
<https://openai.com> › index › introducing-gpt-5-2

⋮

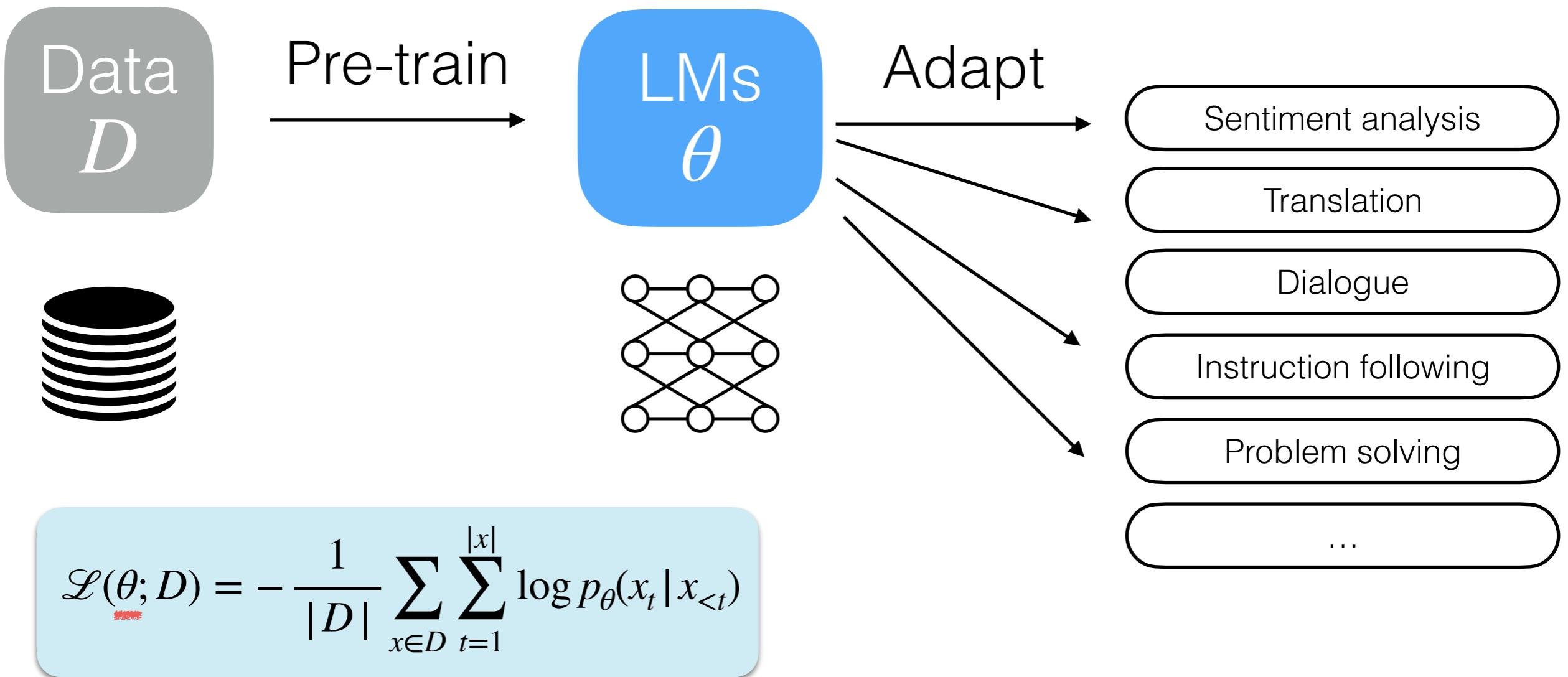
Introducing GPT-5.2

Dec 11, 2025 — GPT-5.2 Instant is a fast, capable workhorse for everyday work improvements in info-seeking questions, how-tos and walk ... [Read more](#)

Limitations of Monolithic LMs

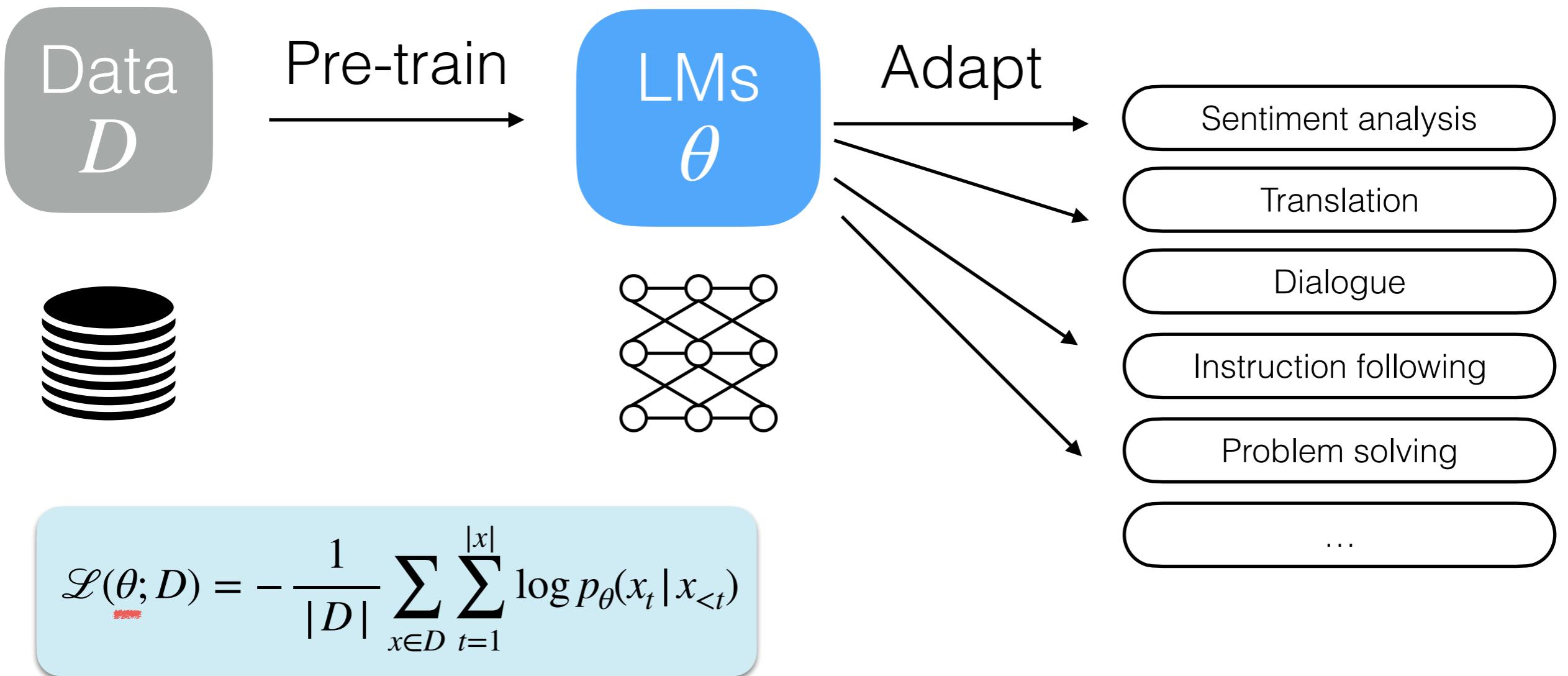


Limitations of Monolithic LMs



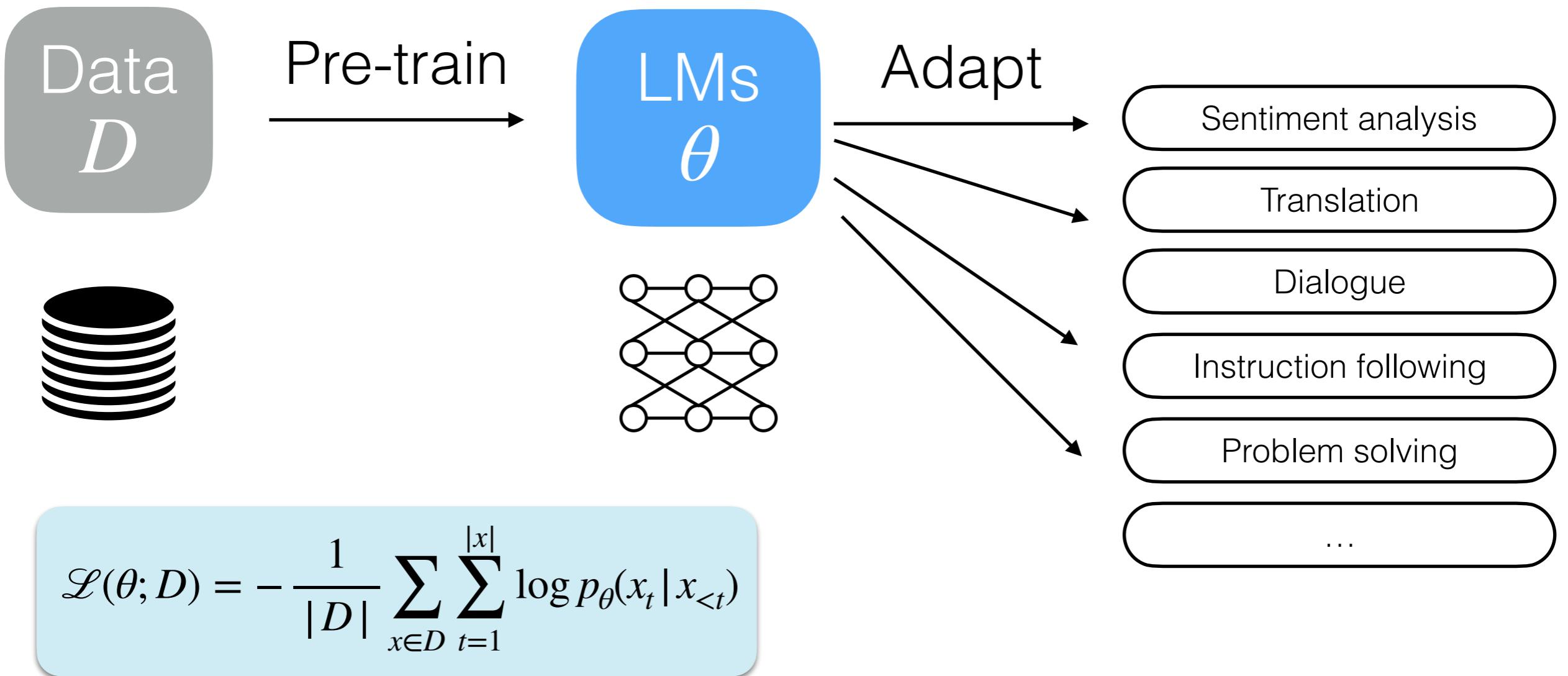
θ can't store infinite information

Limitations of Monolithic LMs



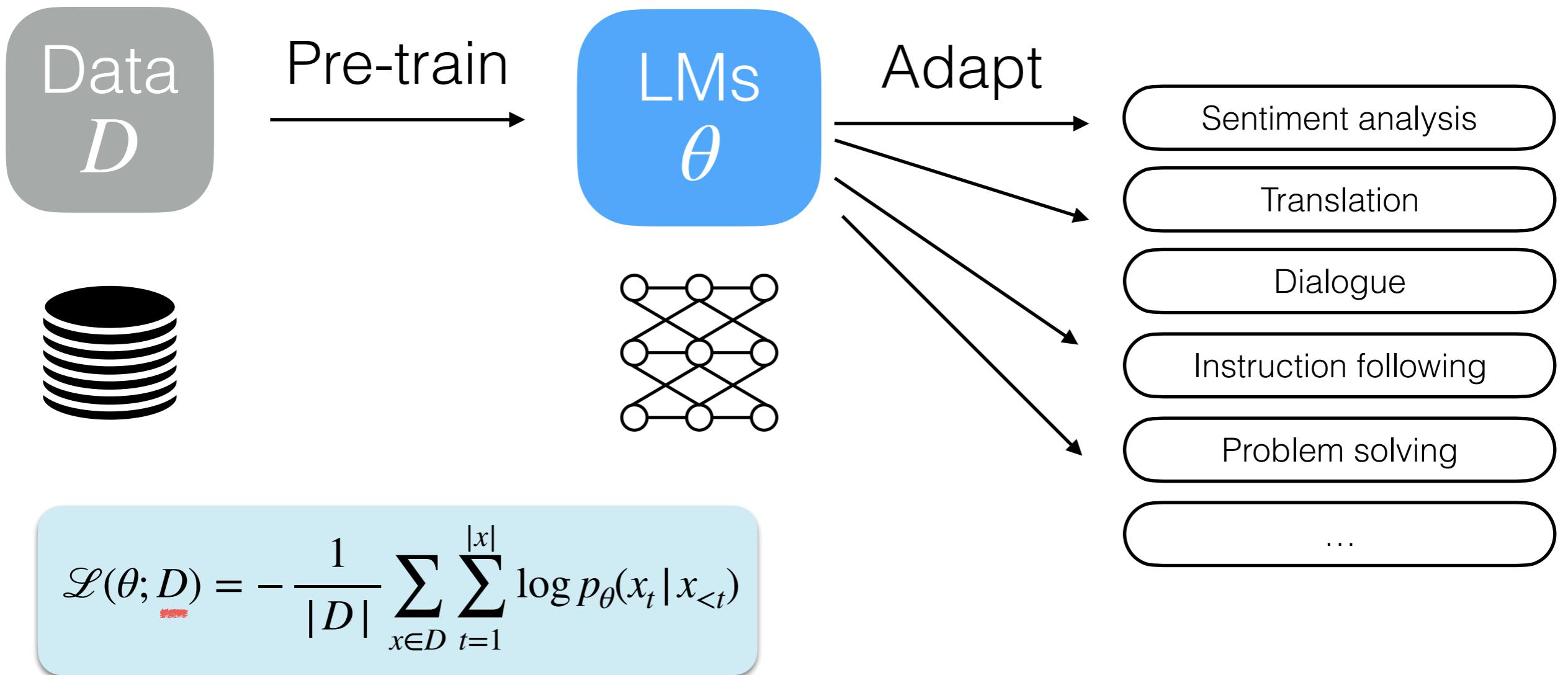
θ can't store infinite information

Limitations of Monolithic LMs



θ can't store infinite information

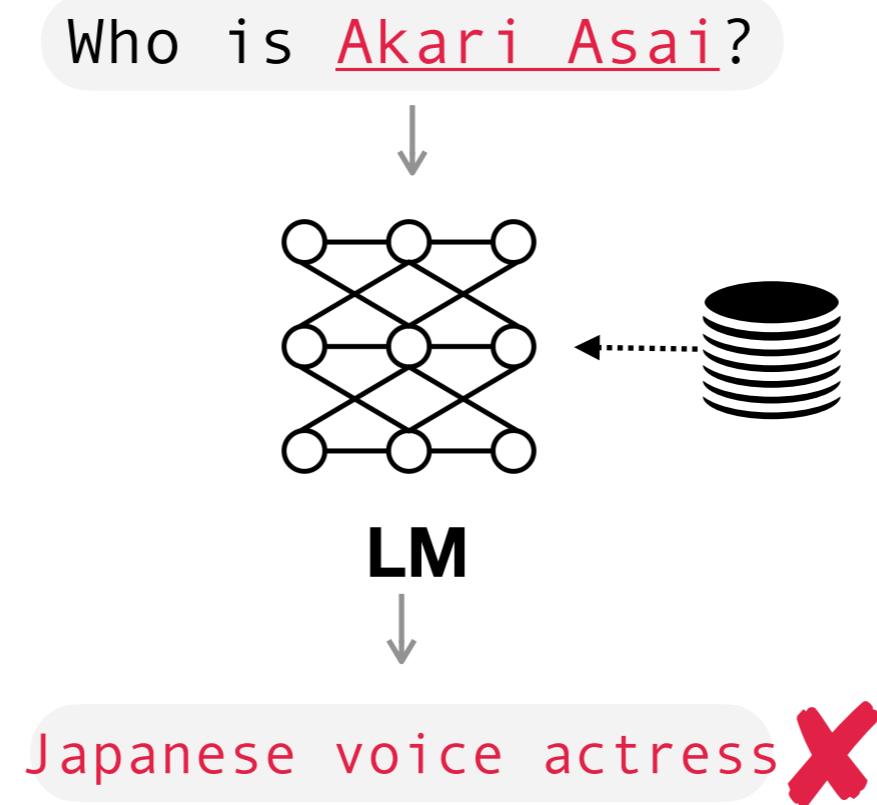
Limitations of Monolithic LMs



θ can't store infinite information

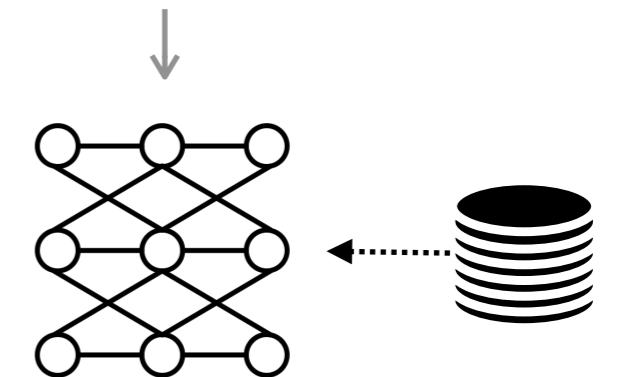
D only capture information as of the data cutoff time

Retrieval-Augmented LMs: Intuitions



Retrieval-Augmented LMs: Intuitions

Who is Akari Asai?

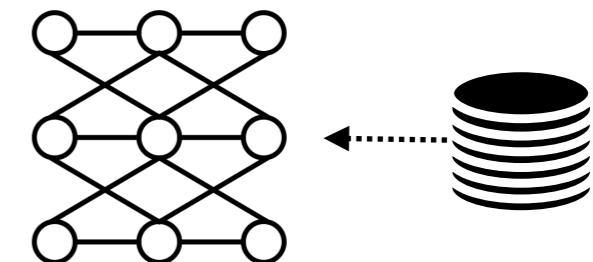


Japanese voice actress ~~X~~

Retrieval-Augmented LMs: Intuitions

Who is Akari Asai?

Who is Akari Asai?



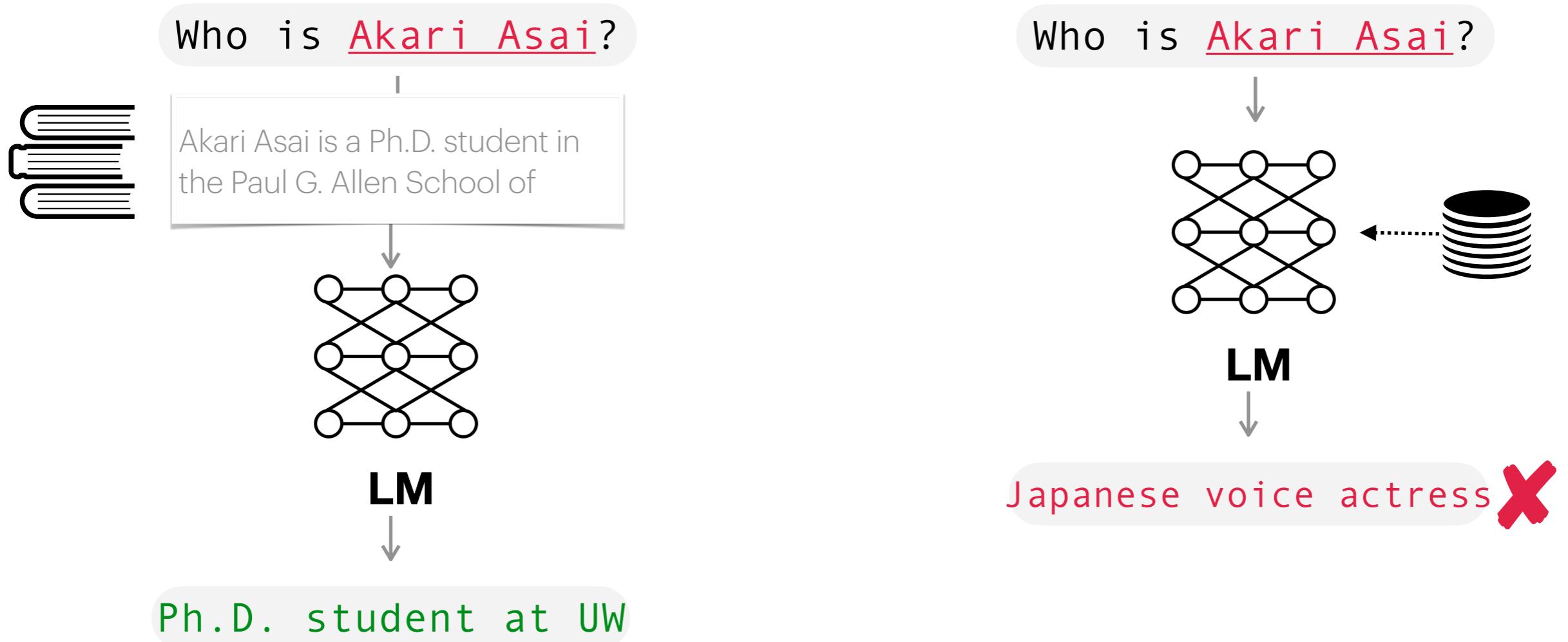
LM
↓

Japanese voice actress

Retrieval-Augmented LMs: Intuitions

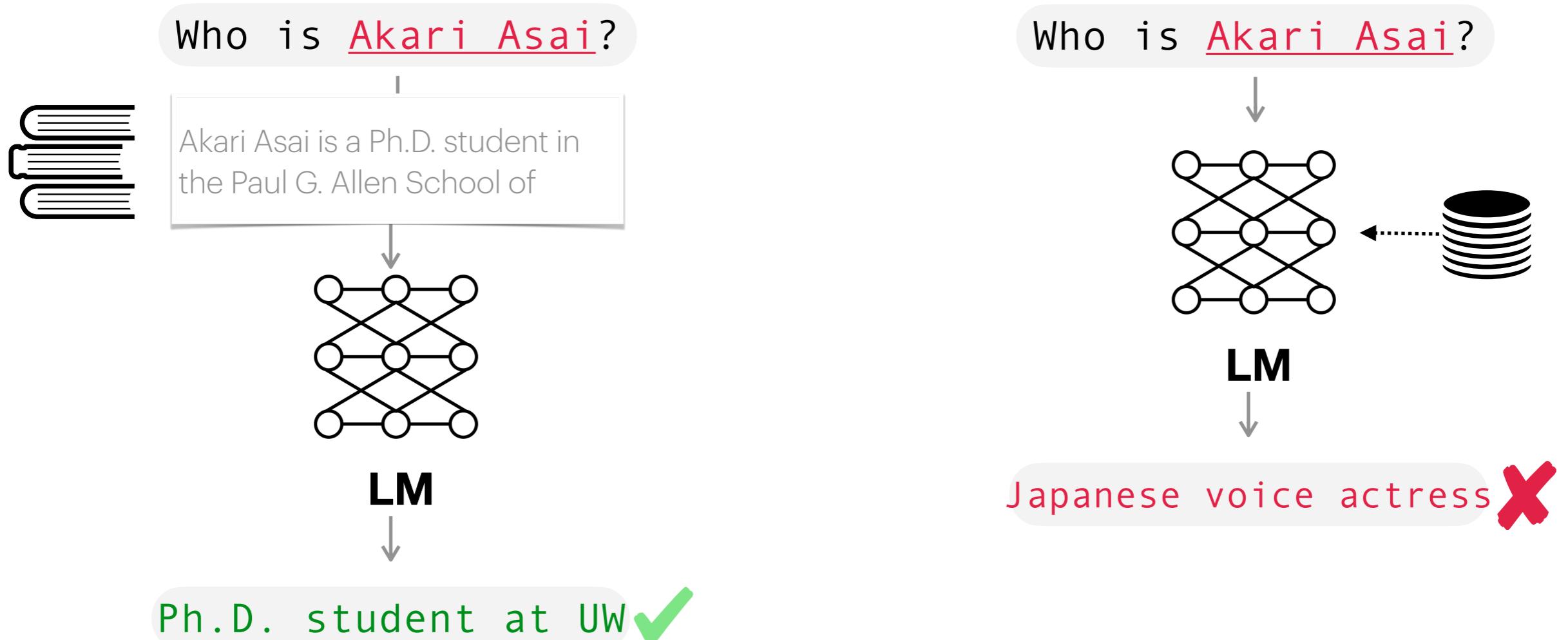


Retrieval-Augmented LMs: Intuitions



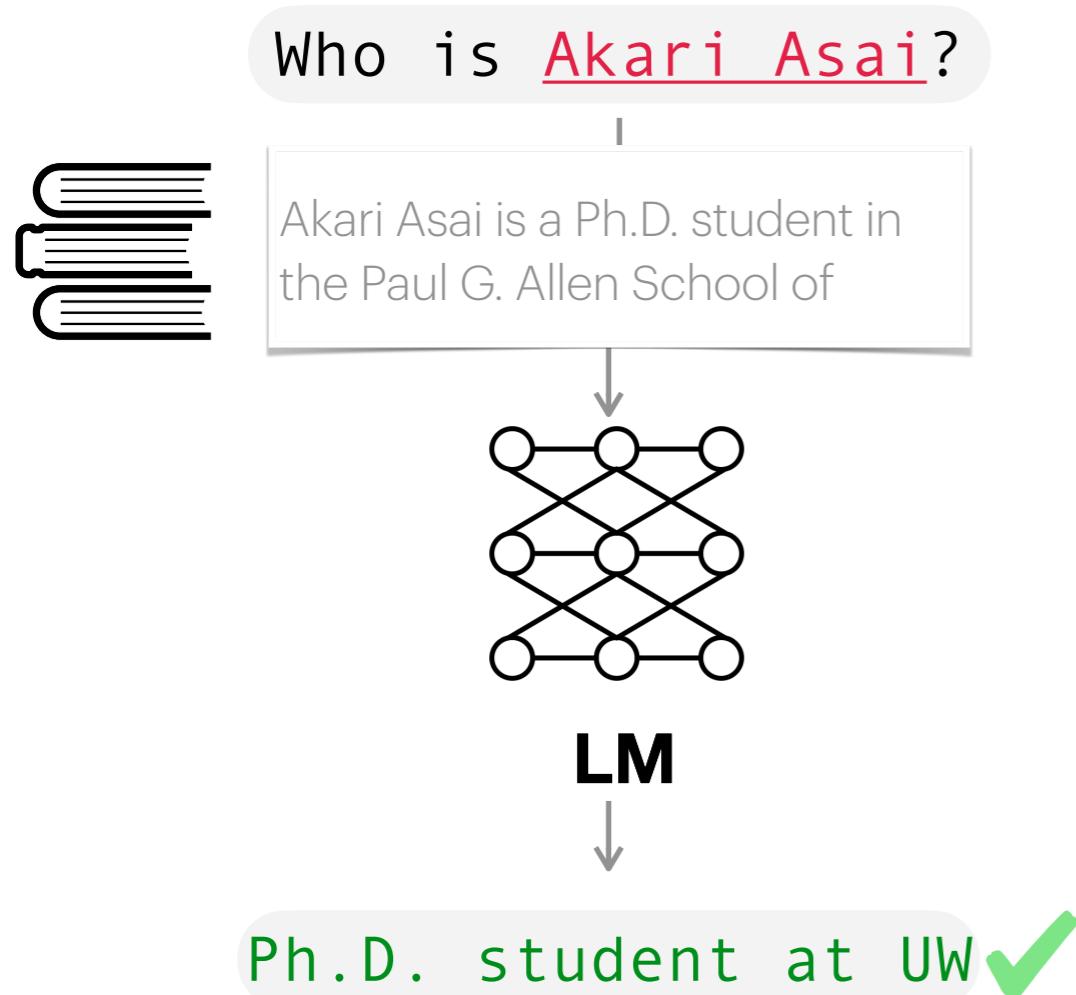
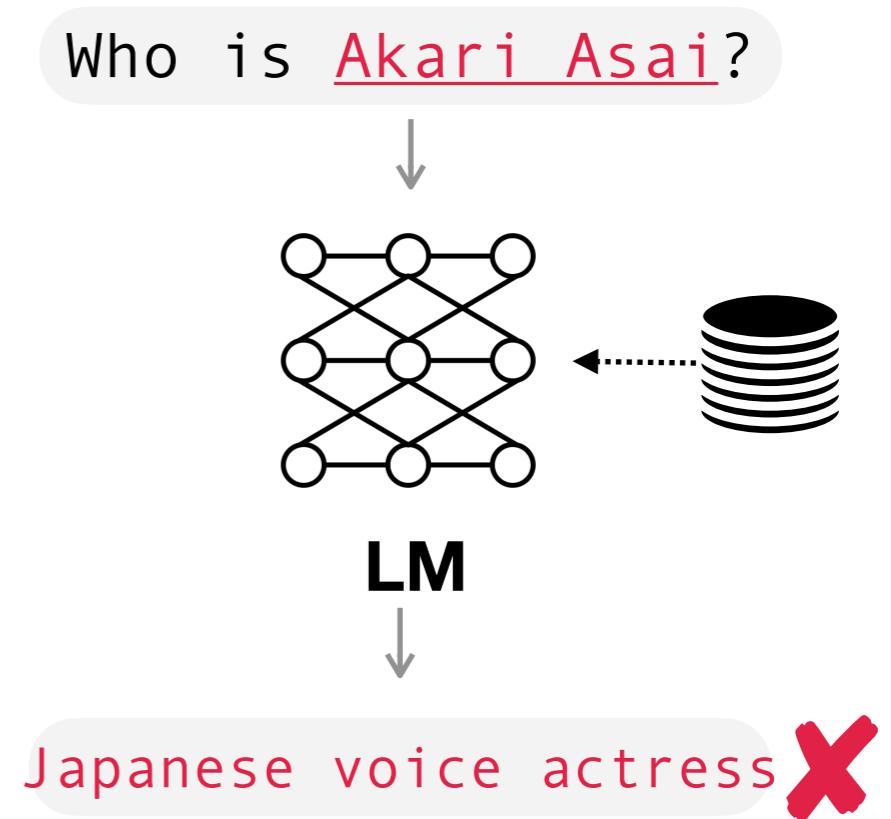
Retrieval-Augmented LMs: Intuitions

Retrieval-Augmented LMs: Intuitions



😊 Reduces hallucinations

Retrieval-Augmented LMs: Intuitions

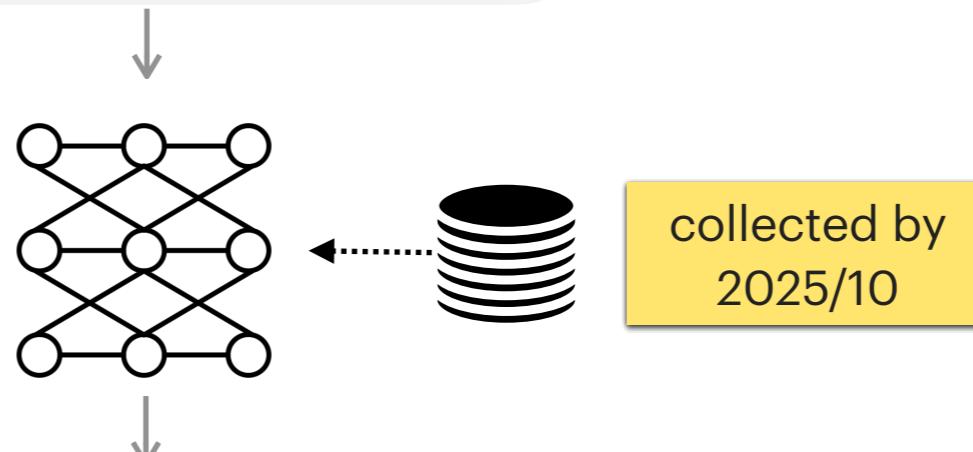


😊 Reduces hallucinations

😊 Parameter efficiency

Retrieval-Augmented LMs: Intuitions

When did GPT 5.2 come out?

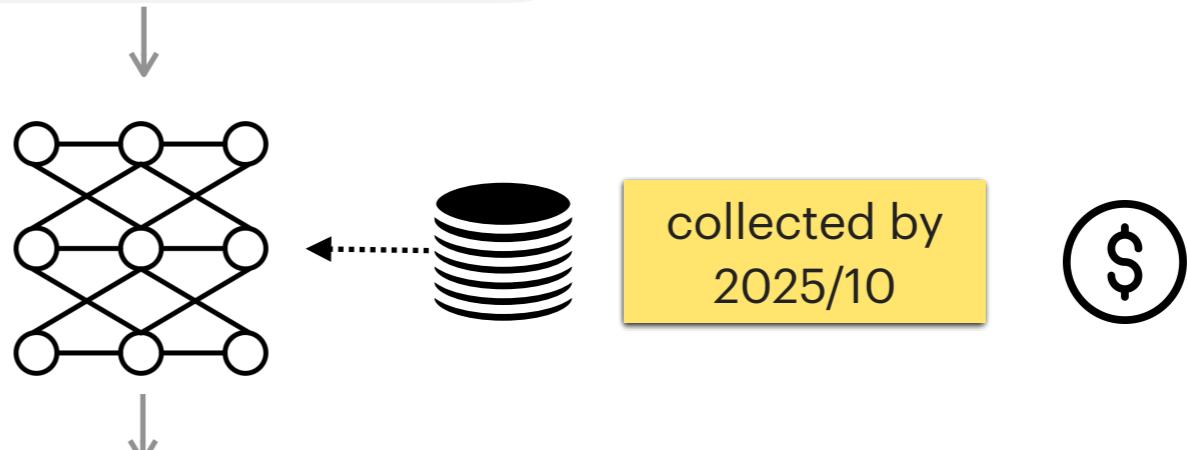


There's no confirmed public
release date for GPT-5.2

✗

Retrieval-Augmented LMs: Intuitions

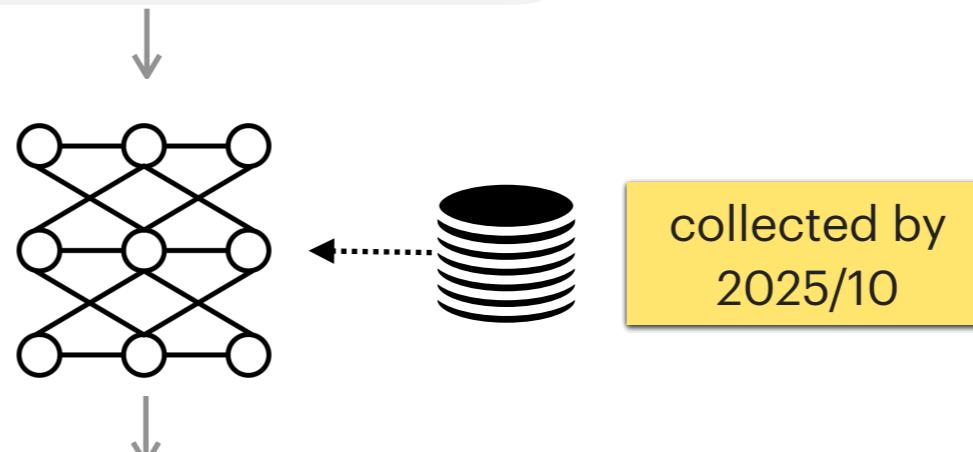
When did GPT 5.2 come out?



There's no confirmed public
release date for GPT-5.2

Retrieval-Augmented LMs: Intuitions

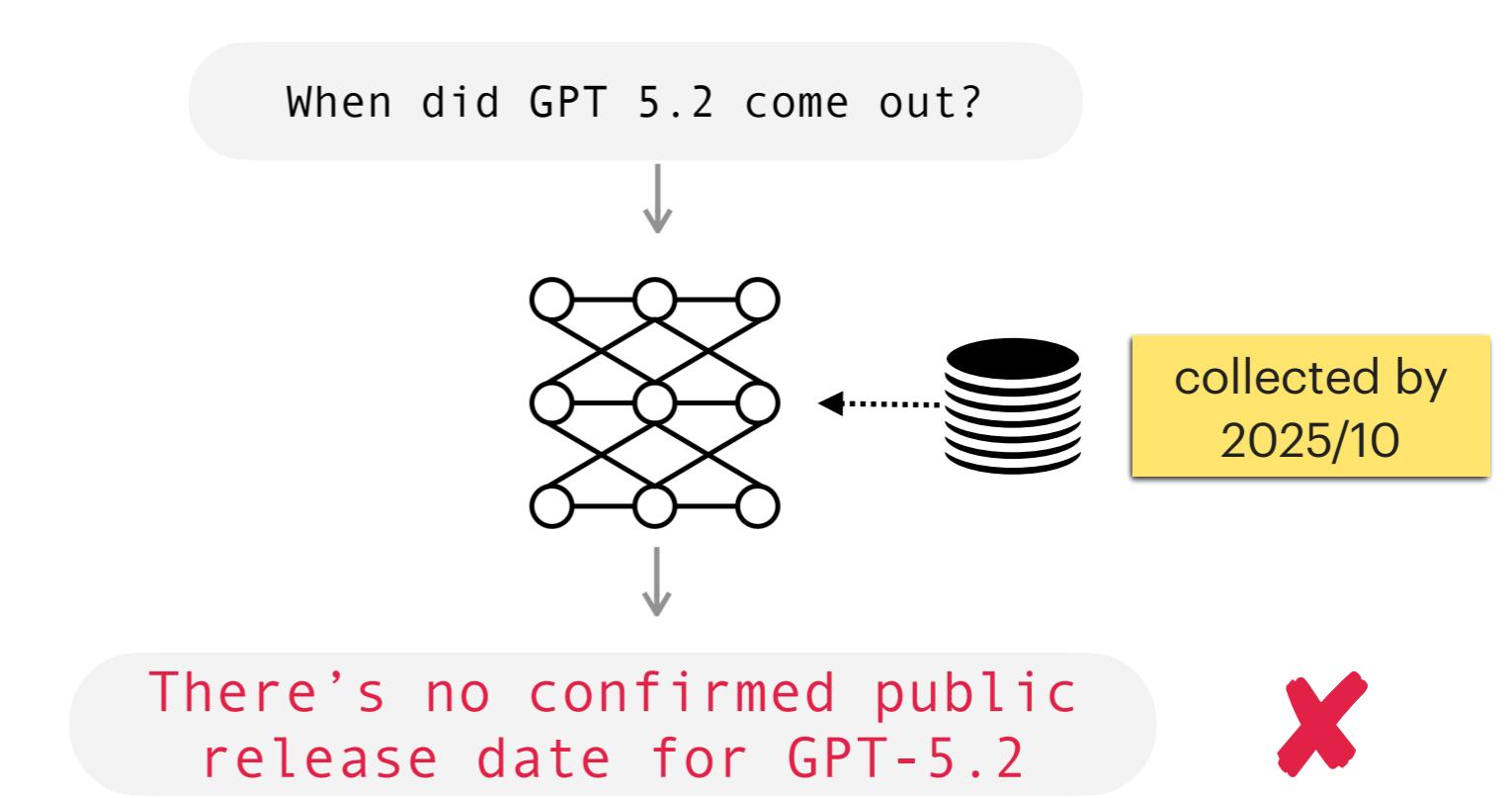
When did GPT 5.2 come out?



There's no confirmed public
release date for GPT-5.2

✗

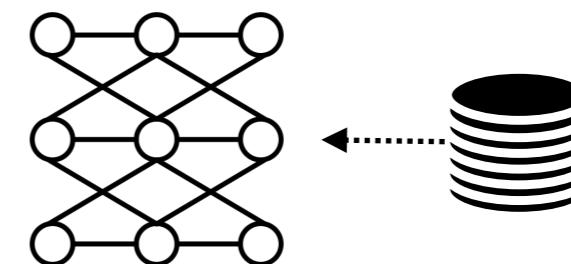
Retrieval-Augmented LMs: Intuitions



Retrieval-Augmented LMs: Intuitions

When did GPT 5.2 come out?

When did GPT 5.2 come out?



collected by
2025/10

There's no confirmed public
release date for GPT-5.2

Retrieval-Augmented LMs: Intuitions

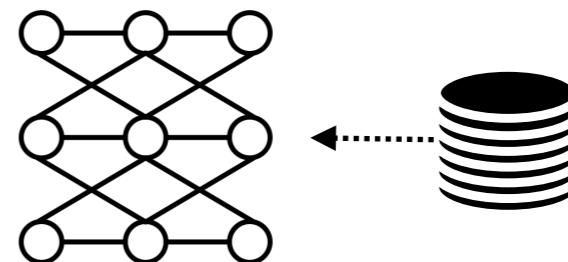
When did GPT 5.2 come out?



Updated by
2026/01

Dec 11, 2025 — GPT-5.2 Instant
is a fast, capable workhorse for

When did GPT 5.2 come out?



collected by
2025/10

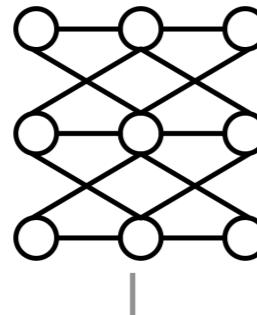
There's no confirmed public
release date for GPT-5.2

Retrieval-Augmented LMs: Intuitions

When did GPT 5.2 come out?

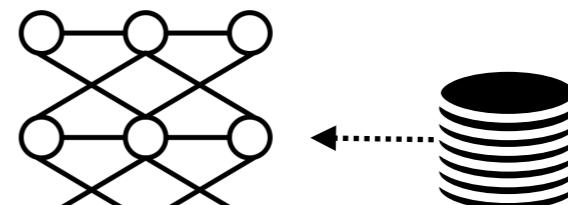
Updated by
2026/01

Dec 11, 2025 — GPT-5.2 Instant
is a fast, capable workhorse for



December 11, 2025

When did GPT 5.2 come out?



collected by
2025/10

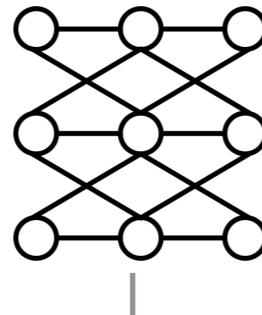
There's no confirmed public
release date for GPT-5.2

Retrieval-Augmented LMs: Intuitions

When did GPT 5.2 come out?

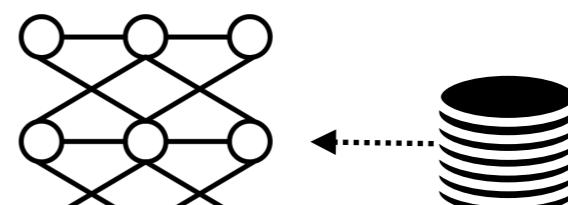
Updated by
2026/01

Dec 11, 2025 — GPT-5.2 Instant
is a fast, capable workhorse for



December 11, 2025

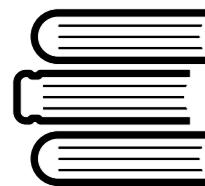
When did GPT 5.2 come out?



There's no confirmed public
release date for GPT-5.2

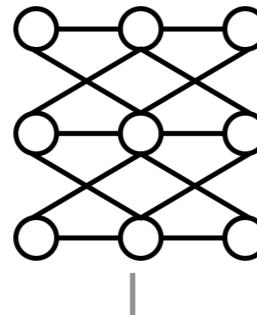
Retrieval-Augmented LMs: Intuitions

When did GPT 5.2 come out?



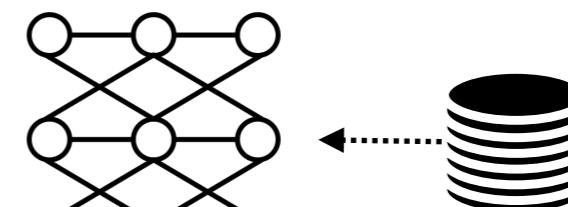
Updated by
2026/01

Dec 11, 2025 — GPT-5.2 Instant
is a fast, capable workhorse for



December 11, 2025

When did GPT 5.2 come out?



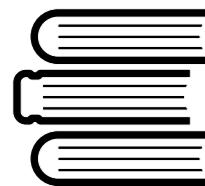
collected by
2025/10

There's no confirmed public
release date for GPT-5.2

Update knowledge w/o
retraining

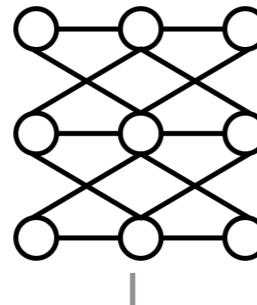
Retrieval-Augmented LMs: Intuitions

When did GPT 5.2 come out?



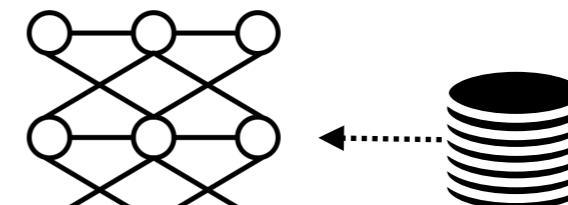
Updated by
2026/01

Dec 11, 2025 — GPT-5.2 Instant
is a fast, capable workhorse for



December 11, 2025

When did GPT 5.2 come out?



There's no confirmed public
release date for GPT-5.2

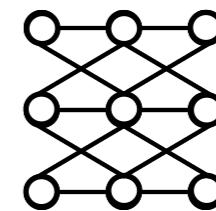
Update knowledge w/o
retraining

Improve verifiability

Overview

Datastore

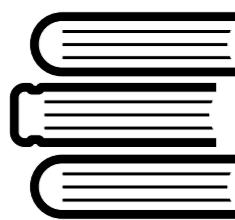
Retriever



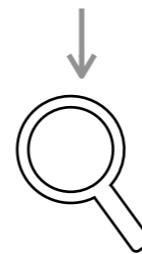
LM

Overview

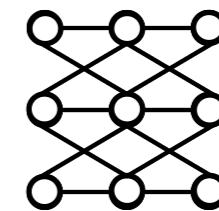
x : When did GPT 5.2 come out?



Datastore



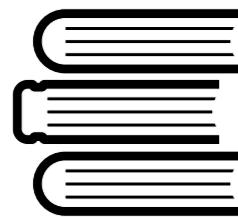
Retriever



LM

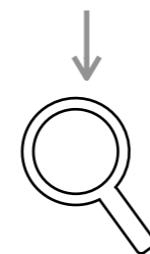
Overview

x : When did GPT 5.2 come out?



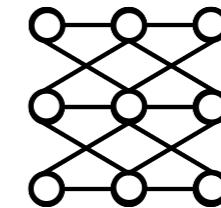
Datastore

Dec 11, 2025 - Open AIL
GPT-5.2 Instant is a fast,
capable workhorse for



Retriever

Ruby on Rails 5.2 Release Notes
Ruby on Rails 5.2 Release Notes



LM

$\text{Sim}(\cdot | x)$

0.9

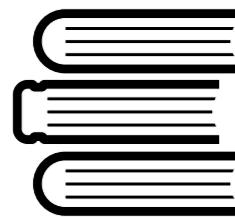
GPT-5 (Wikipedia) Preceded in
the series by GPT-4, it was

0.1

0.7

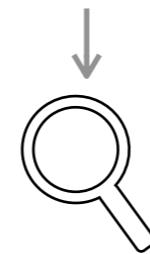
Overview

x : When did GPT 5.2 come out?



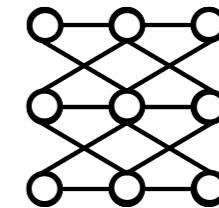
Datastore

Dec 11, 2025 - Open AIL
GPT-5.2 Instant is a fast,
capable workhorse for



Retriever

$D \in \text{Top}_k \text{Sim}(\cdot | x)$



LM

Ruby on Rails 5.2 Release Notes Ruby
on Rails 5.2 Release Notes

GPT-5 (Wikipedia) Preceded in
the series by GPT-4, it was

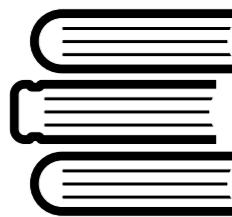
0.9

0.1

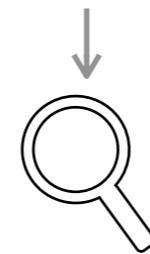
0.7

Overview

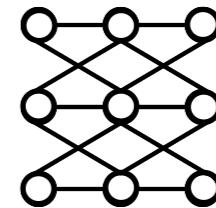
x : When did GPT 5.2 come out?



Datastore



Retriever



LM

$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Dec 11, 2025 - Open AIL
GPT-5.2 Instant is a fast,
capable workhorse for

0.9

Ruby on Rails 5.2 Release Notes
Ruby on Rails 5.2 Release Notes

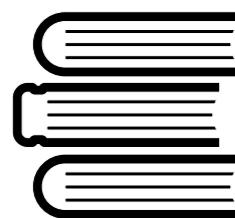
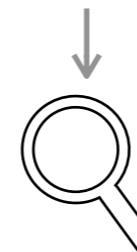
0.1

GPT-5 (Wikipedia) Preceded in
the series by GPT-4, it was

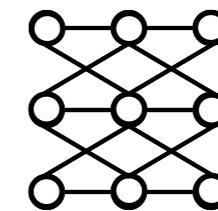
0.7

Overview

x : When did GPT 5.2 come out?



D



Datastore

Retriever

LM

$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Dec 11, 2025 - Open AIL
GPT-5.2 Instant is a fast,
capable workhorse for

0.9

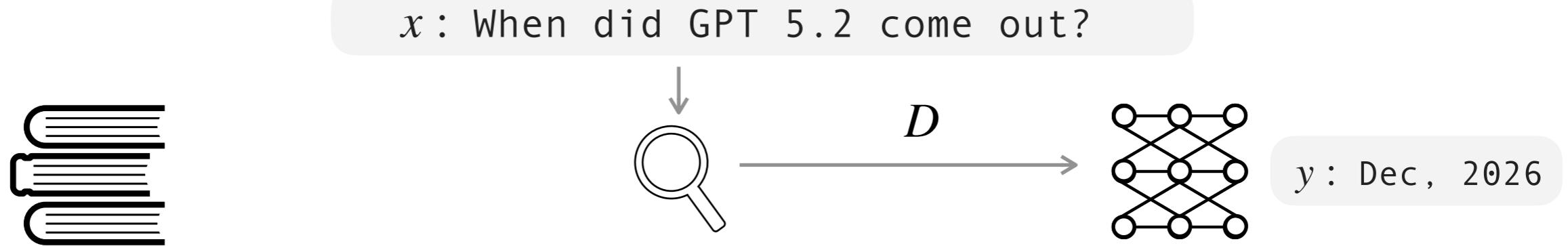
Ruby on Rails 5.2 Release Notes
Ruby on Rails 5.2 Release Notes

0.1

GPT-5 (Wikipedia) Preceded in
the series by GPT-4, it was

0.7

Overview



Datastore

Retriever

LM

$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Dec 11, 2025 - Open AIL
GPT-5.2 Instant is a fast,
capable workhorse for

0.9

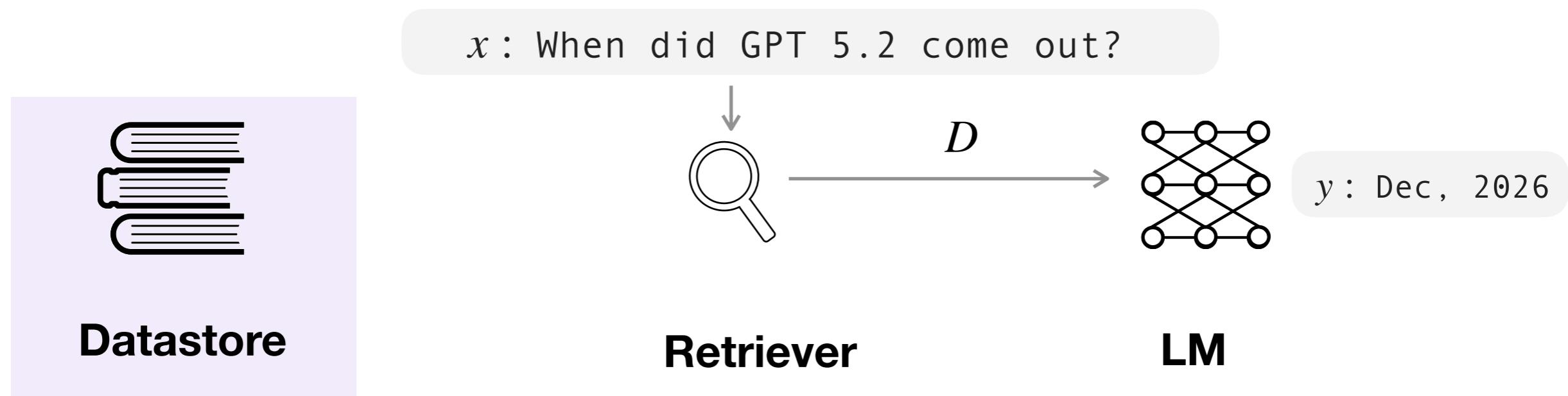
Ruby on Rails 5.2 Release Notes
Ruby on Rails 5.2 Release Notes

0.1

GPT-5 (Wikipedia) Preceded in
the series by GPT-4, it was

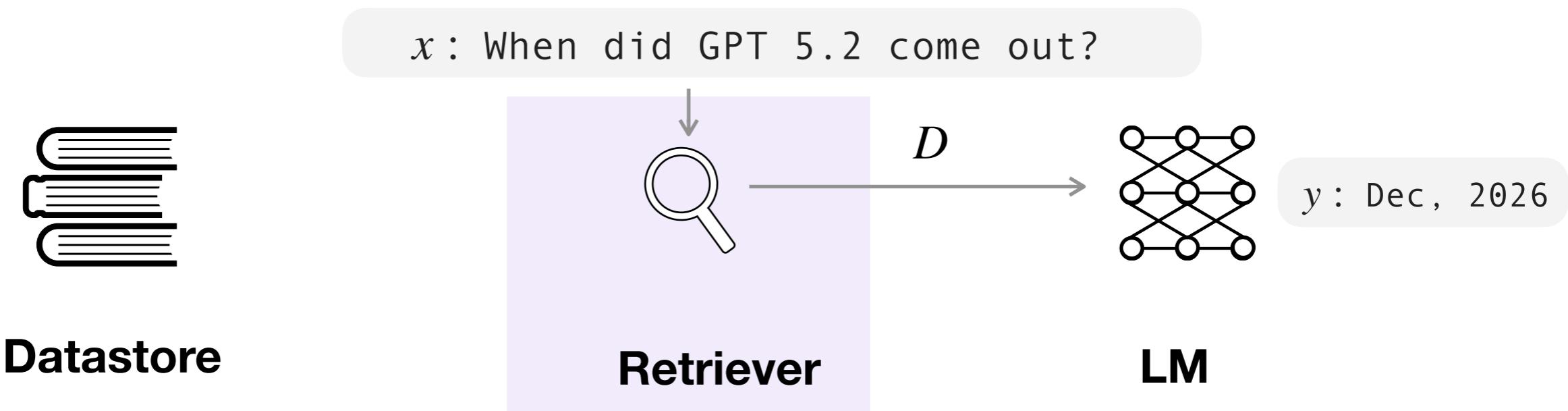
0.7

Key Factors & Design Choices



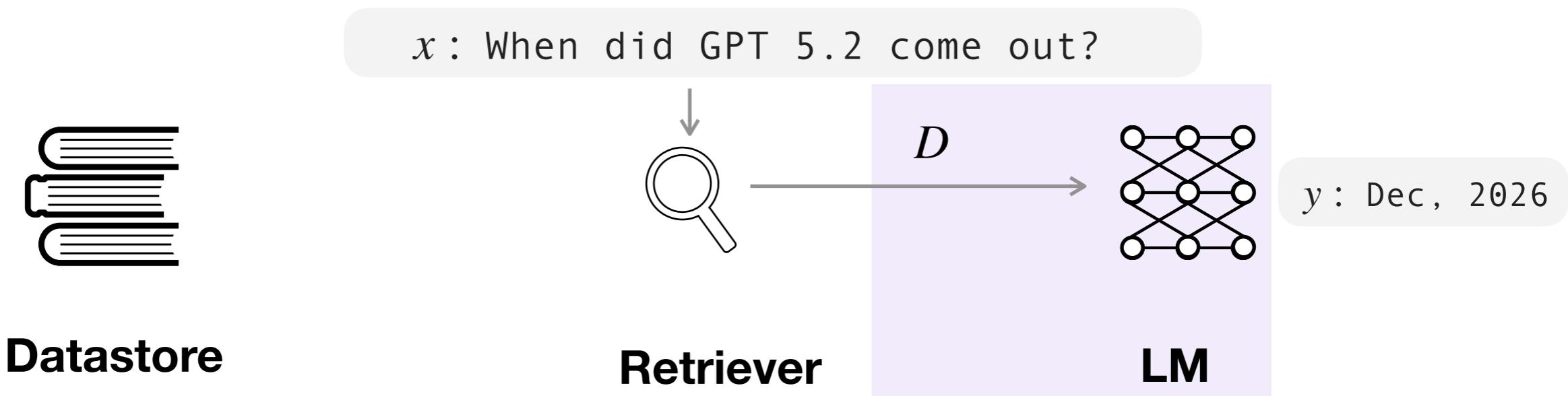
- ✓ Sources of datastore
- ✓ Processing
- ✓ Scaling

Key Factors & Design Choices



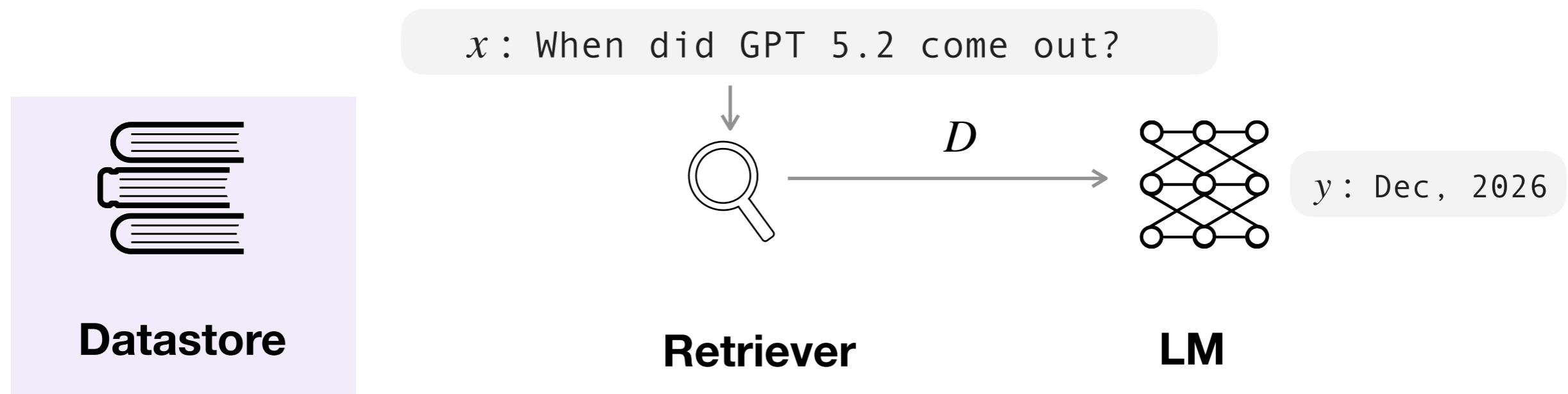
- ✓ Types of retrievers
- ✓ Training
- ✓ Evaluations

Key Factors & Design Choices



- ✓ Architectures
- ✓ Training
- ✓ Inference

Part 1: Datastore



- ✓ Sources of datastore
- ✓ Processing
- ✓ Scaling

What Should be in “data store”?

What Should be in “data store”?

x : when did GPT 5.2
come out?

What Should be in “data store”?

x : when did GPT 5.2
come out?

English Wikipedia

Chen et al., 2017; Gu et al., 2020;
Asai et al., 2020; Guu et al., 2021;
Lewis et al., 2021 ... etc

<https://dumps.wikimedia.org/>

What Should be in “data store”?

x : when did GPT 5.2 come out?

x : How should I implement RAG using LlamaIndex?

English Wikipedia

Chen et al., 2017; Gu et al., 2020;
Asai et al., 2020; Guu et al., 2021;
Lewis et al., 2021 ... etc

<https://dumps.wikimedia.org/>

What Should be in “data store”?

x : when did GPT 5.2 come out?

x : How should I implement RAG using LlamaIndex?

English Wikipedia

Chen et al., 2017; Gu et al., 2020;
Asai et al., 2020; Guu et al., 2021;
Lewis et al., 2021 ... etc

<https://dumps.wikimedia.org/>

Code snippets

Documentations

 LangChain

Community forums

 stackoverflow

Scaling Up Datastore

Scaling Up Datastore

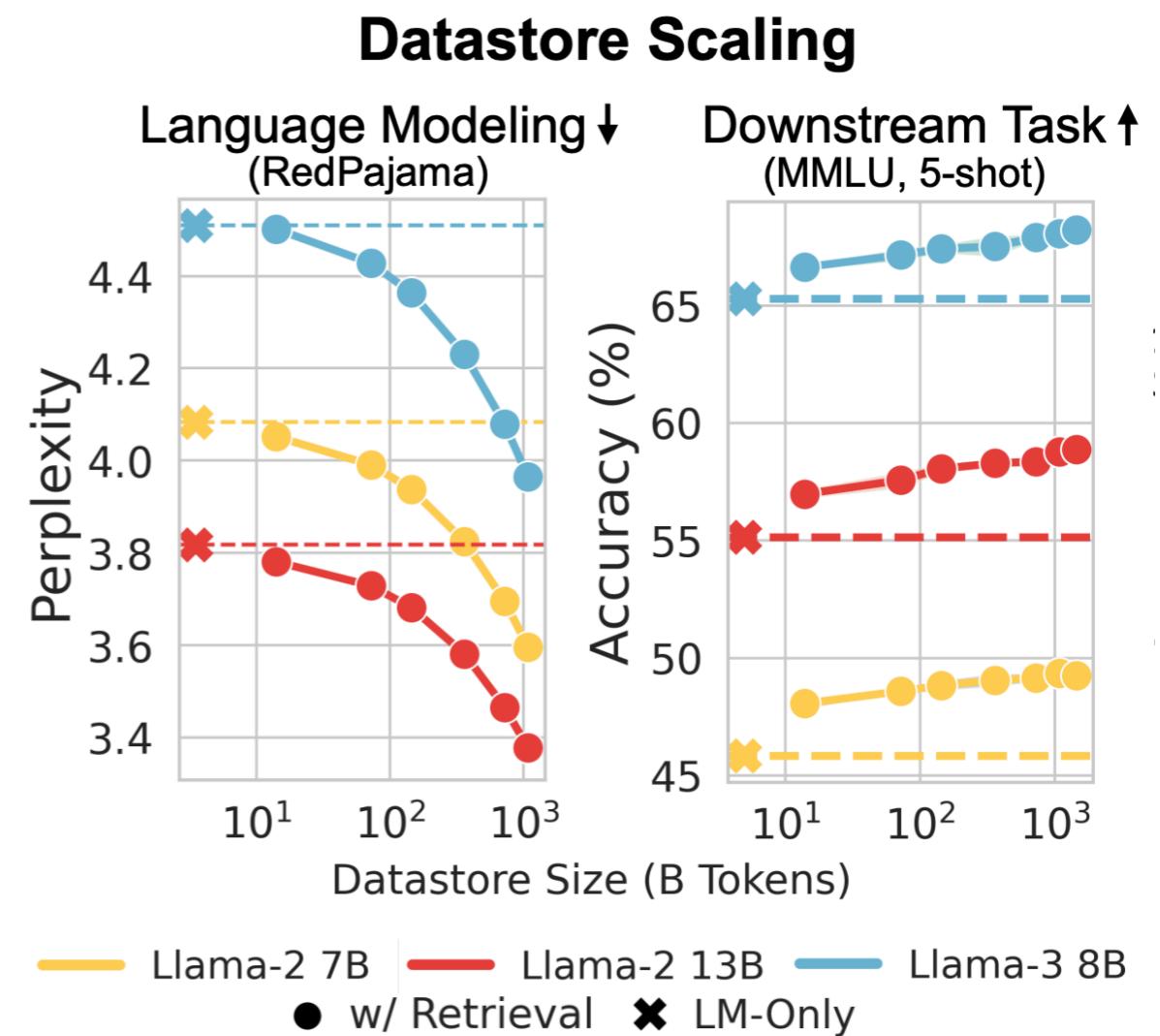
Scaling Up Datastore

Scaling Up Datastore

MassiveDS
1.4 trillion tokens

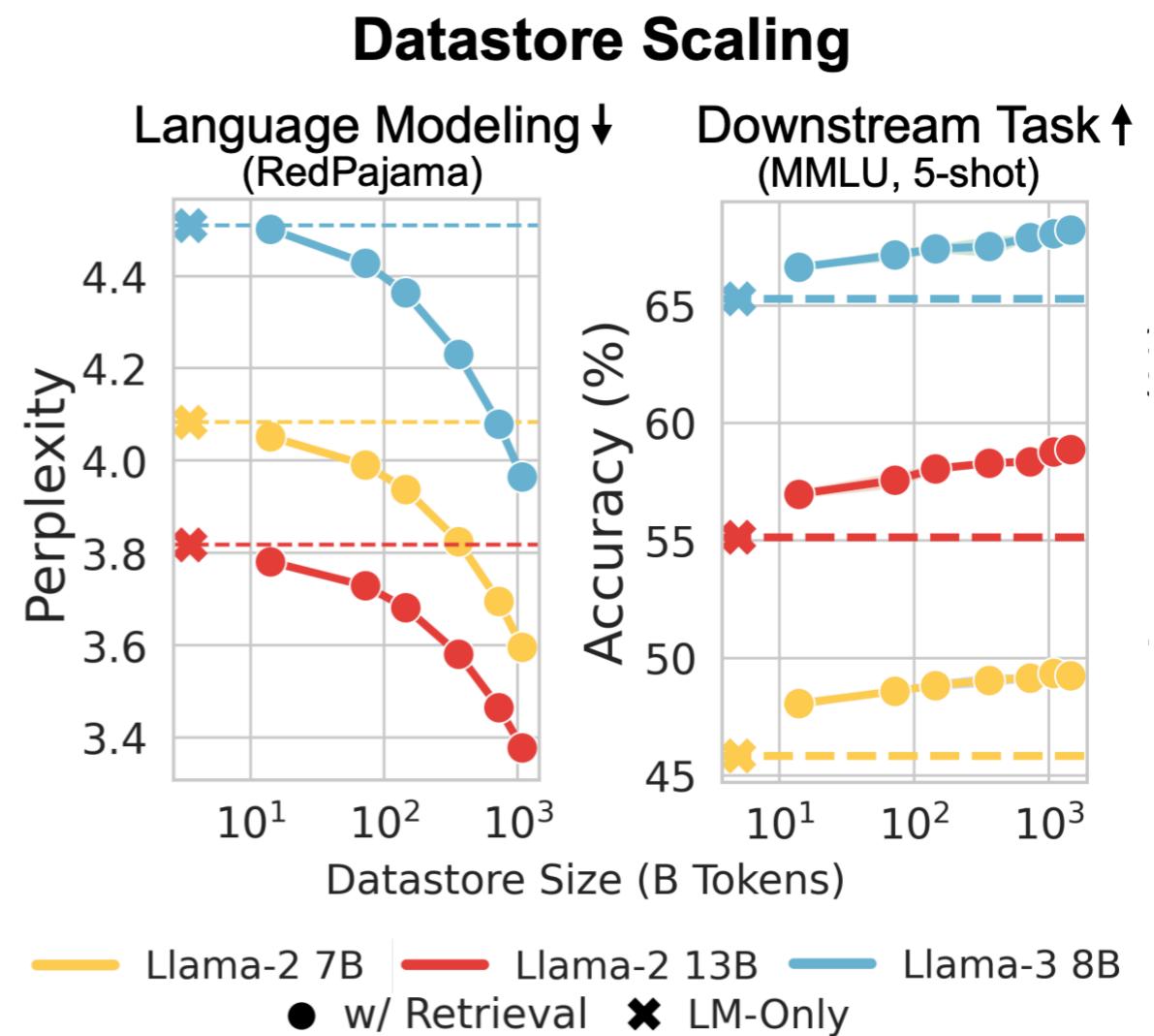
Scaling Up Datastore

MassiveDS
1.4 trillion tokens



Scaling Up Datastore

MassiveDS
1.4 trillion tokens



Processing Documents

GPT-4

From Wikipedia, the free encyclopedia

Generative Pre-trained Transformer 4 (GPT-4) is a [multimodal large language model](#) trained and created by [OpenAI](#) and the fourth in its series of [GPT foundation models](#).^[1] It was launched on March 14, 2023,^[1] and made publicly available via the paid [chatbot](#) product [ChatGPT Plus](#), via OpenAI's [API](#), and via the free chatbot [Microsoft Copilot](#).^[2] As a [transformer](#)-based model, GPT-4 uses a paradigm where pre-training using both public data and "data licensed from third-party providers" is used to predict the next [token](#). After this step, the model was then fine-tuned with [reinforcement learning](#) feedback from [humans](#) and AI for [human alignment](#) and policy compliance.^{[3]:2}

Observers reported that the iteration of ChatGPT using GPT-4 was an improvement on the previous iteration based on GPT-3.5, with the caveat that GPT-4 retains some of the problems with earlier revisions.^[4] GPT-4, equipped with vision capabilities (GPT-4V),^[5] is capable of taking images as input on ChatGPT.^[6] OpenAI has not revealed technical details and statistics about GPT-4, such as the precise size of the model.^[7]

Background [edit]

Further information: [GPT-3 § Background](#), and [GPT-2 § Background](#)

OpenAI introduced the first GPT model (GPT-1) in 2018, publishing a paper called "Improving Language Understanding by Generative Pre-

32 languages

Read Edit View history Tools

Generative Pre-trained Transformer 4 (GPT-4)

Developer(s)	OpenAI
Initial release	March 14, 2023; 22 months ago
Predecessor	GPT-3.5
Successor	GPT-4o
Type	Multimodal Large language model Generative pre-trained transformer Foundation model
License	Proprietary
Website	openai.com/gpt-4

Processing Documents

GPT-4

From Wikipedia, the free encyclopedia

Generative Pre-trained Transformer 4 (GPT-4) is a [multimodal large language model](#) trained and created by [OpenAI](#) and the fourth in its series of [GPT foundation models](#).^[1] It was launched on March 14, 2023,^[1] and made publicly available via the paid [chatbot](#) product [ChatGPT Plus](#), via OpenAI's [API](#), and via the free chatbot [Microsoft Copilot](#).^[2] As a [transformer](#)-based model, GPT-4 uses a paradigm where pre-training using both public data and "data licensed from third-party providers" is used to predict the next [token](#). After this step, the model was then fine-tuned with [reinforcement learning](#) feedback from [humans](#) and AI for [human alignment](#) and policy compliance.^{[3]:2}

Observers reported that the iteration of ChatGPT using GPT-4 was an improvement on the previous iteration based on GPT-3.5, with the caveat that GPT-4 retains some of the problems with earlier revisions.^[4] GPT-4, equipped with vision capabilities (GPT-4V),^[5] is capable of taking images as input on ChatGPT.^[6] OpenAI has not revealed technical details and statistics about GPT-4, such as the precise size of the model.^[7]

Background [edit]

Further information: [GPT-3 § Background](#), and [GPT-2 § Background](#)

OpenAI introduced the first GPT model (GPT-1) in 2018, publishing a paper called "Improving Language Understanding by Generative Pre-

32 languages

Read Edit View history Tools

Generative Pre-trained Transformer 4 (GPT-4)

Developer(s)	OpenAI
Initial release	March 14, 2023; 22 months ago
Predecessor	GPT-3.5
Successor	GPT-4o
Type	Multimodal Large language model Generative pre-trained transformer Foundation model
License	Proprietary
Website	openai.com/gpt-4

Processing Documents

Processing Documents

Curate and preprocess data

e.g., HTML -> Plain text

Processing Documents

**Curate and
preprocess data** →

e.g., HTML -> Plain text

Processing Documents

Curate and preprocess data → Chunking

e.g., HTML -> Plain text

Paragraph-level (e.g., \n)
Every k words (e.g., 100-250)

GPT-4o is a pre-trained
Transformers is a series of
science fiction action films based
GPT4o was released by OpenAI in May
@I\$O@

Processing Documents

Curate and preprocess data

e.g., HTML -> Plain text

Chunking

Paragraph-level (e.g., \n)
Every k words (e.g., 100-250)

GPT-4o is a pre-trained
Transformers is a series of
science fiction action films based
GPT4o was released by OpenAI in May
@I\$O@

Processing Documents

Curate and preprocess data

e.g., HTML -> Plain text

Chunking

Paragraph-level (e.g., \n)
Every k words (e.g., 100-250)

GPT-4o is a pre-trained

Transformers is a series of
science fiction action films based

GPT4o was released by OpenAI in May

@I\$O@

Post-processing

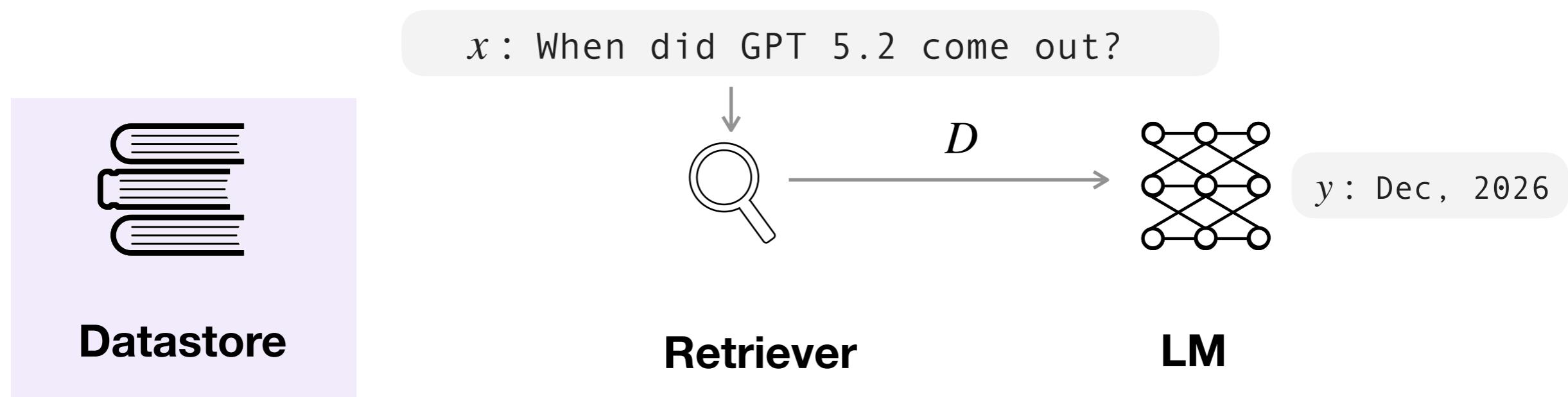
e.g., Remove short documents

GPT-4o is a pre-trained

Transformers is a series of
science fiction action films based

GPT4o was released by OpenAI in May

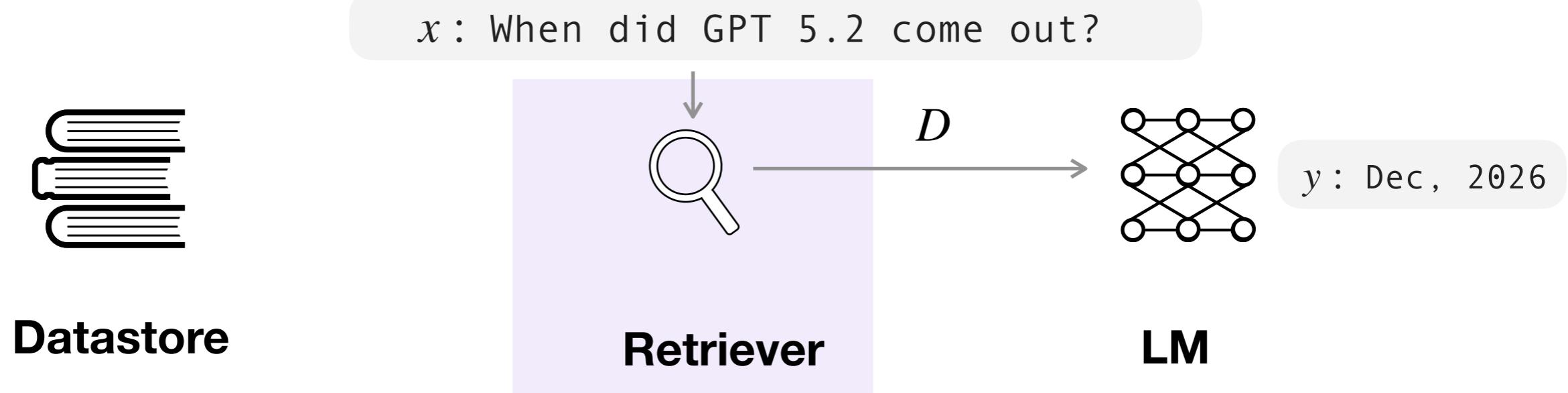
Summary of Part 1



- ✓ Sources of datastore
- ✓ Processing
- ✓ Scaling

- Choosing **the right datastore**
- **Chunking** and **filtering**
- **Scaling** datastores offer performance gain while adding challenges

Part 2: Retriever



- ✓ Types of retrievers
- ✓ Training
- ✓ Evaluations

Types of Retrievers

$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Types of Retrievers

$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Sparse retrievers

- **Sim:** Term-frequency based embeddings

e.g., TF-IDF, BM25

Types of Retrievers

$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Sparse retrievers

- **Sim:** Term-frequency based embeddings

e.g., TF-IDF, BM25

Dense retrievers

- **Sim:** dense embeddings encoded by pre-

e.g., DPR, Contriever, ColBERT

Types of Retrievers

$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Sparse retrievers

- **Sim:** Term-frequency based embeddings

e.g., TF-IDF, BM25

Dense retrievers

- **Sim:** dense embeddings encoded by pre-

e.g., DPR, Contriever, ColBERT

Rerankers

- **Sim:** Scores based on jointly encoded query and doc

e.g., cross-encoder reranker

Types of Retrievers

$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Sparse retrievers

- **Sim:** Term-frequency based embeddings

e.g., TF-IDF, BM25

Dense retrievers

- **Sim:** dense embeddings encoded by pre-

e.g., DPR, Contriever, ColBERT e.g., cross-encoder reranker

Rerankers

- **Sim:** Scores based on jointly encoded query and doc

Types of Retrievers

$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Sparse retrievers

- **Sim:** Term-frequency based embeddings

e.g., TF-IDF, BM25

Dense retrievers

- **Sim:** dense embeddings encoded by pre-

e.g., DPR, Contriever, ColBERT



Rerankers

- **Sim:** Scores based on jointly encoded query and doc

e.g., cross-encoder reranker

Types of Retrievers

$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Sparse retrievers

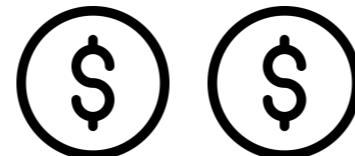
- **Sim:** Term-frequency based embeddings

e.g., TF-IDF, BM25

Dense retrievers

- **Sim:** dense embeddings encoded by pre-

e.g., DPR, Contriever, ColBERT



Rerankers

- **Sim:** Scores based on jointly encoded query and doc

e.g., cross-encoder reranker

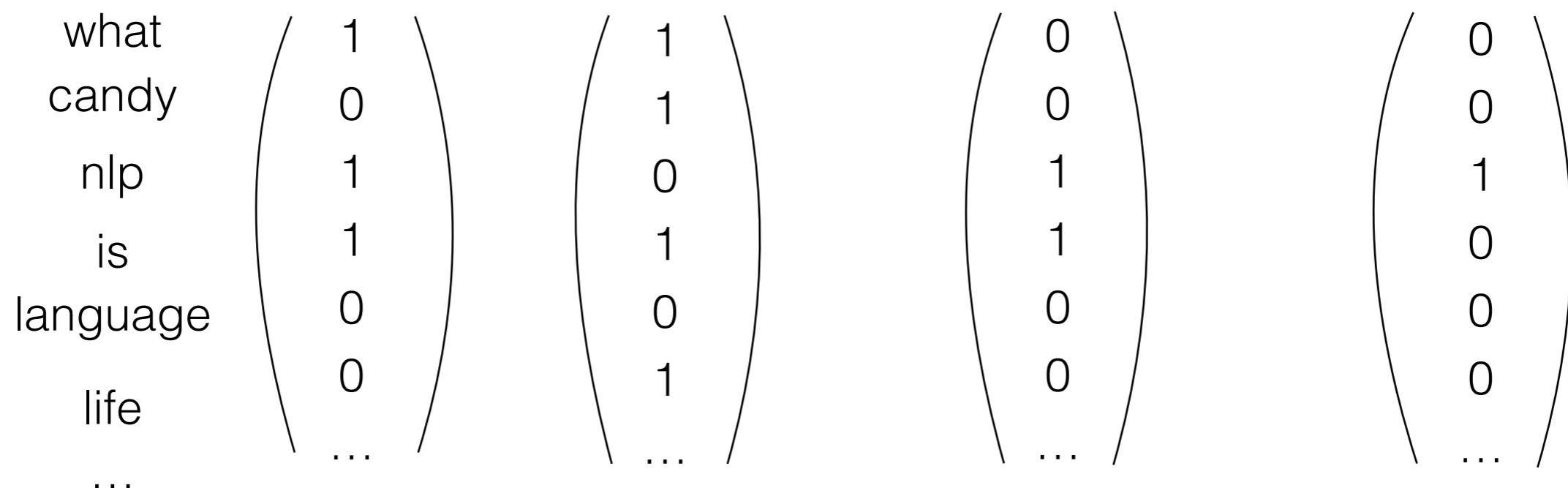
Sparse Retrievers

$q = \text{what is nlp}$

$d_1 = \text{what is life ?}$
 candy is life !

$d_2 = \text{nlp is an}$
 acronym for
 natural language

$d_3 = \text{I like to}$
 do good
 research on



Sparse Retrievers

q=what is nlp

$d_1 = \text{what is life ?}$
 candy is life !

$d_2 = \text{nlp is an}$
 acronym for
 natural language

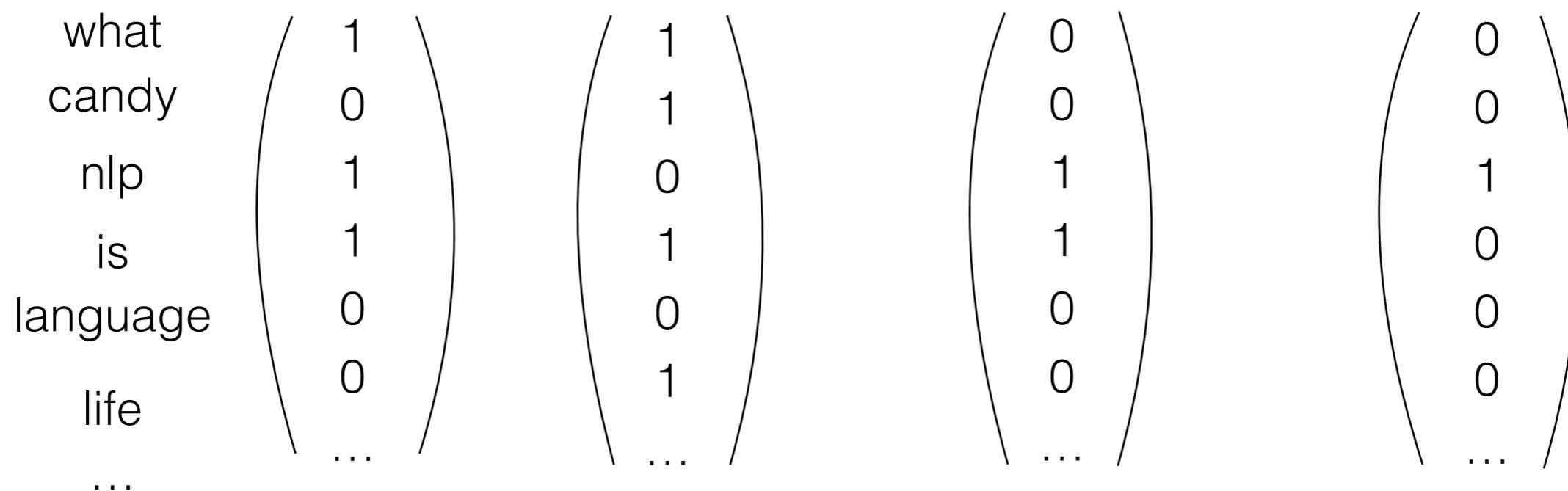
$d_3 = \text{I like to}$
 do good
 research on

what	1	0	0	0
candy	0	1	0	0
nlp	1	0	1	1
is	1	1	1	0
language	0	0	0	0
life	0	1	0	0
...

Check if a term appears in a document

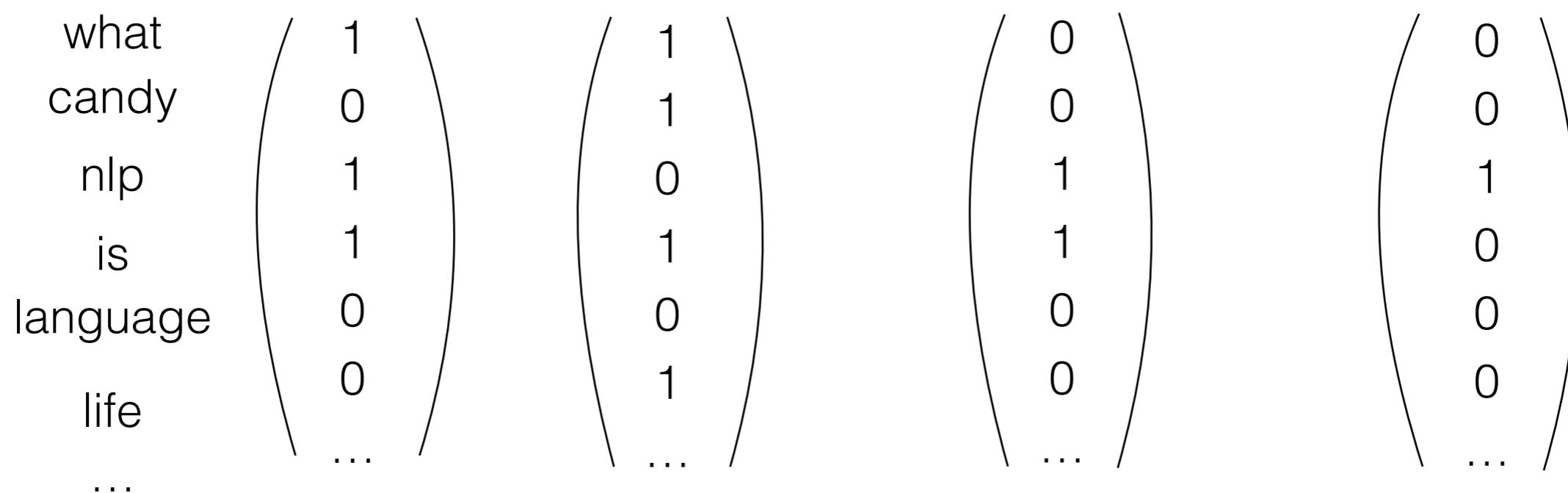
One-hot Vector

$q = \text{what is nlp}$ $d_1 = \text{what is life ?}$ $d_2 = \text{nlp is an acronym for natural language}$ $d_3 = \text{I like to do good research on}$



One-hot Vector

$q = \text{what is nlp}$ $d_1 = \text{what is life ?}$ $d_2 = \text{nlp is an acronym for natural language}$ $d_3 = \text{I like to do good research on}$



Check if a term appears in a document

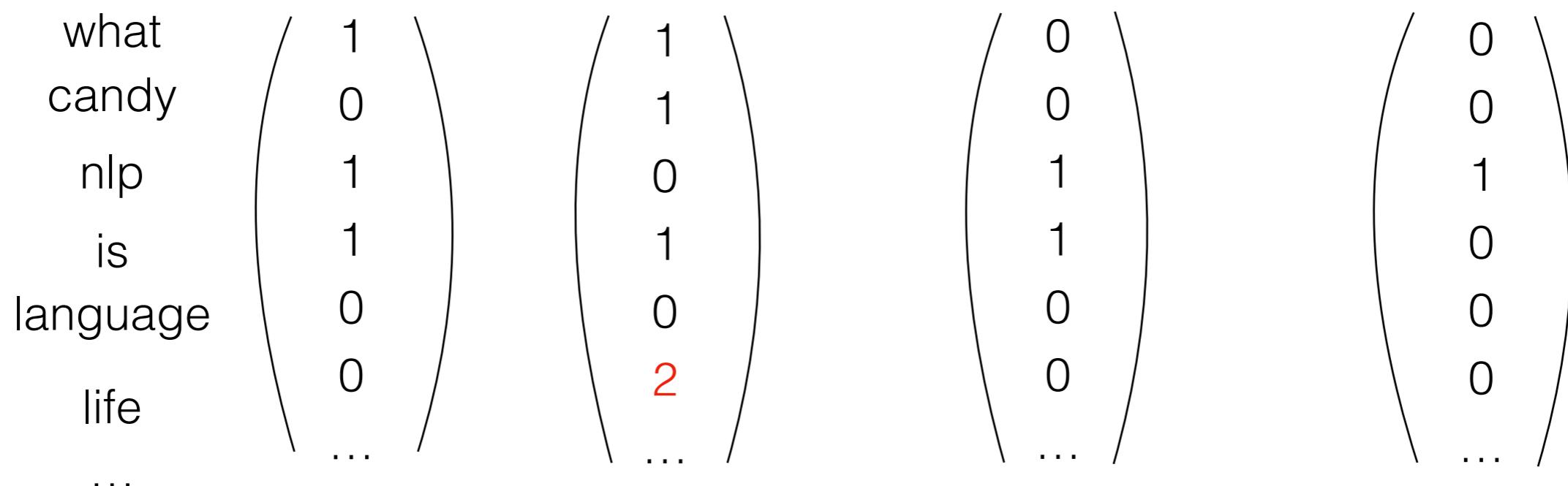
Term-count Vector

q=what is nlp

$d_1 = \text{what is life ?}$
 candy is life !

$d_2 = \text{nlp is an}$
 acronym for
 natural language

$d_3 = \text{I like to}$
 do good
 research on



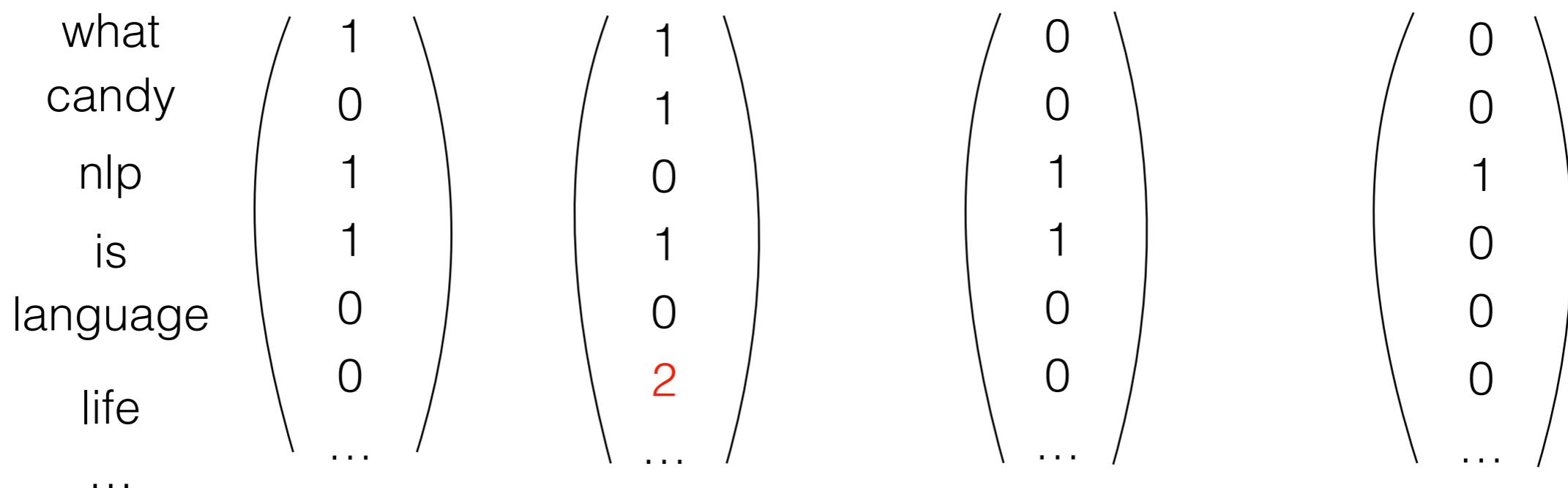
Term-count Vector

q=what is nlp

$d_1 = \text{what is life ?}$
 candy is life !

$d_2 = \text{nlp is an}$
 acronym for
 natural language

$d_3 = \text{I like to}$
 do good
 research on



Count the number of appearances in a doc

Weighted-term Score

$$\text{TF}(t, d) = \frac{\text{freq}(t, d)}{\sum_{t'} \text{freq}(t', d)} \quad \text{IDF}(t) = \log \left(\frac{|D|}{\sum_{d' \in D} \delta(\text{freq}(t, d') > 0)} \right)$$

$$\text{TF-IDF}(t, d) = \text{TF}(t, d) \times \text{IDF}(t)$$

$$\text{BM-25}(t, d) = \text{IDF}(t) \cdot \frac{\text{freq}(t, d) \cdot (k_1 + 1)}{\text{freq}(t, d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{\text{avgdl}}\right)}$$

Robertson et al. 2009. The Probabilistic Relevance Framework: BM25 and Beyond.

Weighted-term Score

$d_1 = \underline{\text{what}} \text{ is life ?}$

candy is life !

$$\text{TF}(t, d) = \frac{\text{freq}(t, d)}{\sum_{t'} \text{freq}(t', d)} \quad \text{IDF}(t) = \log \left(\frac{|D|}{\sum_{d' \in D} \delta(\text{freq}(t, d') > 0)} \right)$$

$t_1 = \text{what}$

$$\text{TF-IDF}(t, d) = \text{TF}(t, d) \times \text{IDF}(t)$$

$$\text{BM-25}(t, d) = \text{IDF}(t) \cdot \frac{\text{freq}(t, d) \cdot (k_1 + 1)}{\text{freq}(t, d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{\text{avgdl}}\right)}$$

Robertson et al. 2009. The Probabilistic Relevance Framework: BM25 and Beyond.

Weighted-term Score

$d_1 = \underline{\text{what}} \text{ is life ?}$

candy is life !

$$\text{TF}(t, d) = \frac{\text{freq}(t, d)}{\sum_{t'} \text{freq}(t', d)}$$

$t_1 = \text{what}$

of documents

$$\text{IDF}(t) = \log \left(\frac{|D|}{\sum_{d' \in D} \delta(\text{freq}(t, d') > 0)} \right)$$

$$\text{TF-IDF}(t, d) = \text{TF}(t, d) \times \text{IDF}(t)$$

$$\text{BM-25}(t, d) = \text{IDF}(t) \cdot \frac{\text{freq}(t, d) \cdot (k_1 + 1)}{\text{freq}(t, d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{\text{avgdl}} \right)}$$

Robertson et al. 2009. The Probabilistic Relevance Framework: BM25 and Beyond.

Weighted-term Score

$d_1 = \underline{\text{what}}$ is life ?

candy is life !

$$\text{TF}(t, d) = \frac{\text{freq}(t, d)}{\sum_{t'} \text{freq}(t', d)}$$

$t_1 = \text{what}$

of documents

$$\text{IDF}(t) = \log \left(\frac{|D|}{\sum_{d' \in D} \delta(\text{freq}(t, d') > 0)} \right)$$

of documents where term t appears

$$\text{TF-IDF}(t, d) = \text{TF}(t, d) \times \text{IDF}(t)$$

$$\text{BM-25}(t, d) = \text{IDF}(t) \cdot \frac{\text{freq}(t, d) \cdot (k_1 + 1)}{\text{freq}(t, d) + k_1 \cdot \left(1 - b + b \cdot \frac{|d|}{\text{avgdl}} \right)}$$

Robertson et al. 2009. The Probabilistic Relevance Framework: BM25 and Beyond.

Weighted-term Vectors

q=what is nlp

$d_1 = \text{what is life ?}$
 candy is life !

$d_2 = \text{nlp is an}$
 acronym for
 natural language

$d_3 = \text{I like to}$
 do good
 research on

what	0.36	0.18	0	0
candy	0	0.18	0	0
nlp	0.13	0	0.05	0.05
is	0.13	0.13	0.05	0
language	0	0	0.13	0
life	0	0.36	0	0
...

Compute TF-IDF weights to build weighted vectors

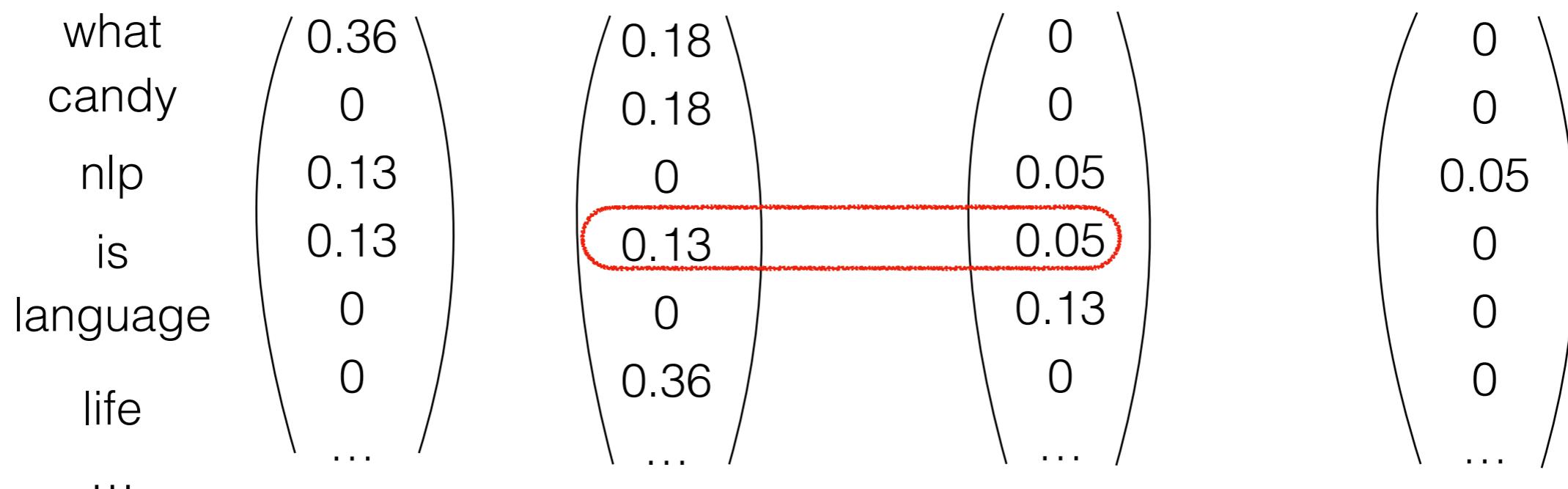
Weighted-term Vectors

q=what is nlp

$d_1 = \text{what is life ?}$
 candy is life !

$d_2 = \text{nlp is an}$
 acronym for
 natural language

$d_3 = \text{I like to}$
 do good
 research on



Compute TF-IDF weights to build weighted vectors

Weighted-term Vectors

q=what is nlp

$d_1 = \text{what is life ?}$
 candy is life !

$d_2 = \text{nlp is an}$
 acronym for
 natural language

$d_3 = \text{I like to}$
 do good
 research on

what	0.36	0.18	0	0
candy	0	0.18	0	0
nlp	0.13	0	0.05	0.05
is	0.13	0.13	0.05	0
language	0	0	0.13	0
life	0	0.36	0	0
...

Compute TF-IDF weights to build weighted vectors

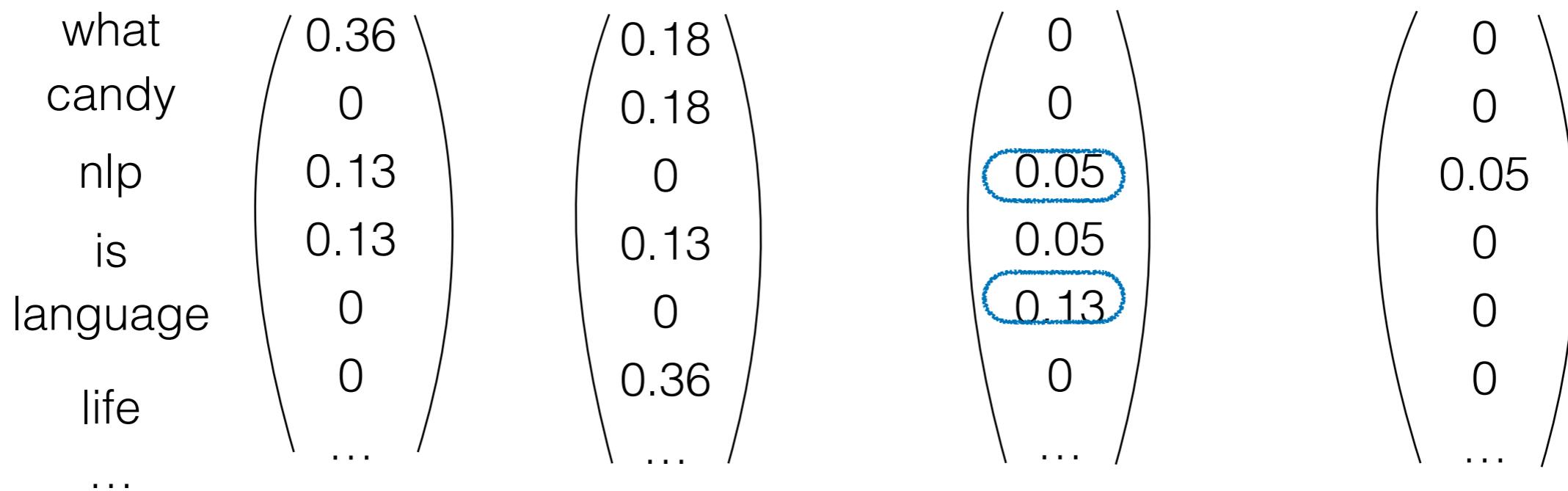
Weighted-term Vectors

q=what is nlp

$d_1 = \text{what is life ?}$
 candy is life !

$d_2 = \text{nlp is an}$
 acronym for
 natural language

$d_3 = \text{I like to}$
 do good
 research on



Compute TF-IDF weights to build weighted vectors

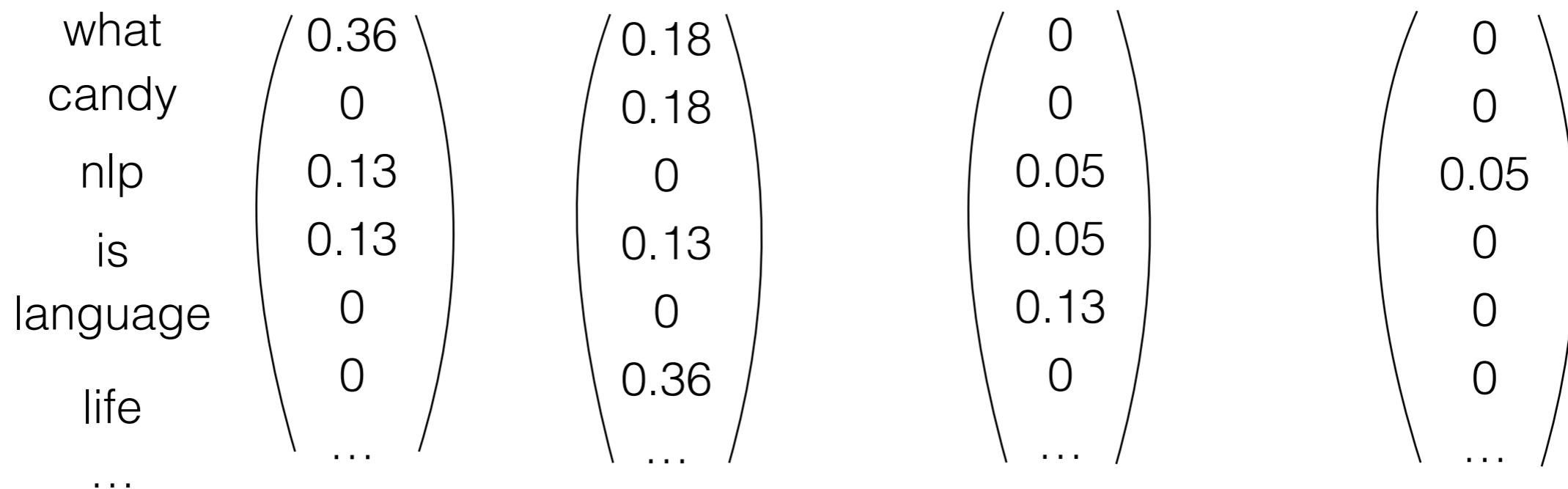
Compute cosine similarity

$q = \text{what is nlp}$

$d_1 = \text{what is life ?}$
 candy is life !

$d_2 = \text{nlp is an}$
 acronym for
 natural language

$d_3 = \text{I like to}$
 do good
 research on



$$q * d_1 = 0.44$$

$$q * d_2 = 0.21$$

$$q * d_3 = 0.32$$

Compute cosine similarity

$q = \text{what is nlp}$

$d_1 = \text{what is life ?}$
 candy is life !

$d_2 = \text{nlp is an}$
 acronym for
 natural language

$d_3 = \text{I like to}$
 do good
 research on

what
candy
nlp
is
language
life
...

$\begin{pmatrix} 0.36 \\ 0 \\ 0.13 \\ 0.13 \\ 0 \\ 0 \\ \dots \end{pmatrix}$

$\begin{pmatrix} 0.18 \\ 0.18 \\ 0 \\ 0.13 \\ 0 \\ 0.36 \\ \dots \end{pmatrix}$

$\begin{pmatrix} 0 \\ 0 \\ 0.05 \\ 0.05 \\ 0.13 \\ 0 \\ \dots \end{pmatrix}$

$\begin{pmatrix} 0 \\ 0 \\ 0.05 \\ 0 \\ 0 \\ 0 \\ \dots \end{pmatrix}$

$$q * d_1 = 0.44$$

$$q * d_2 = 0.21$$

$$q * d_3 = 0.32$$

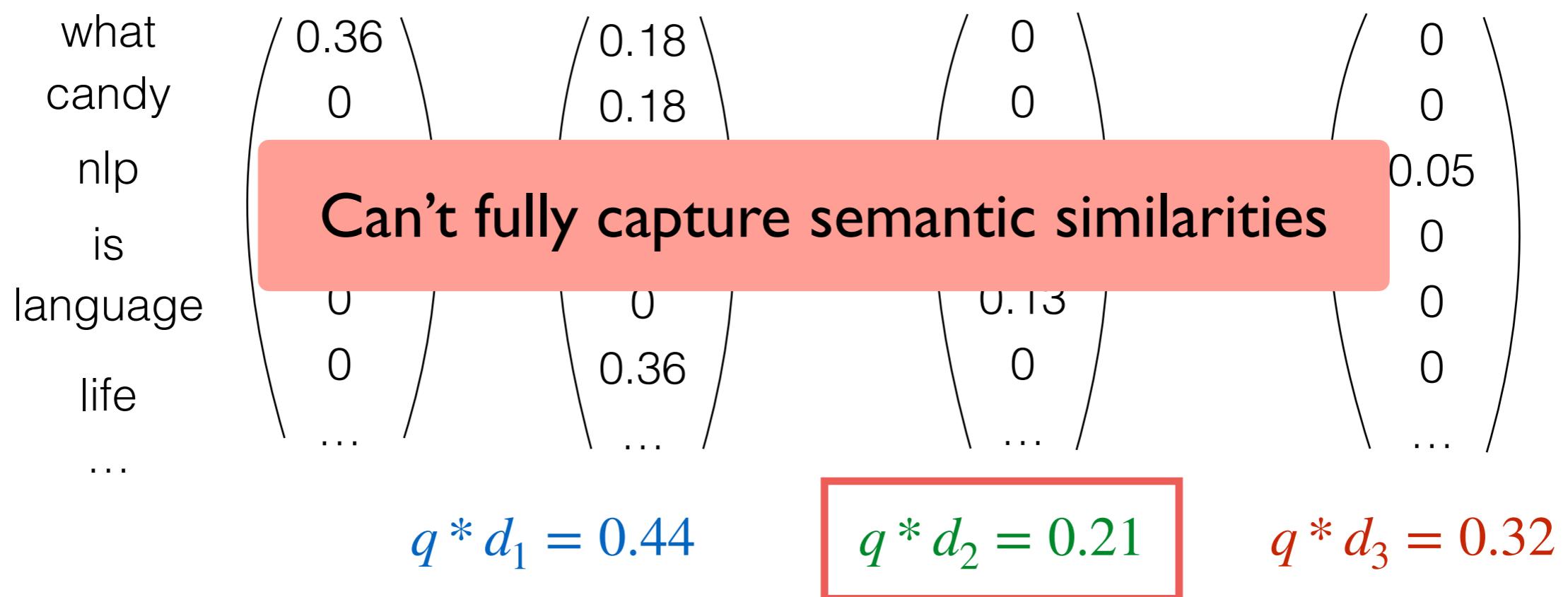
Compute cosine similarity

q=what is nlp

d_1 = what is life ?
candy is life !

$d_2 = \text{nlp}$ is an acronym for natural language

$d_3 = \text{I like to}$
 do good
 research on



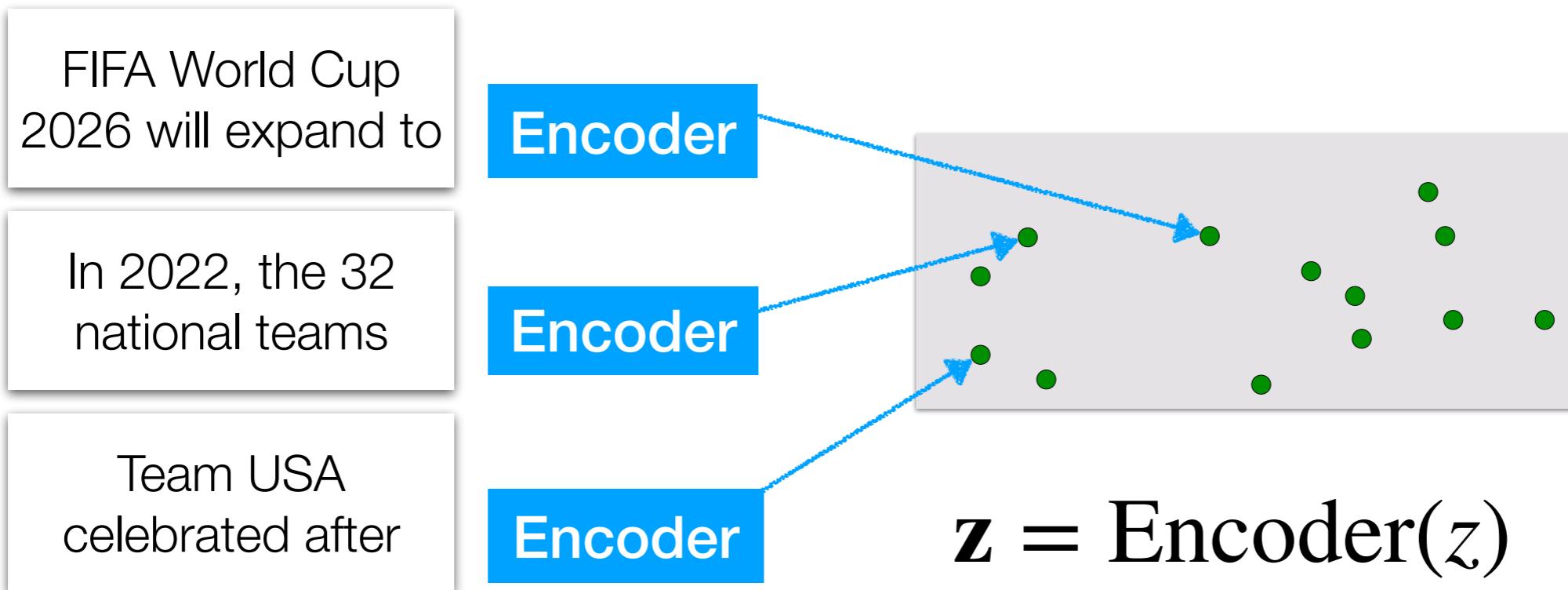
Dense Retrievers: Overview

FIFA World Cup
2026 will expand to

In 2022, the 32
national teams

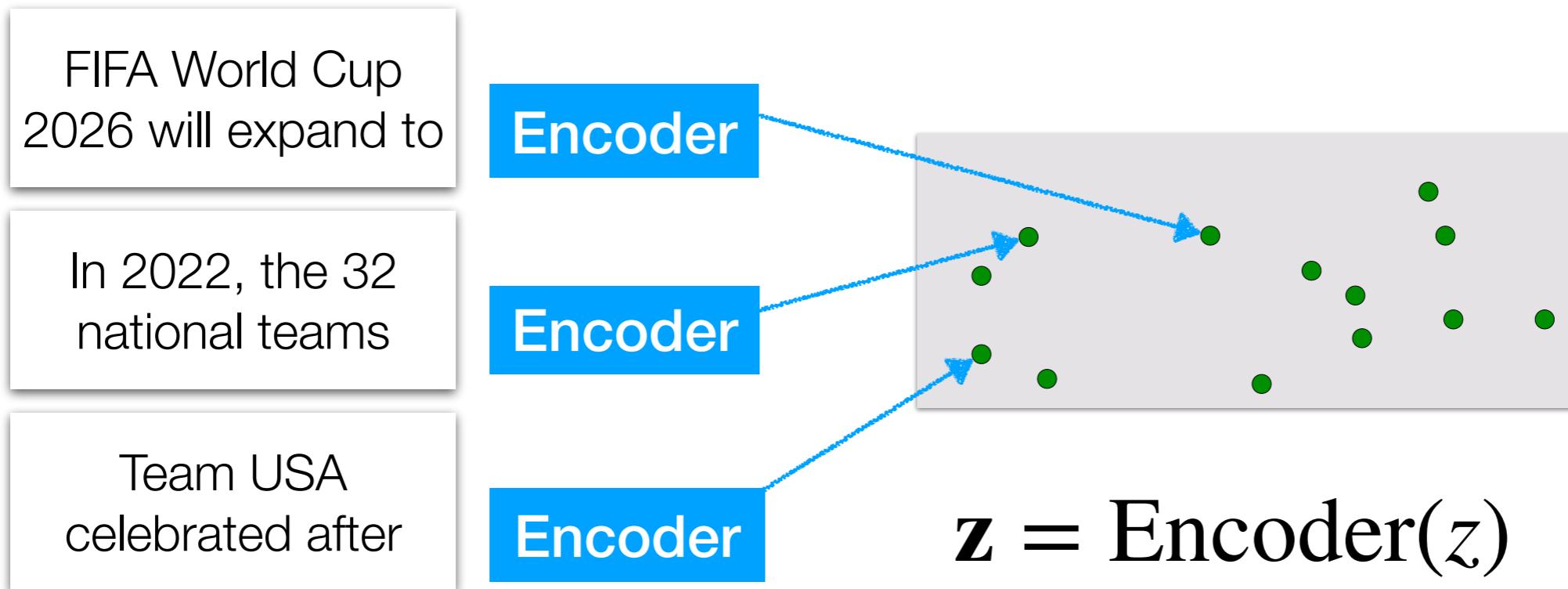
Team USA
celebrated after

Dense Retrievers: Overview



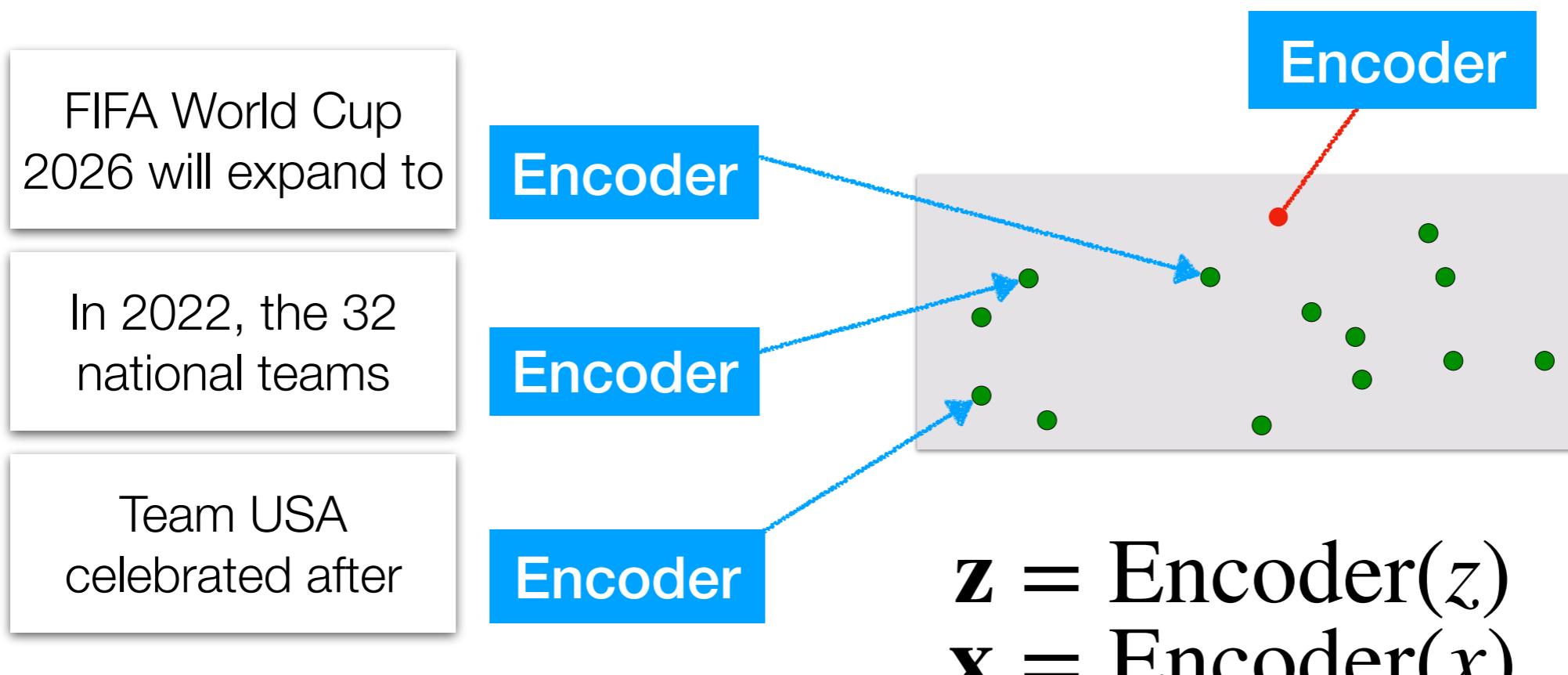
Dense Retrievers: Overview

x = How many teams will participate in FIFA World



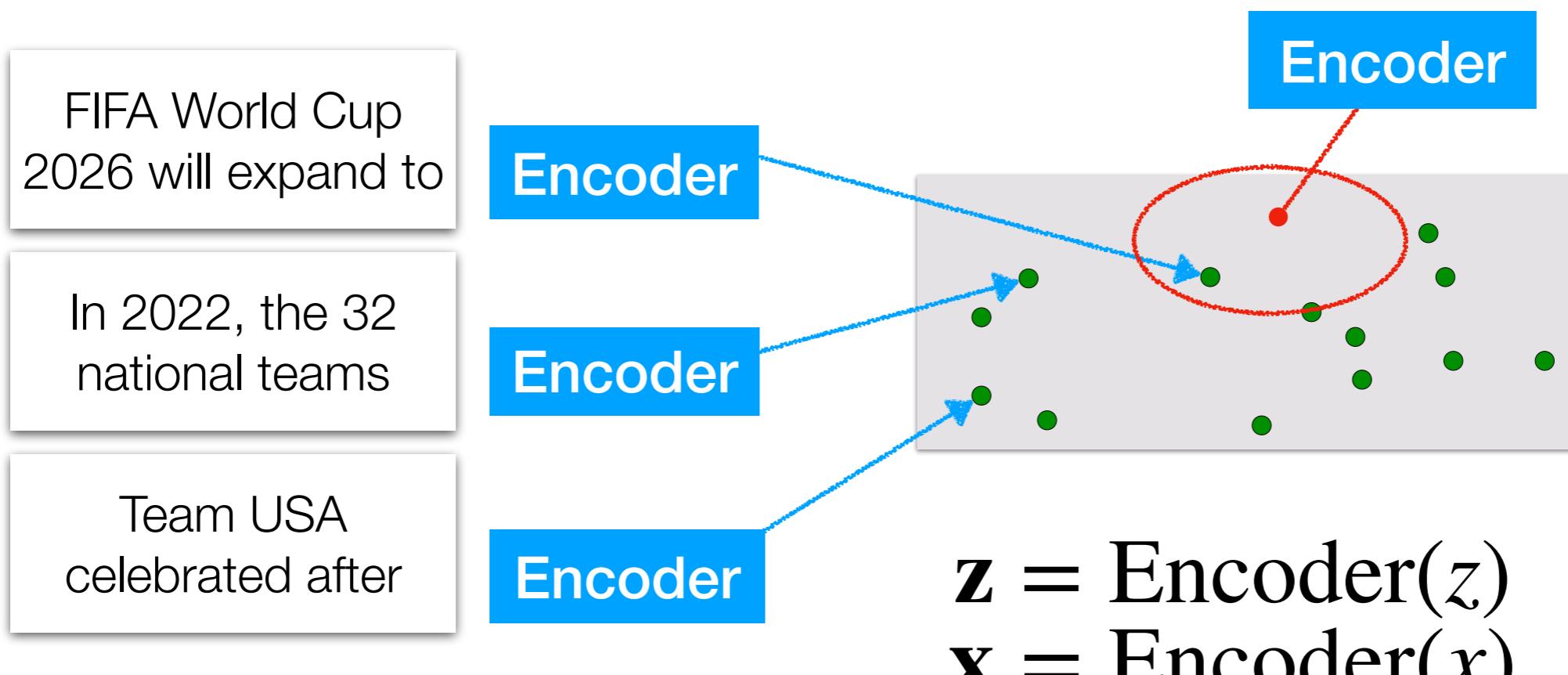
Dense Retrievers: Overview

\mathbf{x} = How many teams will participate in FIFA World



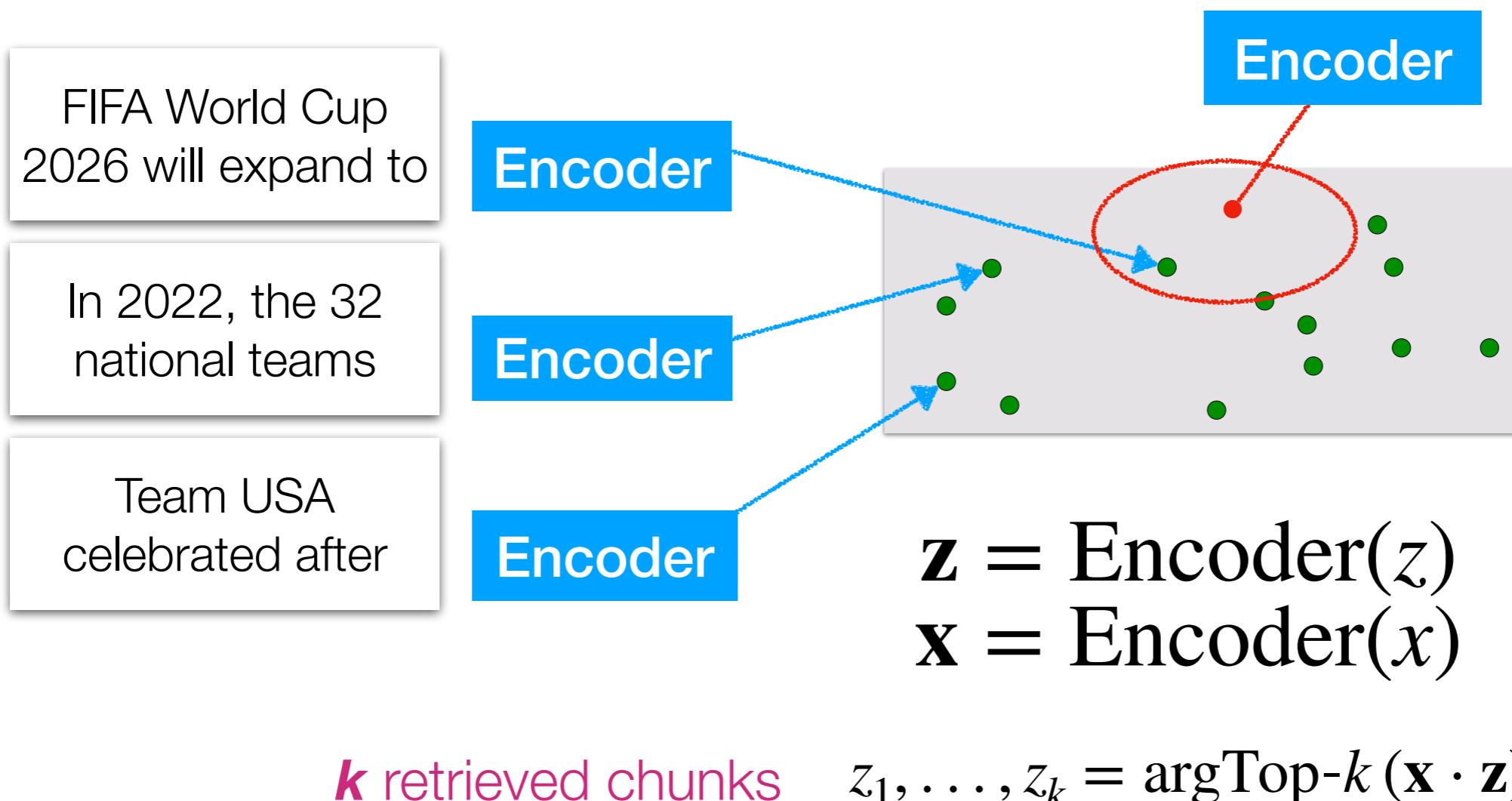
Dense Retrievers: Overview

\mathbf{x} = How many teams will participate in FIFA World



Dense Retrievers: Overview

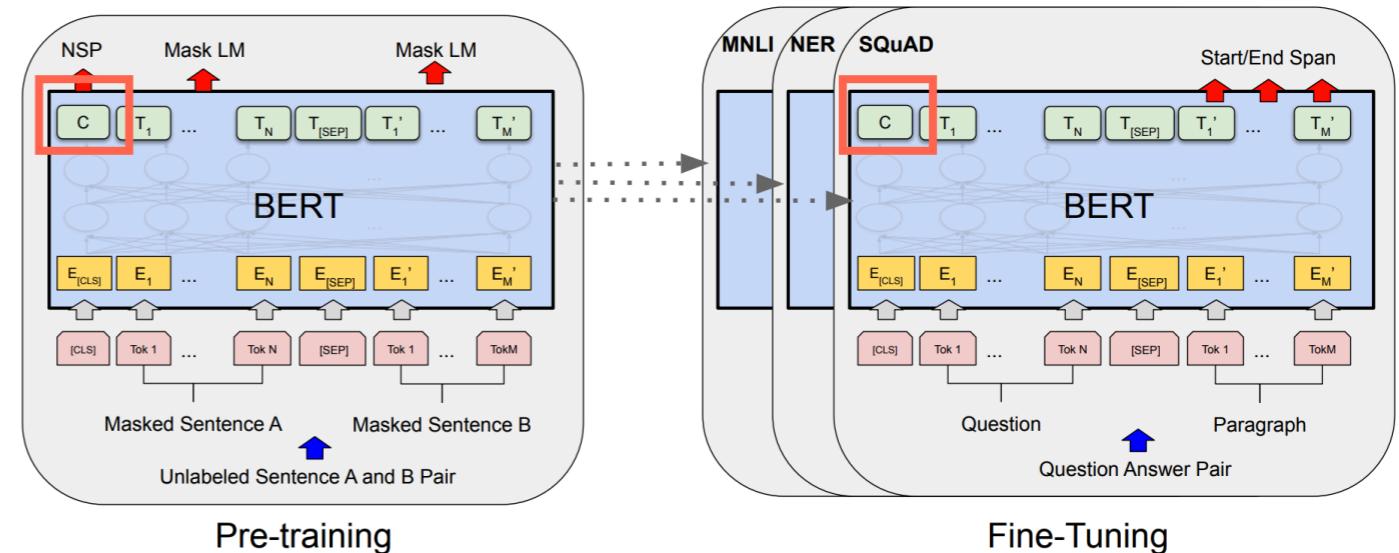
\mathbf{x} = How many teams will participate in FIFA World



Dense Retrievers: Embeddings

$$\mathbb{R}^d$$

- Use output vector of [CLS] in masked LMs
e.g., DPR



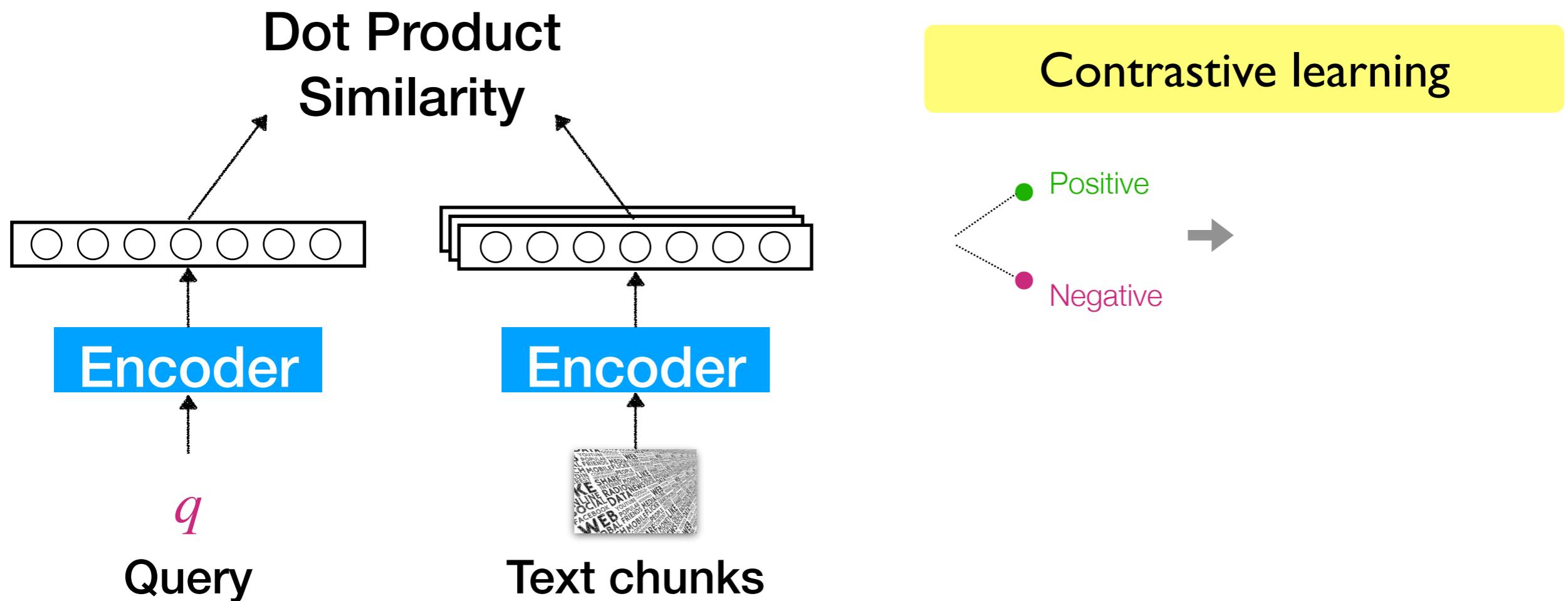
$$\mathbb{R}^{N \times d}$$

- Mean / Max pooling of output vectors (can be applied to autoregressive LMs)

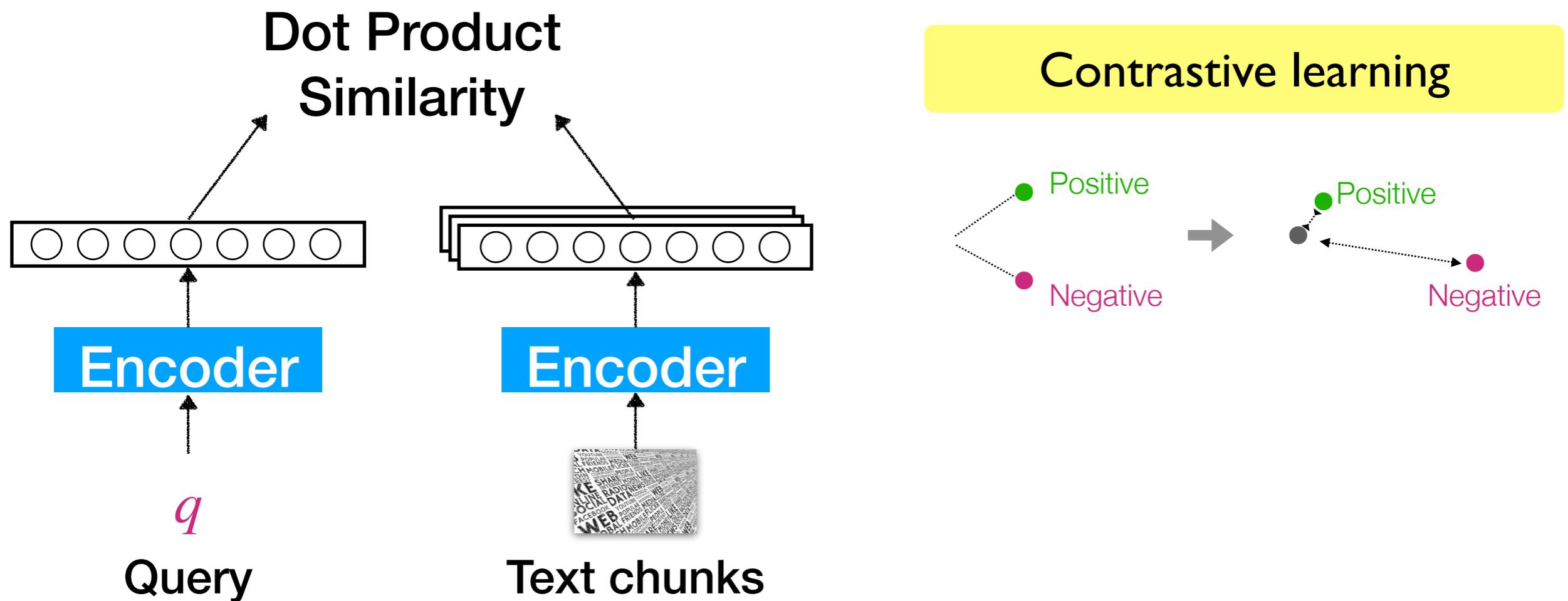
e.g., SBERT, SGPT, Qwen Embeddings

Karpukhin et al 2020. Dense Passage Retrieval for Open-Domain Question Answering.
Muennighoff 2022. SGPT: GPT Sentence Embeddings for Semantic Search.

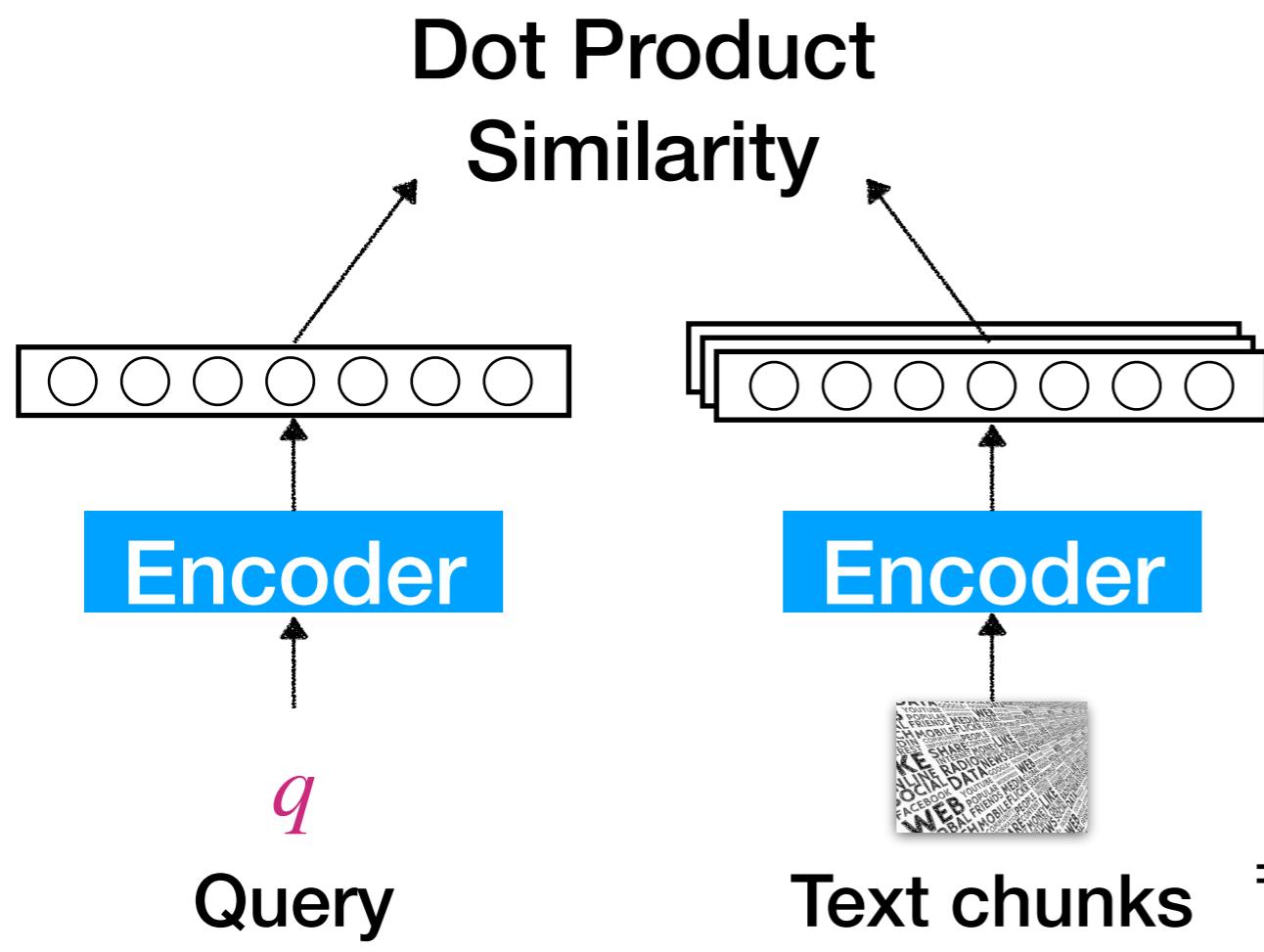
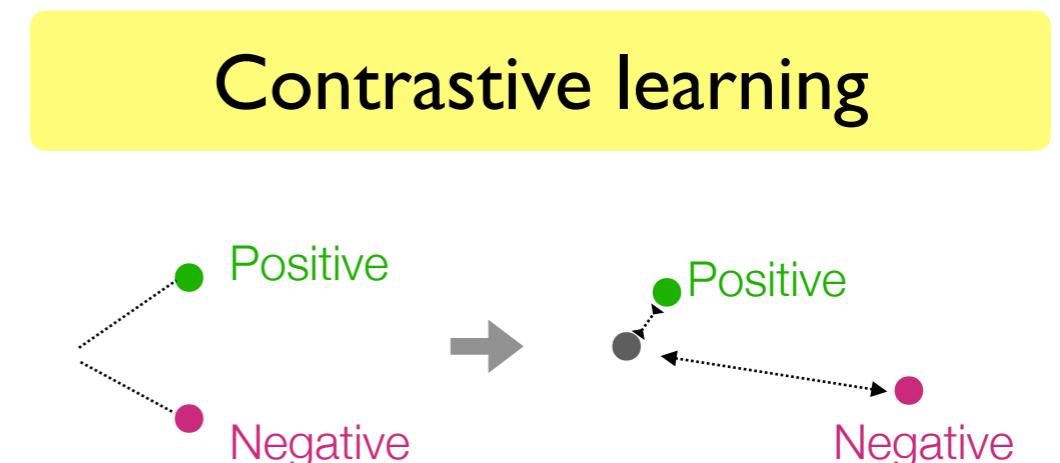
Training Dense Retrievers



Training Dense Retrievers



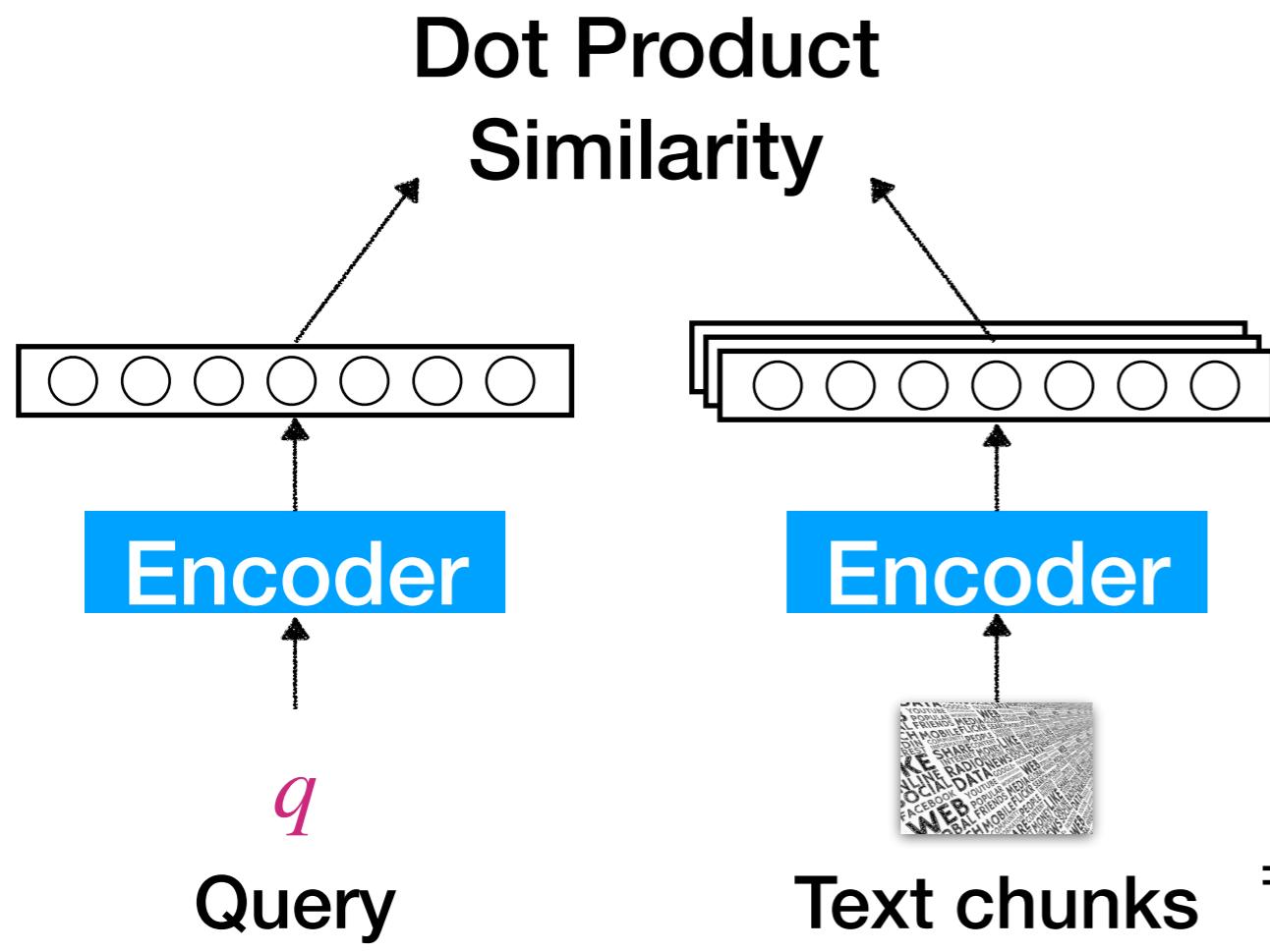
Training Dense Retrievers



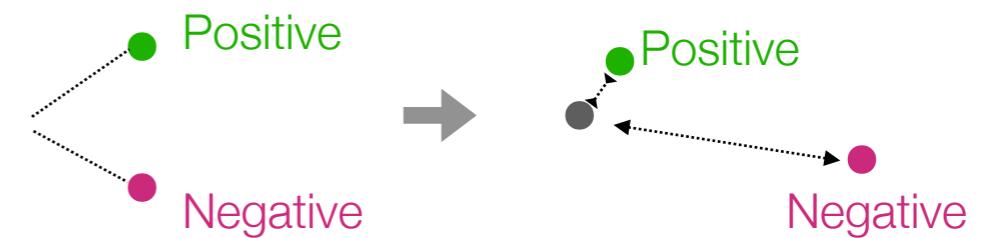
$$L(q, p^+, p_1^-, p_2^-, \dots, p_n^-)$$

$$= - \log \frac{\exp(\text{sim}(q, p^+))}{\exp(\text{sim}(q, p^+)) + \sum_{j=1}^n \exp(\text{sim}(q, p_j^-))}$$

Training Dense Retrievers



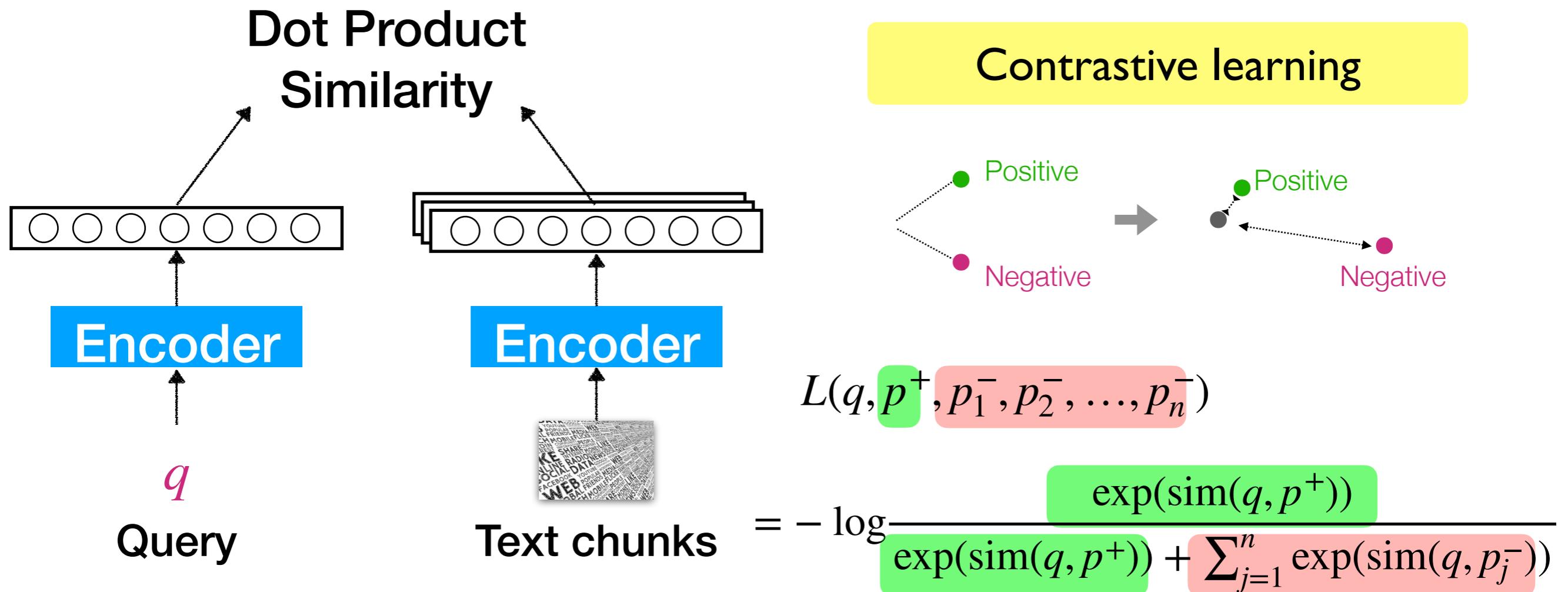
Contrastive learning



$$L(q, p^+, p_1^-, p_2^-, \dots, p_n^-)$$

$$= - \log \frac{\exp(\text{sim}(q, p^+))}{\exp(\text{sim}(q, p^+)) + \sum_{j=1}^n \exp(\text{sim}(q, p_j^-))}$$

Training Dense Retrievers



Fast Nearest Neighbor Search

Method	Class name	index_factory	Main parameters	Bytes/vector	Exhaustive search
Exact Search for L2	IndexFlatL2	"Flat"	d	4*d	yes
Exact Search for Inner Product	IndexFlatIP	"Flat"	d	4*d	yes
Hierarchical Navigable Small World graph exploration	IndexHNSWFlat	"HNSW,Flat"	d, M	4*d + x * M * 2 * 4	no
Inverted file with exact post-verification	IndexIVFFlat	"IVFx,Flat"	quantizer, d, nlists, metric	4*d + 8	no
Locality-Sensitive Hashing (binary flat index)	IndexLSH	-	d, nbits	ceil(nbites/8)	yes
Scalar quantizer (SQ) in flat mode	IndexScalarQuantizer	"SQ8"	d	d	yes
Product quantizer (PQ) in flat mode	IndexPQ	"PQx", "PQ" "M" "x" "nbites"	d, M, nbits	ceil(M * nbites / 8)	yes
IVF and scalar quantizer	IndexIVFScalarQuantizer	"IVFx,SQ4" "IVFx,SQ8"	quantizer, d, nlists, qtype	SQfp16: 2 * d + 8, SQ8: d + 8 or SQ4: d/2 + 8	no
IVFADC (coarse quantizer+PQ on residuals)	IndexIVFPQ	"IVFx,PQ" "y" "x" "nbites"	quantizer, d, nlists, M, nbits	ceil(M * nbites/8)+8	no

[https://github.com/
facebookresearch/faiss/wiki](https://github.com/facebookresearch/faiss/wiki)

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search (CVPR 2020 Tutorial)

Fast Nearest Neighbor Search

Method	Class name	index_factory	Main parameters	Bytes/vector	Exhaustive
Exact Search for L2	IndexFlatL2	"Flat"	d	4*d	yes
Exact Search for Inner Product	IndexFlatIP	"Flat"	d	4*d	yes
Hierarchical Navigable Small World graph exploration	IndexHNSWFlat	"HNSW,Flat"	d, M	4*d + x * M * 2 * 4	no
Inverted file with exact post-verification	IndexIVFFlat	"IVFx,Flat"	quantizer, d, nlists, metric	4*d + 8	no
Locality-Sensitive Hashing (binary flat index)	IndexLSH	-	d, nbits	ceil(nbites/8)	yes
Scalar quantizer (SQ) in flat mode	IndexScalarQuantizer	"SQ8"	d	d	yes
Product quantizer (PQ) in flat mode	IndexPQ	"PQx", "PQ" "M" "x" "nbites	d, M, nbits	ceil(M * nbites / 8)	yes
IVF and scalar quantizer	IndexIVFScalarQuantizer	"IVFx,SQ4" "IVFx,SQ8"	quantizer, d, nlists, qtype	SQfp16: 2 * d + 8, SQ8: d + 8 or SQ4: d/2 + 8	no
IVFADC (coarse quantizer+PQ on residuals)	IndexIVFPQ	"IVFx,PQ" "y" "x" "nbites	quantizer, d, nlists, M, nbits	ceil(M * nbites/8)+8	no

[https://github.com/
facebookresearch/faiss/wiki](https://github.com/facebookresearch/faiss/wiki)

Exact search (still fast for 10^6~10^7 scale)

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search (CVPR 2020 Tutorial)

Fast Nearest Neighbor Search

Method	Class name	index_factory	Main parameters	Bytes/vector	Exhaustive
Exact Search for L2	IndexFlatL2	"Flat"	d	4*d	yes
Exact Search for Inner Product	IndexFlatIP	"Flat"	d	4*d	yes
Hierarchical Navigable Small World graph exploration	IndexHNSWFlat	"HNSW,Flat"	d, M	4*d + x * M * 2 * 4	no
Inverted file with exact post-verification	IndexIVFFlat	"IVFx,Flat"	quantizer, d, nlists, metric	4*d + 8	no
Locality-Sensitive Hashing (binary flat index)	IndexLSH	-	d, nbits	ceil(nbites/8)	yes
Scalar quantizer (SQ) in flat mode	IndexScalarQuantizer	"SQ8"	d	d	yes
Product quantizer (PQ) in flat mode	IndexPQ	"PQx", "PQ" "M" "x" "nbites	d, M, nbits	ceil(M * nbites / 8)	yes
IVF and scalar quantizer	IndexIVFScalarQuantizer	"IVFx,SQ4" "IVFx,SQ8"	quantizer, d, nlists, qtype	SQfp16: 2 * d + 8, SQ8: d + 8 or SQ4: d/2 + 8	no
IVFADC (coarse quantizer+PQ on residuals)	IndexIVFPQ	"IVFx,PQ" "y" "x" "nbites	quantizer, d, nlists, M, nbits	ceil(M * nbites/8)+8	no

[https://github.com/
facebookresearch/faiss/wiki](https://github.com/facebookresearch/faiss/wiki)

Exact search (still fast for 10⁶~10⁷ scale)

Approximate search (faster but more memory)

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search (CVPR 2020 Tutorial)

Fast Nearest Neighbor Search

Method	Class name	index_factory	Main parameters	Bytes/vector	Exhaustive
Exact Search for L2	IndexFlatL2	"Flat"	d	4*d	yes
Exact Search for Inner Product	IndexFlatIP	"Flat"	d	4*d	yes
Hierarchical Navigable Small World graph exploration	IndexHNSWFlat	"HNSW,Flat"	d, M	4*d + x * M * 2 * 4	no
Inverted file with exact post-verification	IndexIVFFlat	"IVFx,Flat"	quantizer, d, nlists, metric	4*d + 8	no
Locality-Sensitive Hashing (binary flat index)	IndexLSH	-	d, nbits	ceil(nbites/8)	yes
Scalar quantizer (SQ) in flat mode	IndexScalarQuantizer	"SQ8"	d	d	yes
Product quantizer (PQ) in flat mode	IndexPQ	"PQx", "PQM"x"nbits	d, M, nbits	ceil(M * nbites / 8)	yes
IVF and scalar quantizer	IndexIVFScalarQuantizer	"IVFx,SQ4" "IVFx,SQ8"	quantizer, d, nlists, qtype	SQfp16: 2 * d + 8, SQ8: d + 8 or SQ4: d/2 + 8	no
IVFADC coarse quantizer+PQ (n residuals)	IndexIVFPQ	"IVFx,PQ"y"x"nbits	quantizer, d, nlists, M, nbits	ceil(M * nbites/8)+8	no

[https://github.com/
facebookresearch/faiss/wiki](https://github.com/facebookresearch/faiss/wiki)

Exact search (still fast for 10⁶~10⁷ scale)

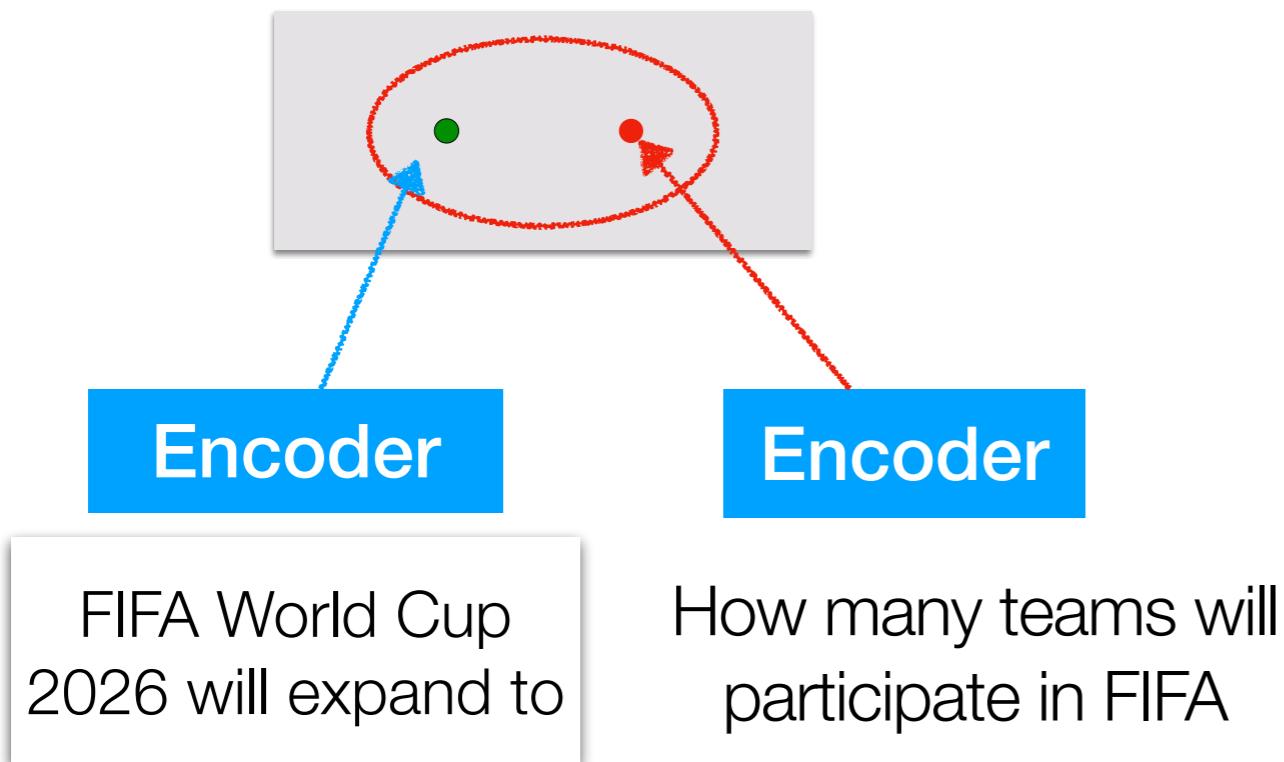
Approximate search (faster but more memory)

Reduce index size with quantization

https://speakerdeck.com/matsui_528/cvpr20-tutorial-billion-scale-approximate-nearest-neighbor-search (CVPR 2020 Tutorial)

Reranking with Cross Encoders

Bi-Encoder

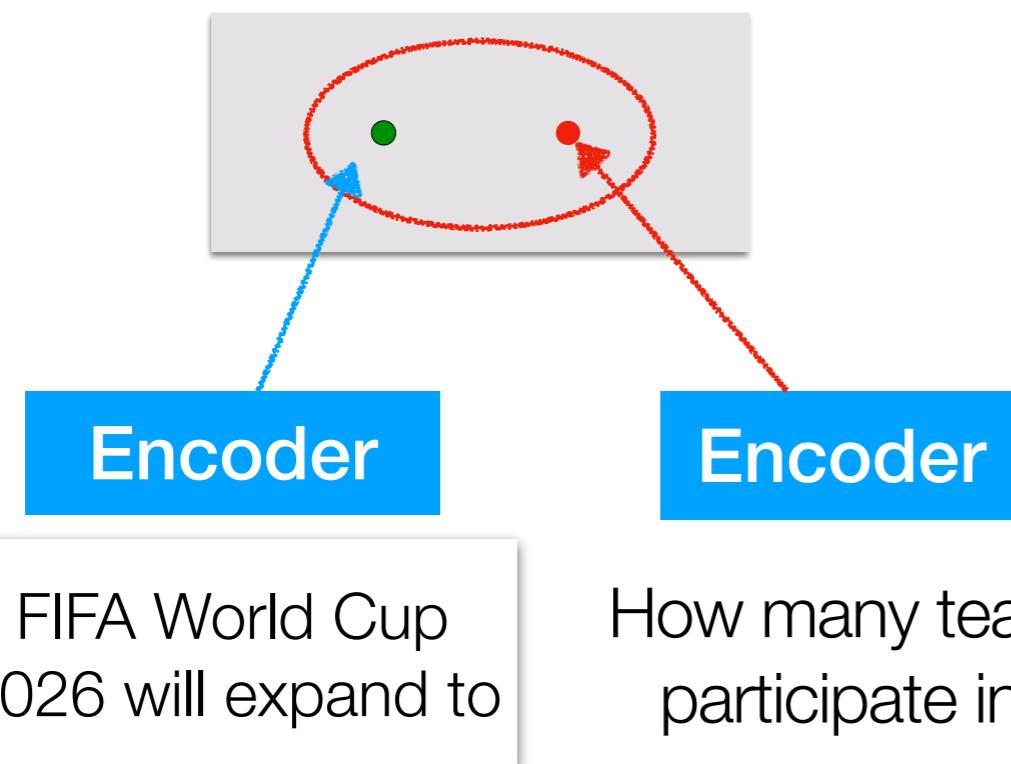


FIFA World Cup
2026 will expand to

How many teams will
participate in FIFA

Reranking with Cross Encoders

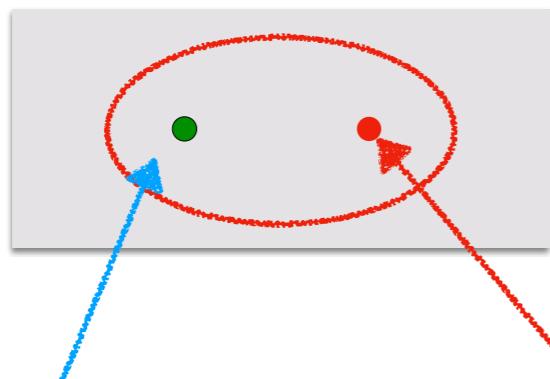
Bi-Encoder



Cross-Encoder

Reranking with Cross Encoders

Bi-Encoder



Encoder

FIFA World Cup
2026 will expand to

Encoder

How many teams will
participate in FIFA

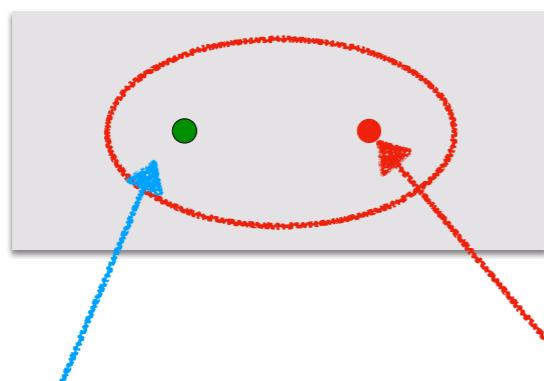
Cross-Encoder

FIFA World Cup
2026 will expand to

How many teams will
participate in FIFA World

Reranking with Cross Encoders

Bi-Encoder



FIFA World Cup
2026 will expand to

How many teams will
participate in FIFA

Cross-Encoder

Classifier

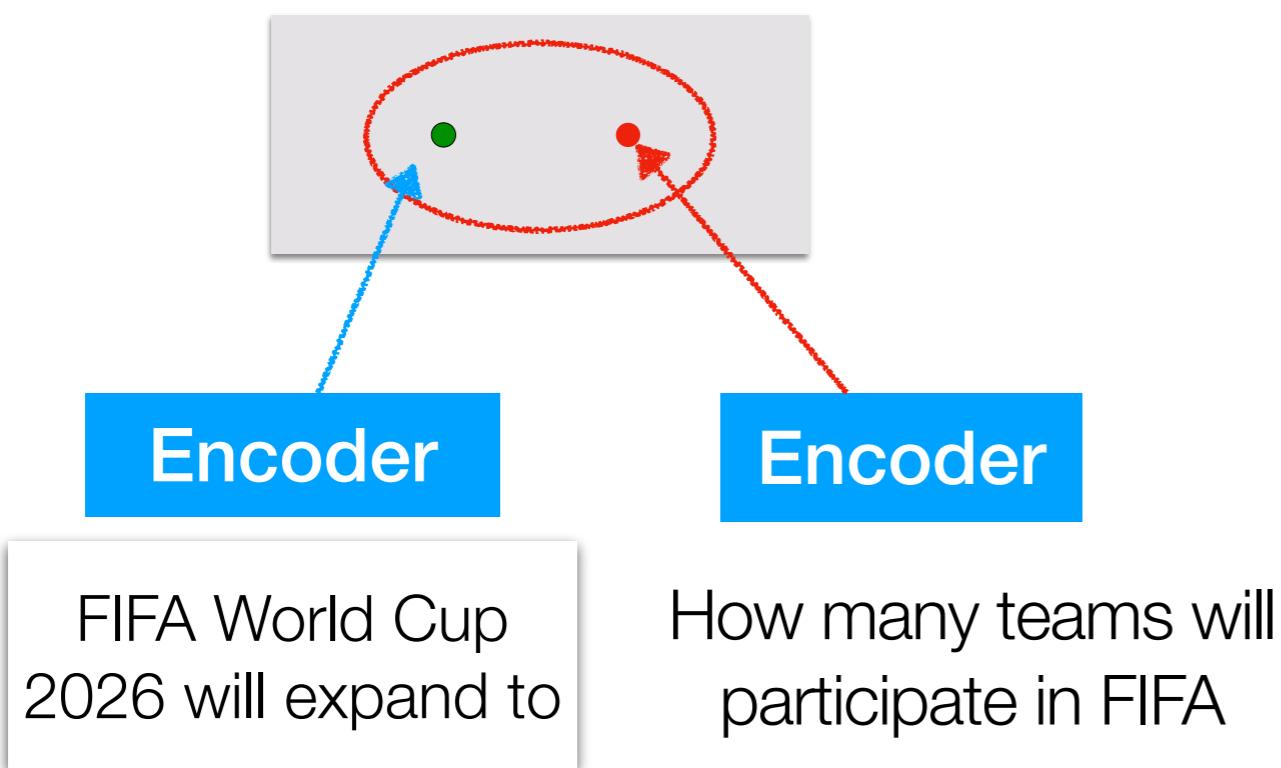
Encoder

FIFA World Cup
2026 will expand to

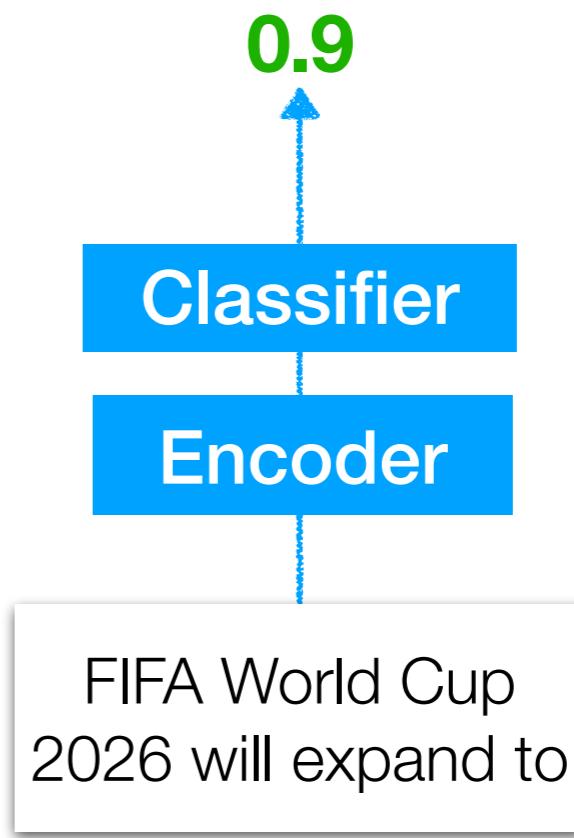
How many teams will
participate in FIFA World

Reranking with Cross Encoders

Bi-Encoder



Cross-Encoder



How many teams will participate in FIFA World

Evaluation Metrics

Evaluation Metrics

Evaluation of **unranked** retrieval sets

$$\text{Precision} = \frac{\text{\#(relevant items retrieved)}}{\text{\#(retrieved items)}}$$

$$\text{Recall} = \frac{\text{\#(relevant items retrieved)}}{\text{\#(relevant items)}}$$

Evaluation Metrics

Evaluation of **unranked** retrieval sets

$$\text{Precision} = \frac{\#\text{(relevant items retrieved)}}{\#\text{(retrieved items)}}$$

$$\text{Recall} = \frac{\#\text{(relevant items retrieved)}}{\#\text{(relevant items)}}$$

Evaluation of **ranked** retrieval sets

$$\text{MAP}(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} \text{Precision}(R_{jk})$$

$$\text{NDCG}(Q, k) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} Z_{kj} \sum_{m=1}^k \frac{2^{R(j,m)} - 1}{\log_2(1 + m)}$$

Evaluation Metrics

Evaluation of **unranked** retrieval sets

$$\text{Precision} = \frac{\#\text{(relevant items retrieved)}}{\#\text{(retrieved items)}}$$

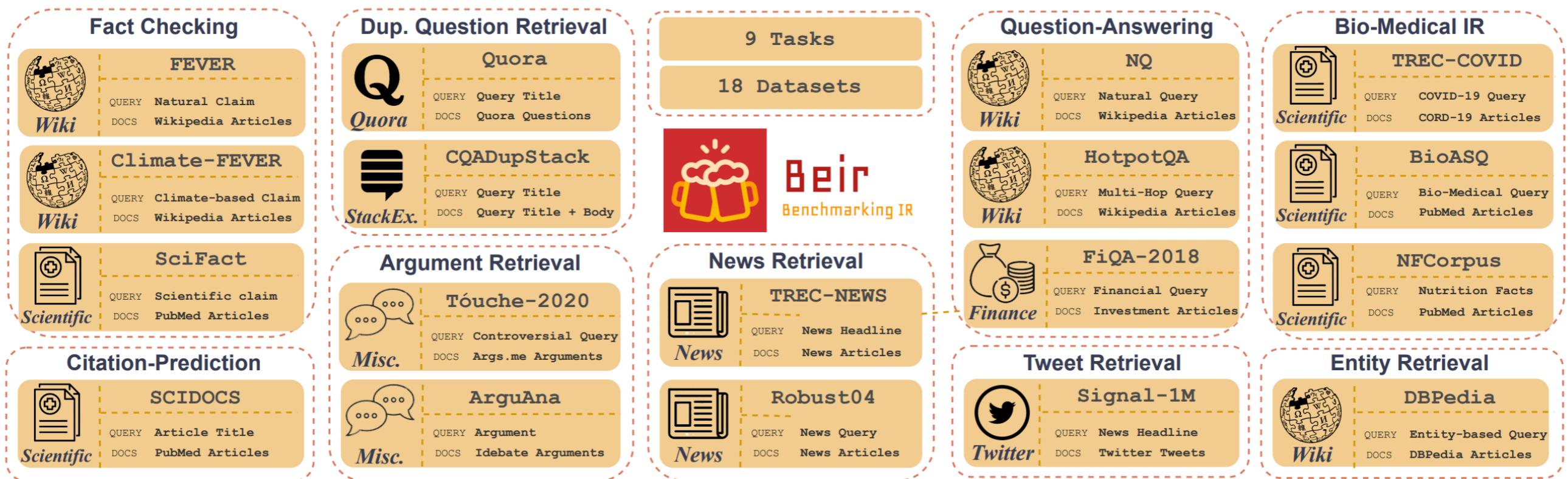
$$\text{Recall} = \frac{\#\text{(relevant items retrieved)}}{\#\text{(relevant items)}}$$

Evaluation of **ranked** retrieval sets

$$\text{MAP}(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} \text{Precision}(R_{jk}) \quad \text{NDCG}(Q, k) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} Z_{kj} \sum_{m=1}^k \frac{2^{R(j,m)} - 1}{\log_2(1 + m)}$$

nDCG@10 is widely used (e.g., BEIR)

Retrieval Benchmark: MTEB



Thakur et al. 2021. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models.

BEIR Results

	BM25	BM25+CE
MS MARCO	22.8	41.3
Trec-COVID	65.6	75.7
NFCorpus	32.5	35.0
NQ	32.9	53.3
HotpotQA	60.3	70.7
FiQA	23.6	34.7
ArguAna	31.5	31.1
Touche-2020	36.7	27.1
CQADupStack	29.9	37.0.
Quora	78.9	82.5
DBPedia	31.3	40.9
Scidocs	15.8	16.6
FEVER	75.3	81.9
Climate-FEVER	21.3	25.3
Scifact	66.5	68.8
Avg. w/o CQA	44.0	49.5
Avg.	43.0	48.6
Best on	1	3

BEIR Results

	BM25	BM25+CE
MS MARCO	22.8	41.3
Trec-COVID	65.6	75.7
NFCorpus	32.5	35.0
NQ	32.9	53.3
HotpotQA	60.3	70.7
FiQA	23.6	34.7
ArguAna	31.5	31.1
Touche-2020	36.7	27.1
CQADupStack	29.9	37.0.
Quora	78.9	82.5
DBPedia	31.3	40.9
Scidocs	15.8	16.6
FEVER	75.3	81.9
Climate-FEVER	21.3	25.3
Scifact	66.5	68.8
Avg. w/o CQA	44.0	49.5
Avg.	43.0	48.6
Best on	1	3

Adding CE (cross-encoder) helps

BEIR Results

	BM25	BM25+CE	DPR
MS MARCO	22.8	41.3	17.7
Trec-COVID	65.6	75.7	33.2
NFCorpus	32.5	35.0	18.9
NQ	32.9	53.3	47.4
HotpotQA	60.3	70.7	39.1
FiQA	23.6	34.7	11.2
ArguAna	31.5	31.1	17.5
Touche-2020	36.7	27.1	13.1
CQADupStack	29.9	37.0.	15.3
Quora	78.9	82.5	24.8
DBPedia	31.3	40.9	26.3
Scidocs	15.8	16.6	7.7
FEVER	75.3	81.9	56.2
Climate-FEVER	21.3	25.3	14.8
Scifact	66.5	68.8	31.8
Avg. w/o CQA	44.0	49.5	26.3
Avg.	43.0	48.6	25.5
Best on	1	3	0

Adding CE (cross-encoder) helps

BEIR Results

	BM25	BM25+CE	DPR
MS MARCO	22.8	41.3	17.7
Trec-COVID	65.6	75.7	33.2
NFCorpus	32.5	35.0	18.9
NQ	32.9	53.3	47.4
HotpotQA	60.3	70.7	39.1
FiQA	23.6	34.7	11.2
ArguAna	31.5	31.1	17.5
Touche-2020	36.7	27.1	13.1
CQADupStack	29.9	37.0.	15.3
Quora	78.9	82.5	24.8
DBPedia	31.3	40.9	26.3
Scidocs	15.8	16.6	7.7
FEVER	75.3	81.9	56.2
Climate-FEVER	21.3	25.3	14.8
Scifact	66.5	68.8	31.8
Avg. w/o CQA	44.0	49.5	26.3
Avg.	43.0	48.6	25.5
Best on	1	3	0

Adding CE (cross-encoder) helps

Dense retrievers could struggle in OOD

BEIR Results

	BM25	BM25+CE	DPR	Ours	Ours+CE
MS MARCO	22.8	41.3	17.7	40.7	47.0
Trec-COVID	65.6	75.7	33.2	59.6	70.1
NFCorpus	32.5	35.0	18.9	32.8	34.4
NQ	32.9	53.3	47.4	49.8	57.7
HotpotQA	60.3	70.7	39.1	63.8	71.5
FiQA	23.6	34.7	11.2	32.9	36.7
ArguAna	31.5	31.1	17.5	44.6	41.3
Touche-2020	36.7	27.1	13.1	23.0	29.8
CQADupStack	29.9	37.0.	15.3	34.5	37.7
Quora	78.9	82.5	24.8	86.5	82.4
DBPedia	31.3	40.9	26.3	41.3	47.1
Scidocs	15.8	16.6	7.7	16.5	17.1
FEVER	75.3	81.9	56.2	75.8	81.9
Climate-FEVER	21.3	25.3	14.8	23.7	25.8
Scifact	66.5	68.8	31.8	67.7	69.2
Avg. w/o CQA	44.0	49.5	26.3	47.5	51.2
Avg.	43.0	48.6	25.5	46.6	50.2
Best on	1	3	0	1	9

Adding CE (cross-encoder) helps

Dense retrievers could struggle in OOD

BEIR Results

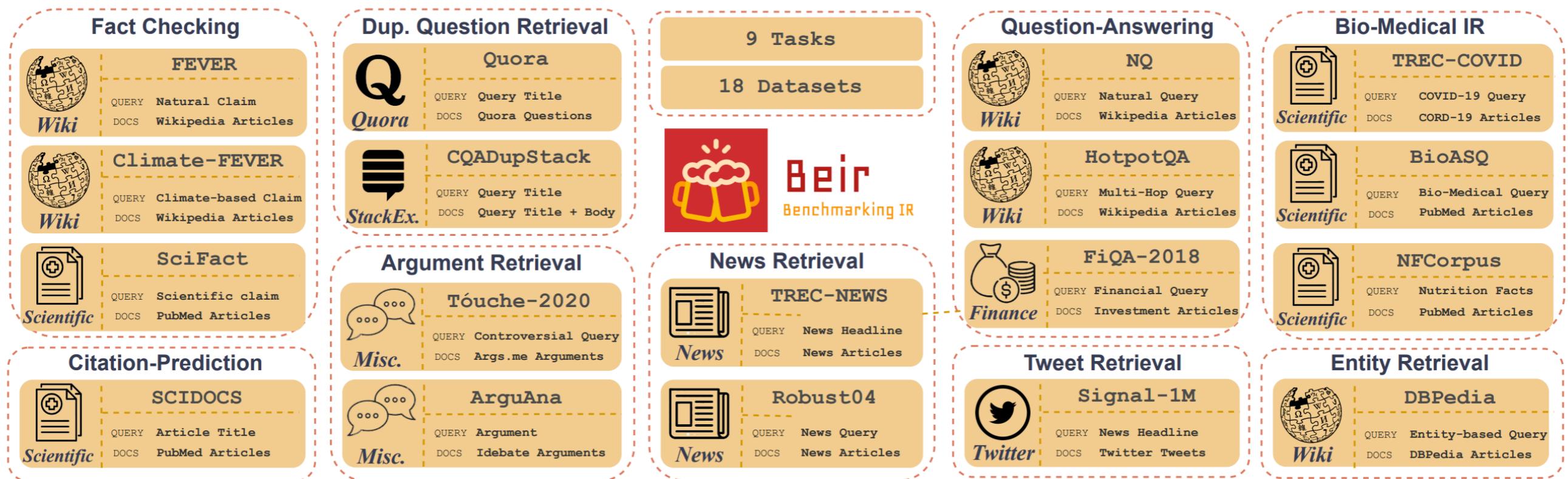
	BM25	BM25+CE	DPR	Ours	Ours+CE
MS MARCO	22.8	41.3	17.7	40.7	47.0
Trec-COVID	65.6	75.7	33.2	59.6	70.1
NFCorpus	32.5	35.0	18.9	32.8	34.4
NQ	32.9	53.3	47.4	49.8	57.7
HotpotQA	60.3	70.7	39.1	63.8	71.5
FiQA	23.6	34.7	11.2	32.9	36.7
ArguAna	31.5	31.1	17.5	44.6	41.3
Touche-2020	36.7	27.1	13.1	23.0	29.8
CQADupStack	29.9	37.0.	15.3	34.5	37.7
Quora	78.9	82.5	24.8	86.5	82.4
DBPedia	31.3	40.9	26.3	41.3	47.1
Scidocs	15.8	16.6	7.7	16.5	17.1
FEVER	75.3	81.9	56.2	75.8	81.9
Climate-FEVER	21.3	25.3	14.8	23.7	25.8
Scifact	66.5	68.8	31.8	67.7	69.2
Avg. w/o CQA	44.0	49.5	26.3	47.5	51.2
Avg.	43.0	48.6	25.5	46.6	50.2
Best on	1	3	0	1	9

Adding CE (cross-encoder) helps

Dense retrievers could struggle in OOD

Unsupervised training helps in OOD

Retrieval Benchmark: MTEB

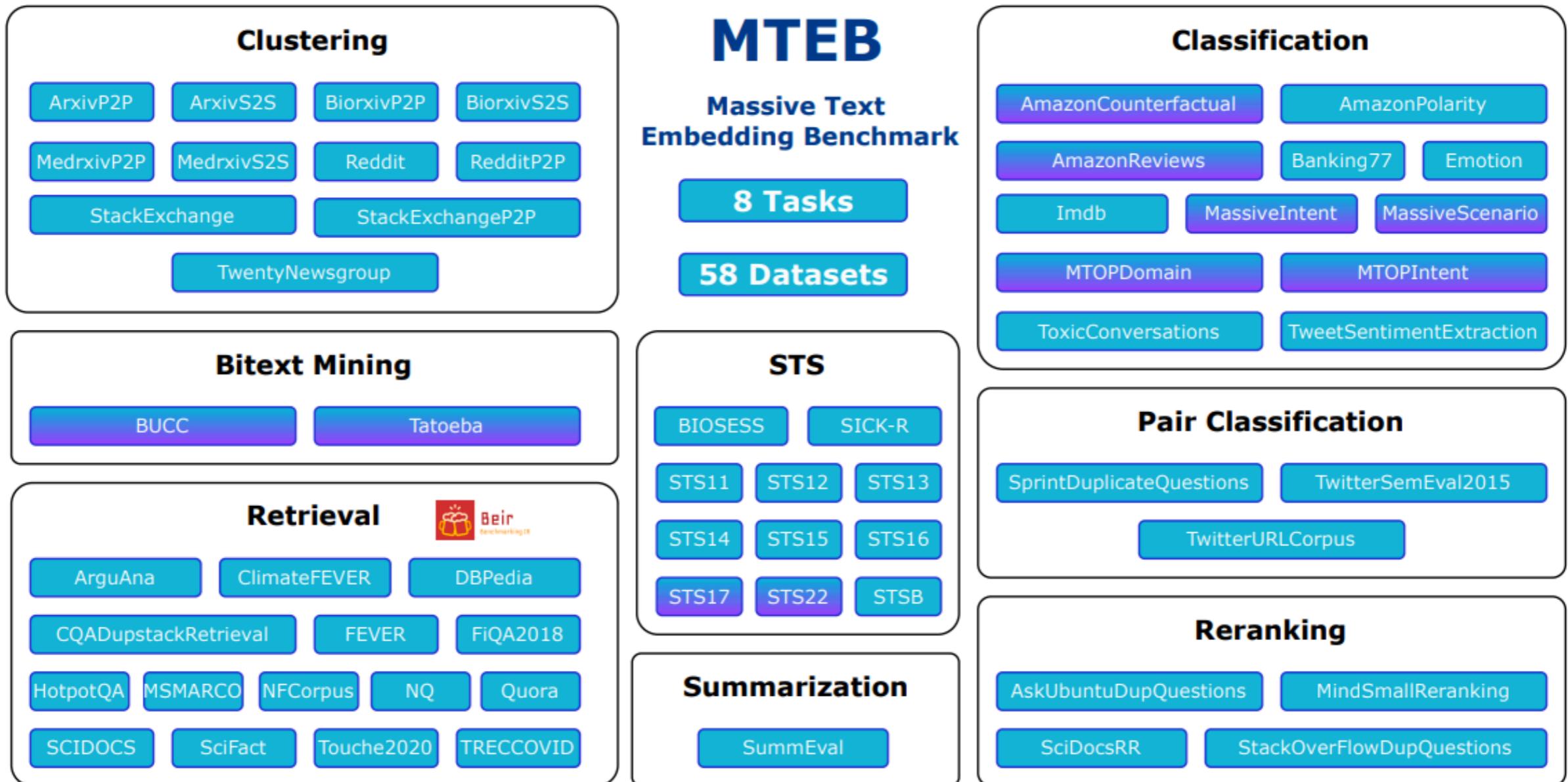


Thakur et al. 2021. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models.
Muennighoff et al. 2022. MTEB: Massive Text Embedding Benchmark.

Retrieval Benchmark: MTEB

Thakur et al. 2021. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models.
Muennighoff et al. 2022. MTEB: Massive Text Embedding Benchmark.

Retrieval Benchmark: MTEB



Thakur et al. 2021. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models.
Muennighoff et al. 2022. MTEB: Massive Text Embedding Benchmark.

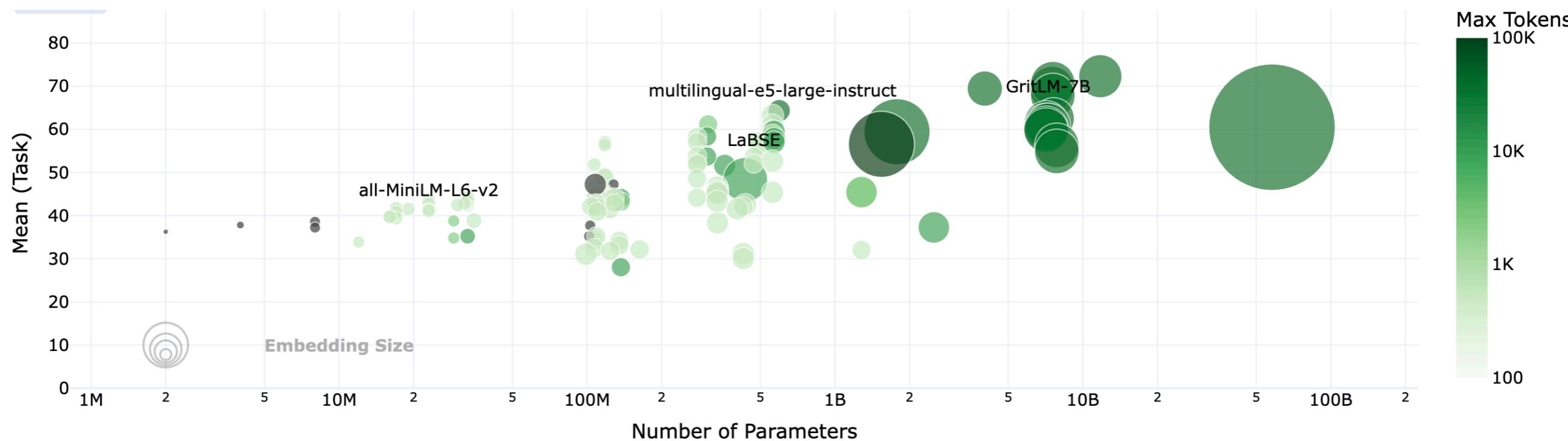
MTEB Leaderboard

Rank (Bor...)	Model	Zero-shot	Memory Us...	Number of P...	Embedding D...	Max Tokens
1	KaLM-Embedding-Gemma3-12B-2511	73%	44884	11.8	3840	32768
2	llama-embed-nemotron-8b	99%	28629	7.5	4096	32768
3	Qwen3-Embedding-8B	99%	14433	7.6	4096	32768
4	gemini-embedding-001	99%			3072	2048
5	Qwen3-Embedding-4B	99%	7671	4.0	2560	32768
6	Octen-Embedding-8B	99%	14433	7.6	4096	32768
7	Seed1.6-embedding-1215	89%			2048	32768
8	Qwen3-Embedding-0.6B	99%	1136	0.596	1024	32768
9	gte-Qwen2-7B-instruct	⚠ NA	29040	7.6	3584	32768
10	Linq-Embed-Mistral	99%	13563	7.1	4096	32768
11	multilingual-e5-large-instruct	99%	1068	0.560	1024	514

<https://huggingface.co/spaces/mteb/leaderboard>

Muennighoff et al. 2022. MTEB: Massive Text Embedding Benchmark.

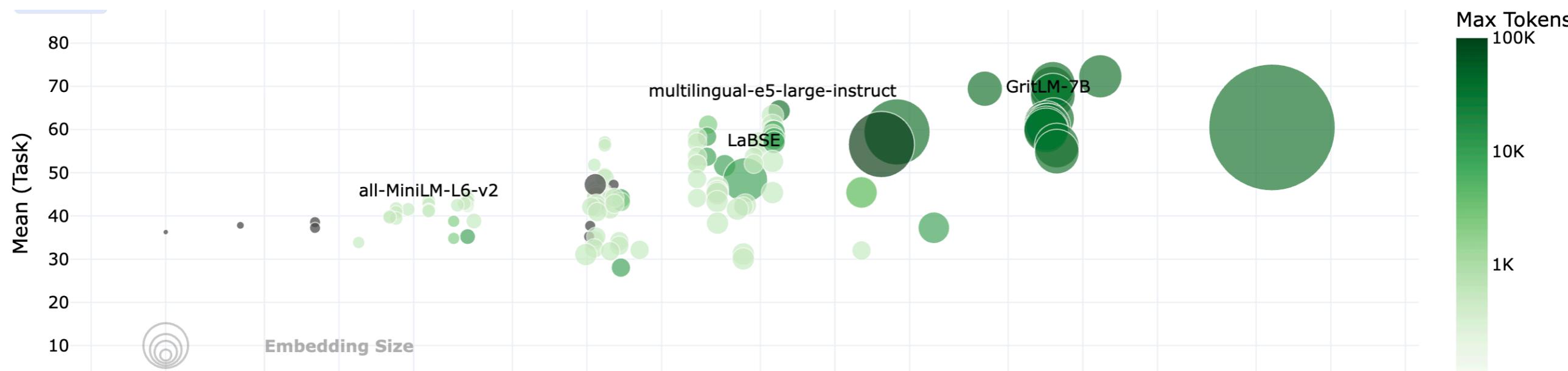
MTEB Leaderboard



<https://huggingface.co/spaces/mteb/leaderboard>

Muennighoff et al. 2022. MTEB: Massive Text Embedding Benchmark.

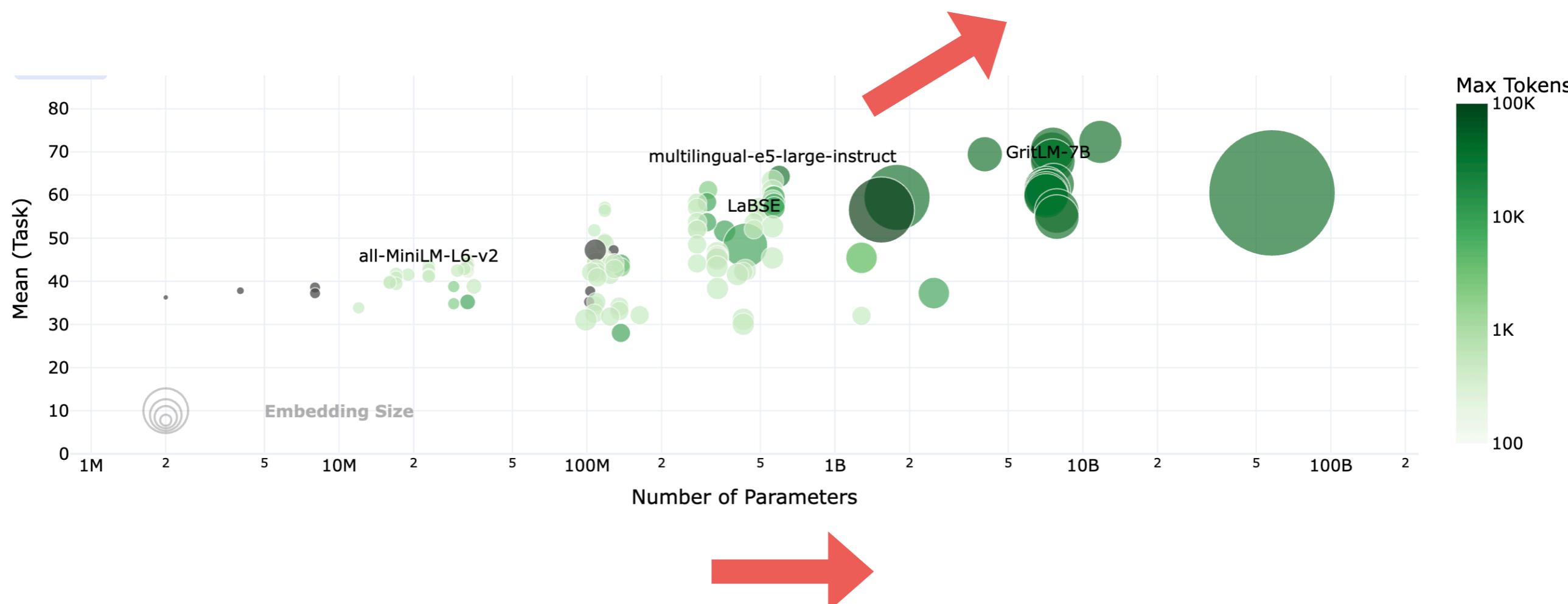
MTEB Leaderboard



<https://huggingface.co/spaces/mteb/leaderboard>

Muennighoff et al. 2022. MTEB: Massive Text Embedding Benchmark.

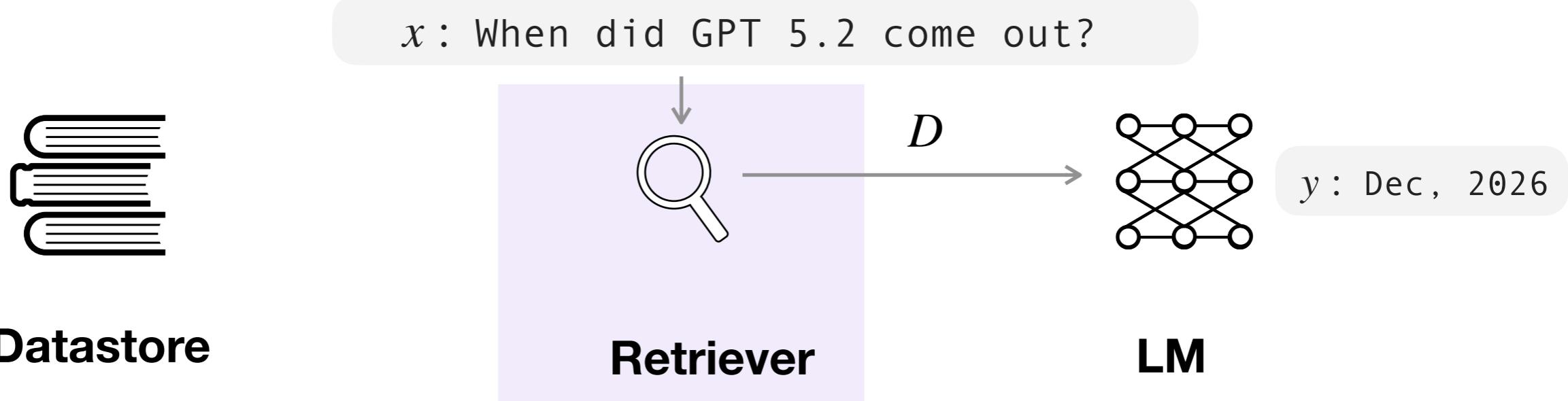
MTEB Leaderboard



<https://huggingface.co/spaces/mteb/leaderboard>

Muennighoff et al. 2022. MTEB: Massive Text Embedding Benchmark.

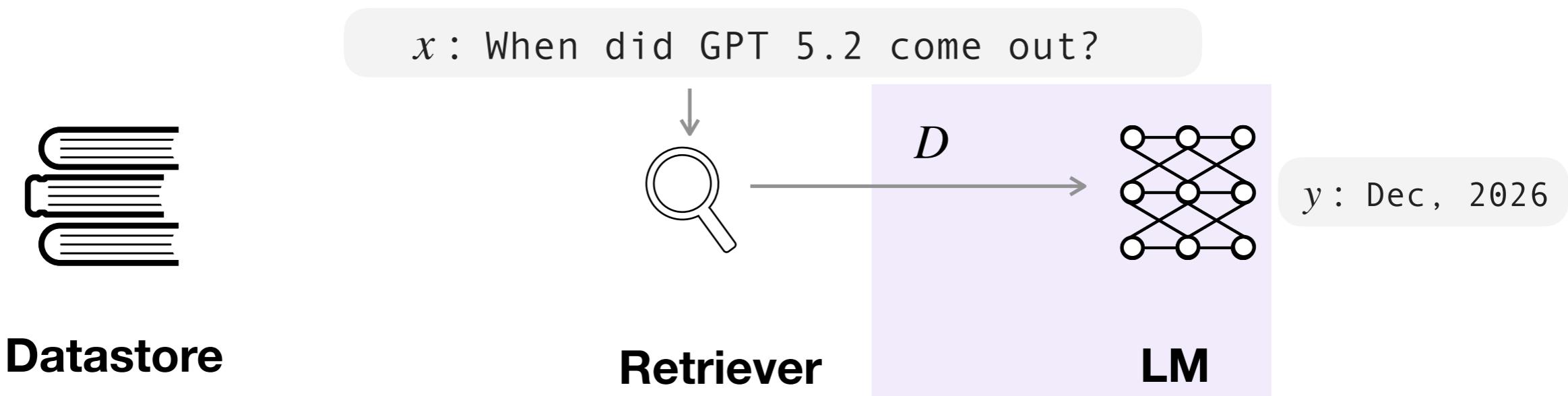
Summary of Part 2



- ✓ Types of retrievers
- ✓ Training
- ✓ Evaluations

- Different types of retrievers
- Training with contrastive loss
- Common metrics: NDCG@10 ... etc
- Performance v.s. cost trade off

Key Factors & Design Choices

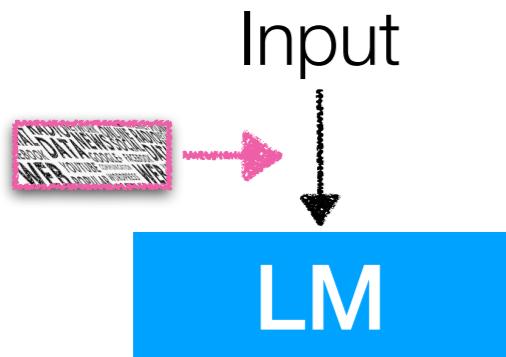


- ✓ Architectures
- ✓ Training
- ✓ Inference

How to Use Retrieval

How to Use Retrieval

Input Augmentation

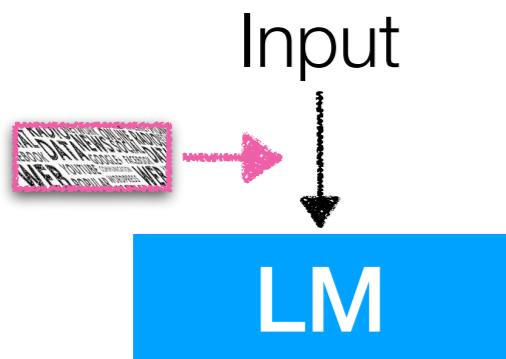


- Augment input of LMs
- Easy to apply (w/o training) & effective
- Difficulty of using many D

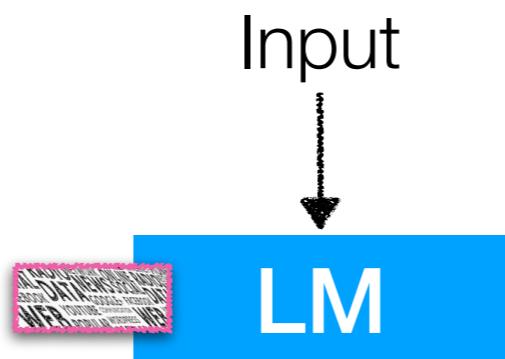
e.g., RAG

How to Use Retrieval

Input Augmentation



Intermediate Fusion



- Augment input of LMs
- Easy to apply (w/o training) & effective
- Difficulty of using many D

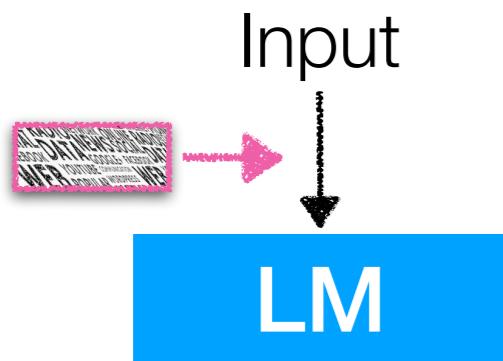
e.g., RAG

- Modify LMs to incorporate D in intermediate layers
- Scalable to many passages
- Requires retraining

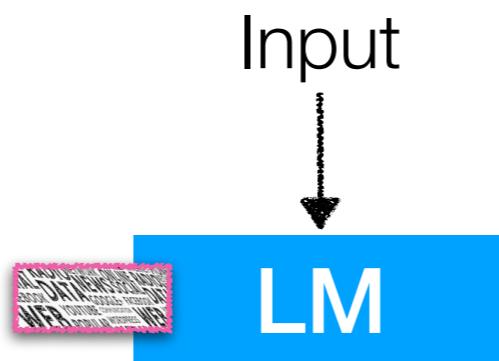
e.g., RETRO, InstructRETRO

How to Use Retrieval

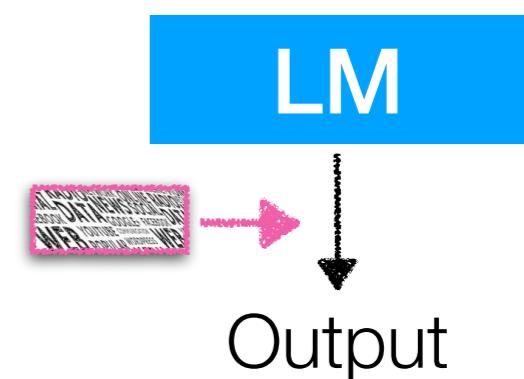
Input Augmentation



Intermediate Fusion



Output Interpolation



- Augment input of LMs
- Easy to apply (w/o training) & effective
- Difficulty of using many D

e.g., RAG

- Modify LMs to incorporate D in intermediate layers
- Scalable to many passages
- Requires retraining

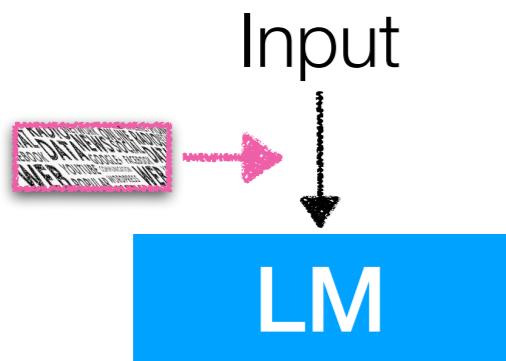
e.g., RETRO, InstructRETRO

- Directly manipulate output token distributions
- No training required*
- Limited effectiveness on tasks

e.g., kNNLM

How to Use Retrieval

Input Augmentation



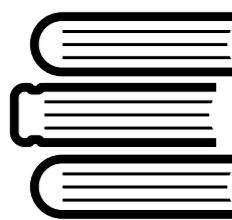
- Augment input of LMs
- Easy to apply (w/o training)
& effective
- Difficulty of using many D

e.g., RAG

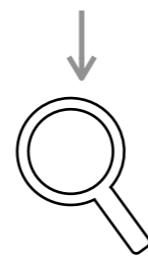
e.g., kNNLM

RAG (Lewis et al., 2020)

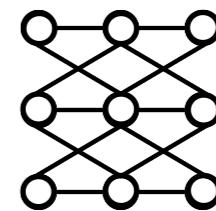
x : When did GPT 5.2 come out?



Datastore



Retriever



LM

$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

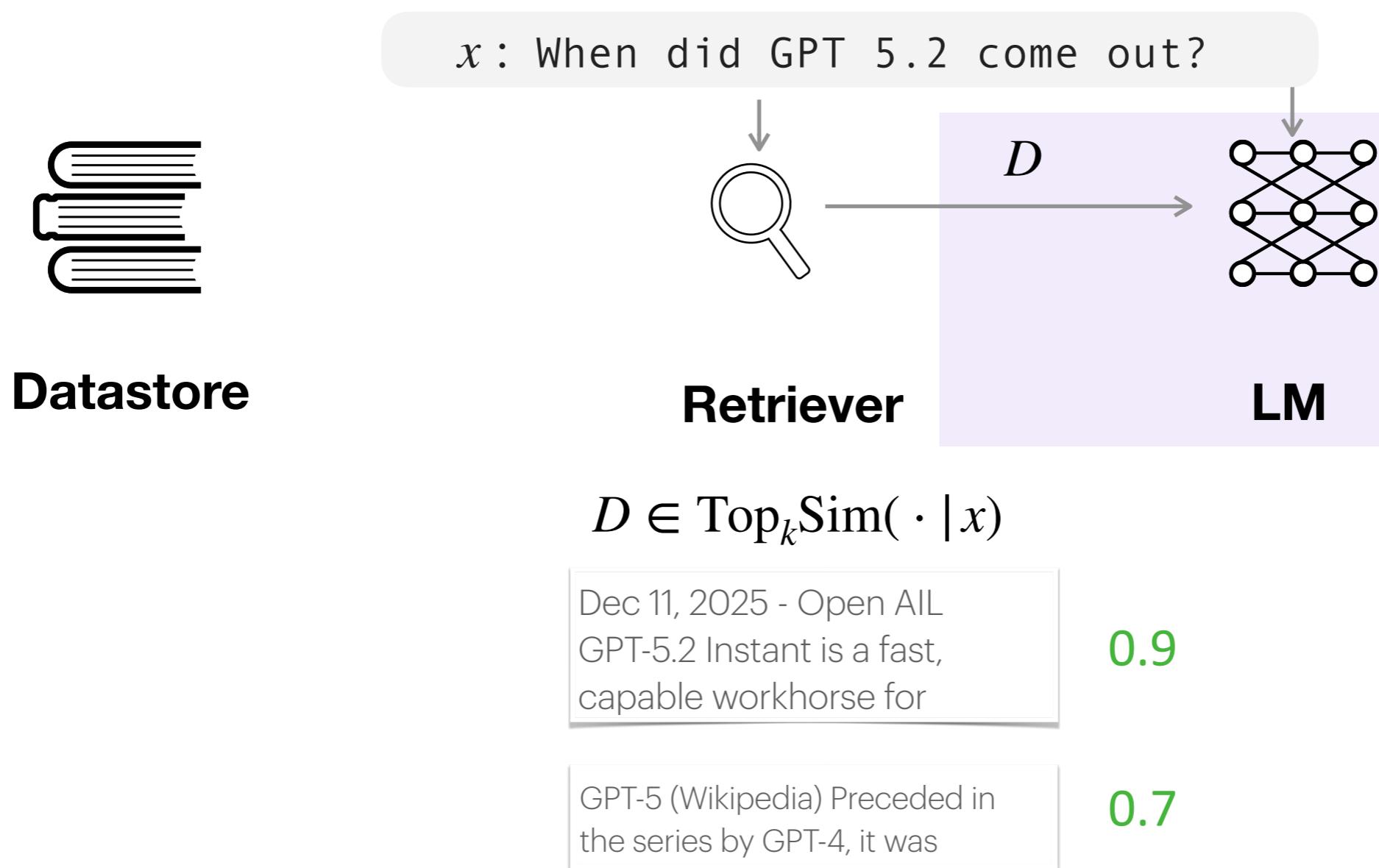
Dec 11, 2025 - Open AIL
GPT-5.2 Instant is a fast,
capable workhorse for

0.9

GPT-5 (Wikipedia) Preceded in
the series by GPT-4, it was

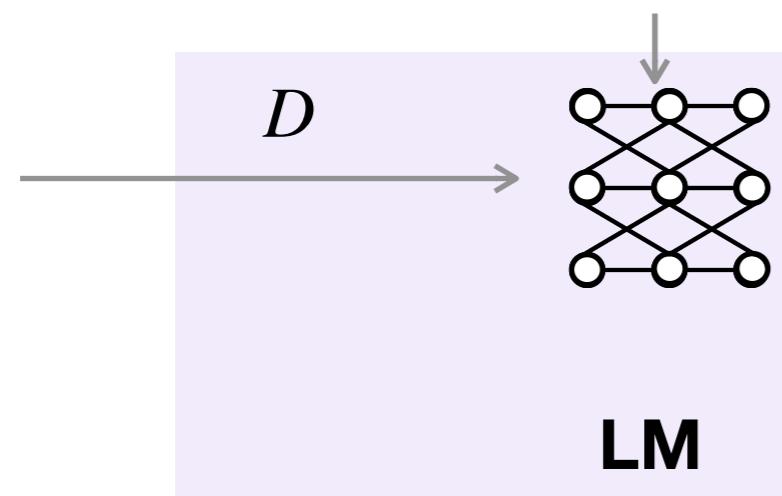
0.7

RAG (Lewis et al., 2020)



RAG (Lewis et al., 2020)

x : When did GPT 5.2 come out?



$D \in \text{Top}_k \text{Sim}(\cdot | x)$

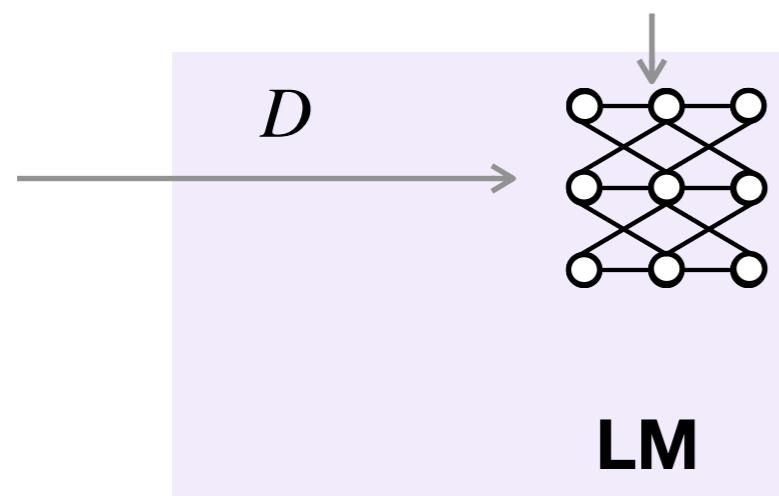
Dec 11, 2025 - Open AI
GPT-5.2 Instant is a fast,
capable workhorse for

GPT-5 (Wikipedia) Preceded in
the series by GPT-4, it was

Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.

RAG (Lewis et al., 2020)

x : When did GPT 5.2 come out?



$D \in \text{Top}_k \text{Sim}(\cdot | x)$

Dec 11, 2025 - Open AI
GPT-5.2 Instant is a fast,
capable workhorse for

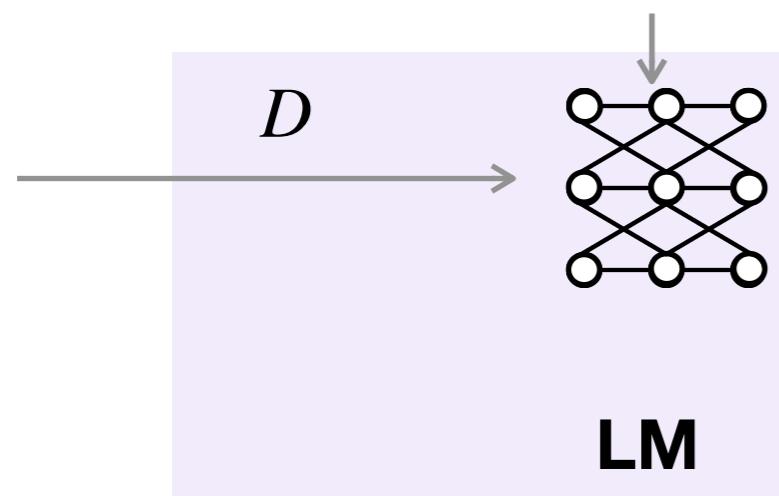
GPT-5 (Wikipedia) Preceded in
the series by GPT-4, it was

Question: When
did GPT 5.2 come out?
References:

Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.

RAG (Lewis et al., 2020)

x : When did GPT 5.2 come out?



$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Question: When did GPT 5.2 come out?

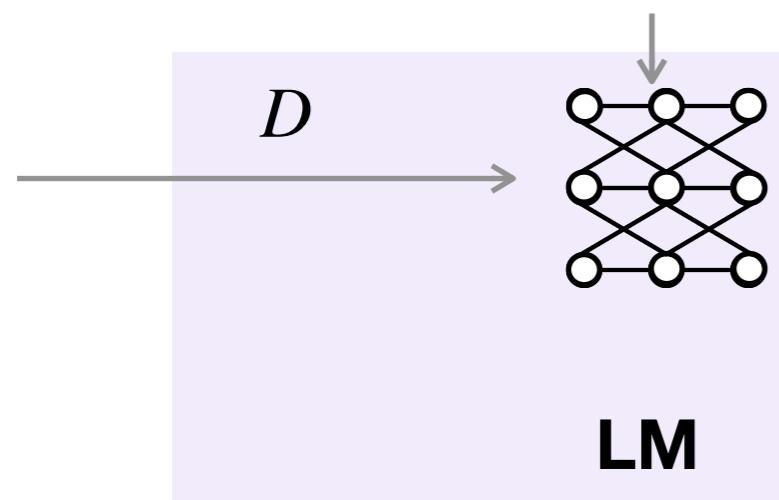
References:

Dec 11, 2025 - Open AI
GPT-5.2 Instant is a fast, capable workhorse for

GPT-5 (Wikipedia) Preceded in the series by GPT-4, it was

RAG (Lewis et al., 2020)

x : When did GPT 5.2 come out?



$$D \in \text{Top}_k \text{Sim}(\cdot | x)$$

Question: When did GPT 5.2 come out?

References:

Dec 11, 2025 - Open AI
GPT-5.2 Instant is a fast, capable workhorse for

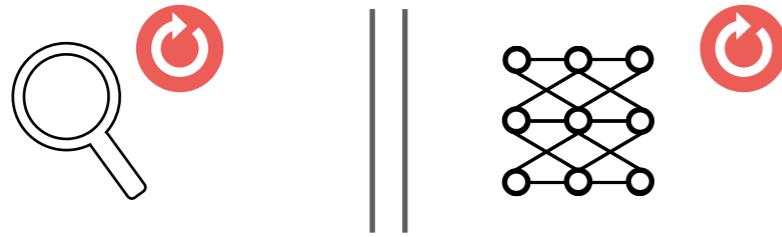
GPT-5 (Wikipedia) Preceded in the series by GPT-4, it was

y : Dec , 2026

Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.

Training RAG

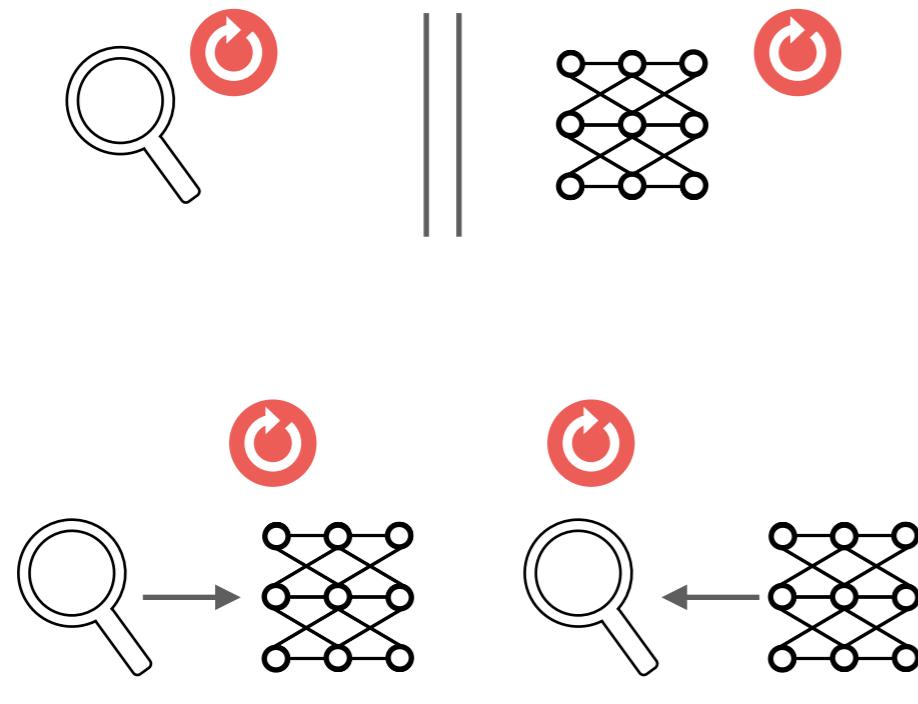
Training RAG



Independent training

- DPR (Karpukhin et al., 2020)
- DRQA (Chen et al., 2017)

Training RAG



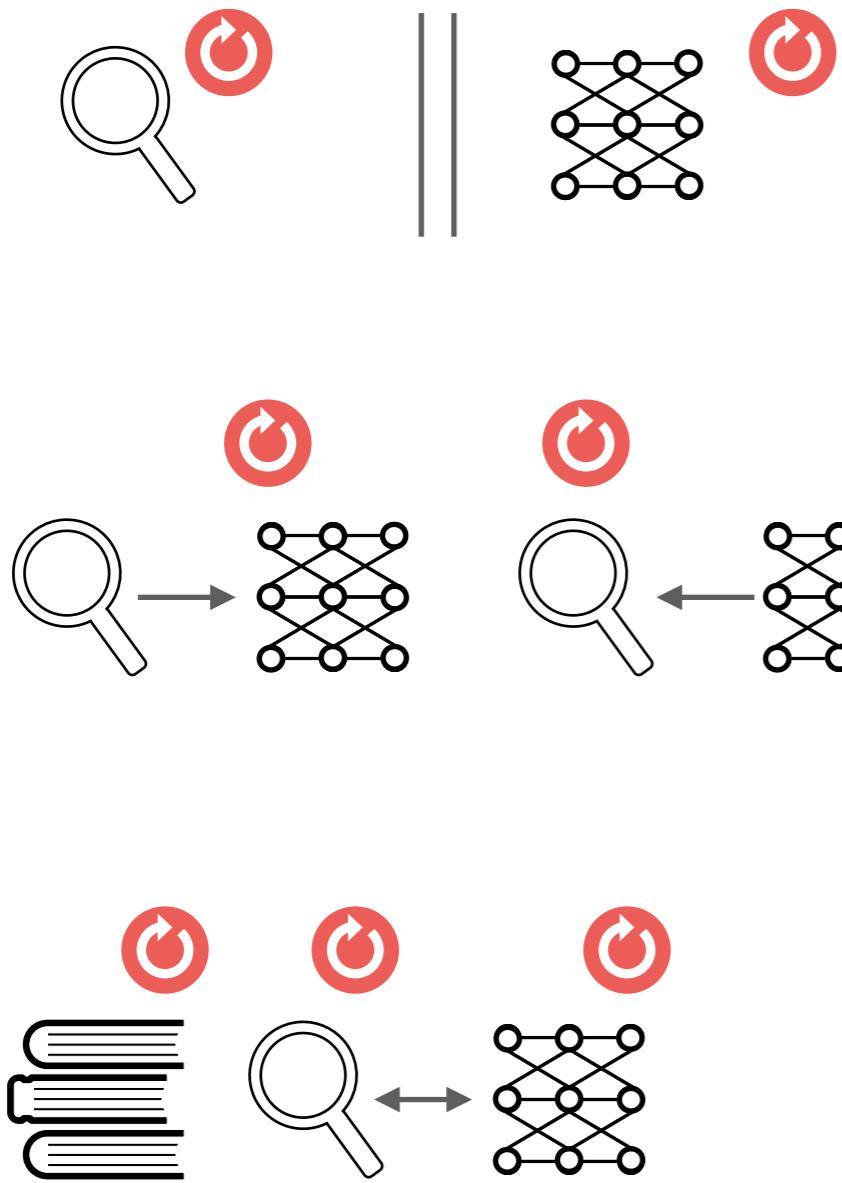
Independent training

- DPR (Karpukhin et al., 2020)
- DRQA (Chen et al., 2017)

Sequential training

- Evidentiality Generator (Asai et al., 2023)
- REPLUG (Shi et al., 2023)

Training RAG



Independent training

- DPR (Karpukhin et al., 2020)
- DRQA (Chen et al., 2017)

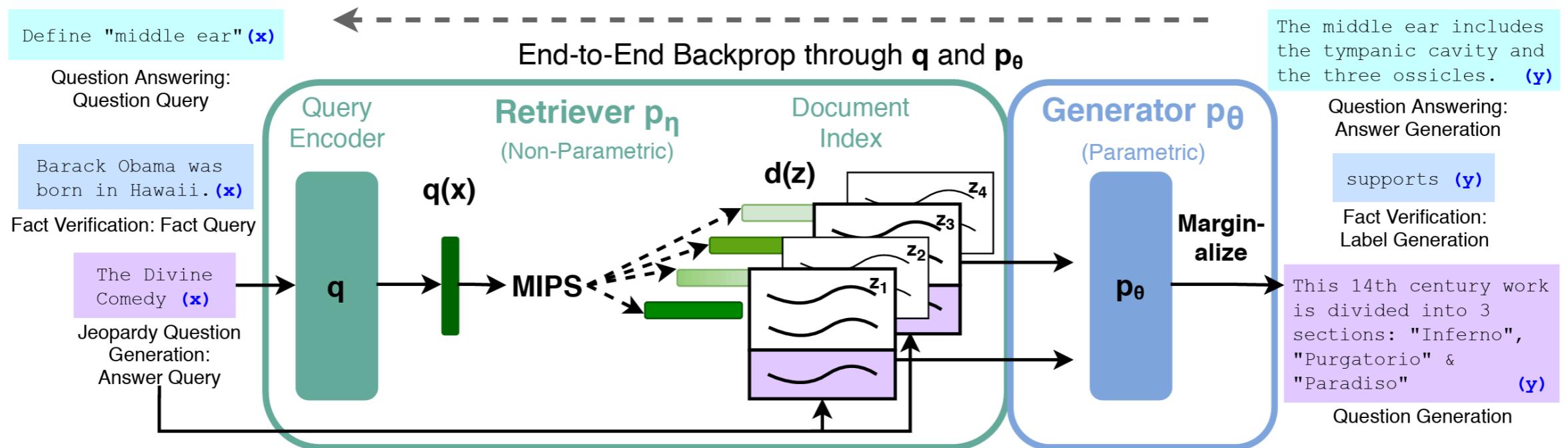
Sequential training

- Evidentiality Generator (Asai et al., 2023)
- REPLUG (Shi et al., 2023)

Joint training

- RAG (Lewis et al., 2021)
- REALM (Guu et al., 2021)

End-to-end Training for RAG

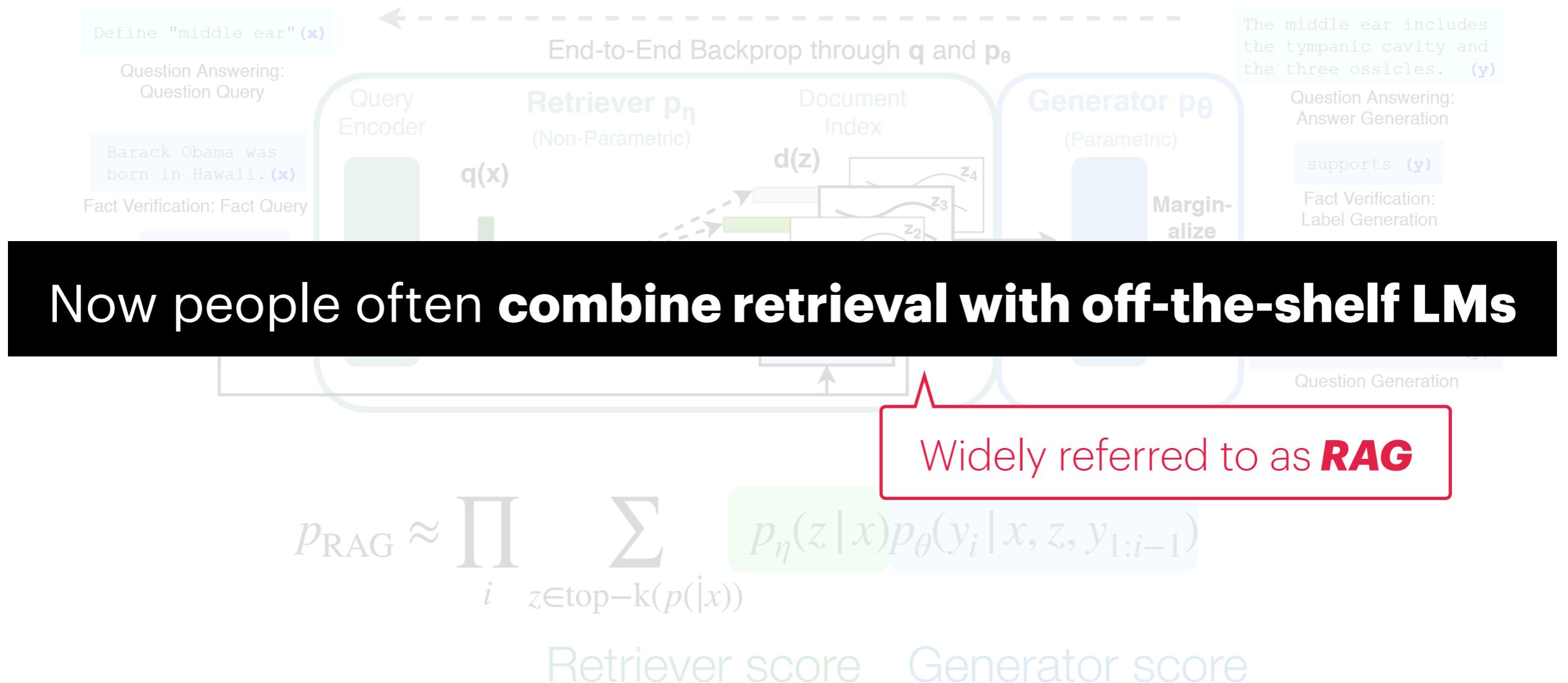


$$p_{\text{RAG}} \approx \prod_i \sum_{z \in \text{top-}k(p(\cdot|x))} p_\eta(z|x) p_\theta(y_i|x, z, y_{1:i-1})$$

Retriever score Generator score

Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.

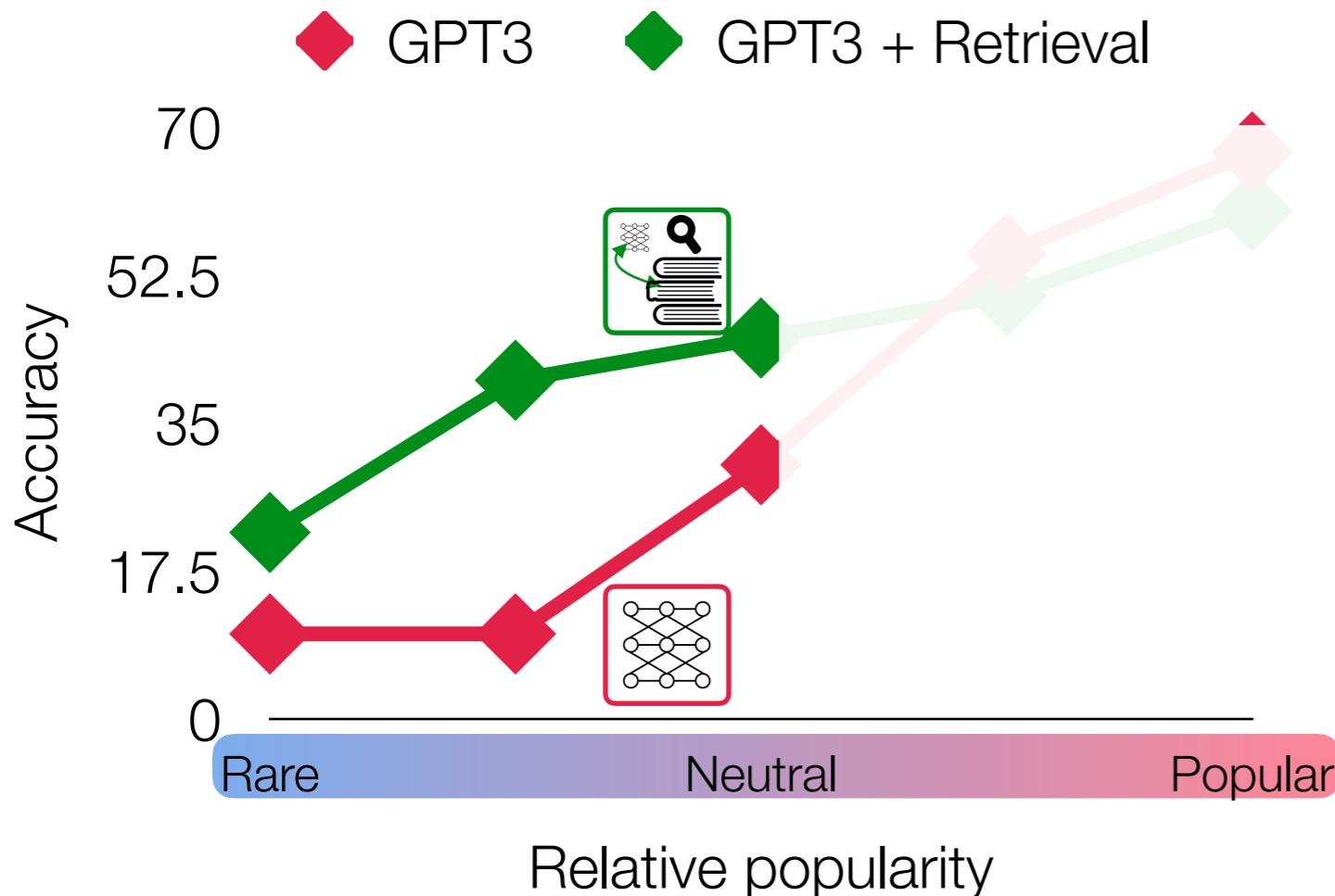
End-to-end Training for RAG



Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.

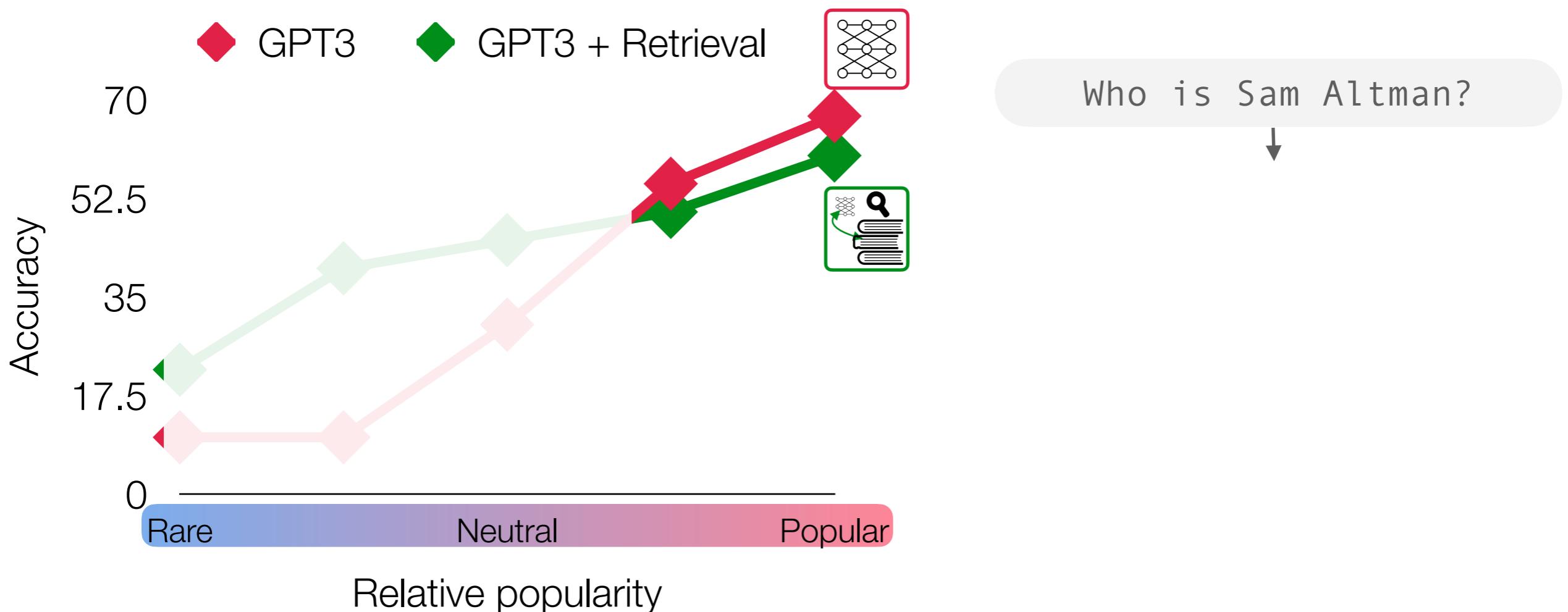
Effectiveness of In-context RAG

RAG constantly gives performance improvements in long-tail



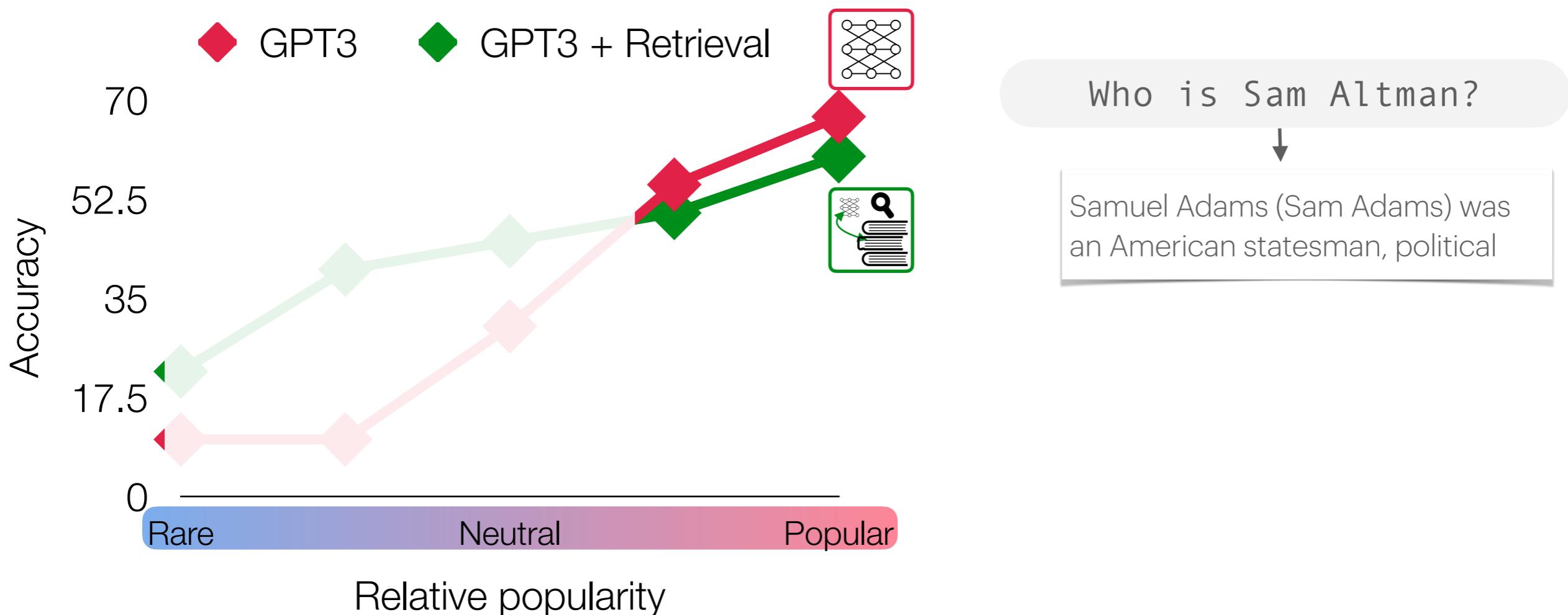
Mallen*, Asai* (contributed equally) et al. 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories

Limitations of In-context RAG



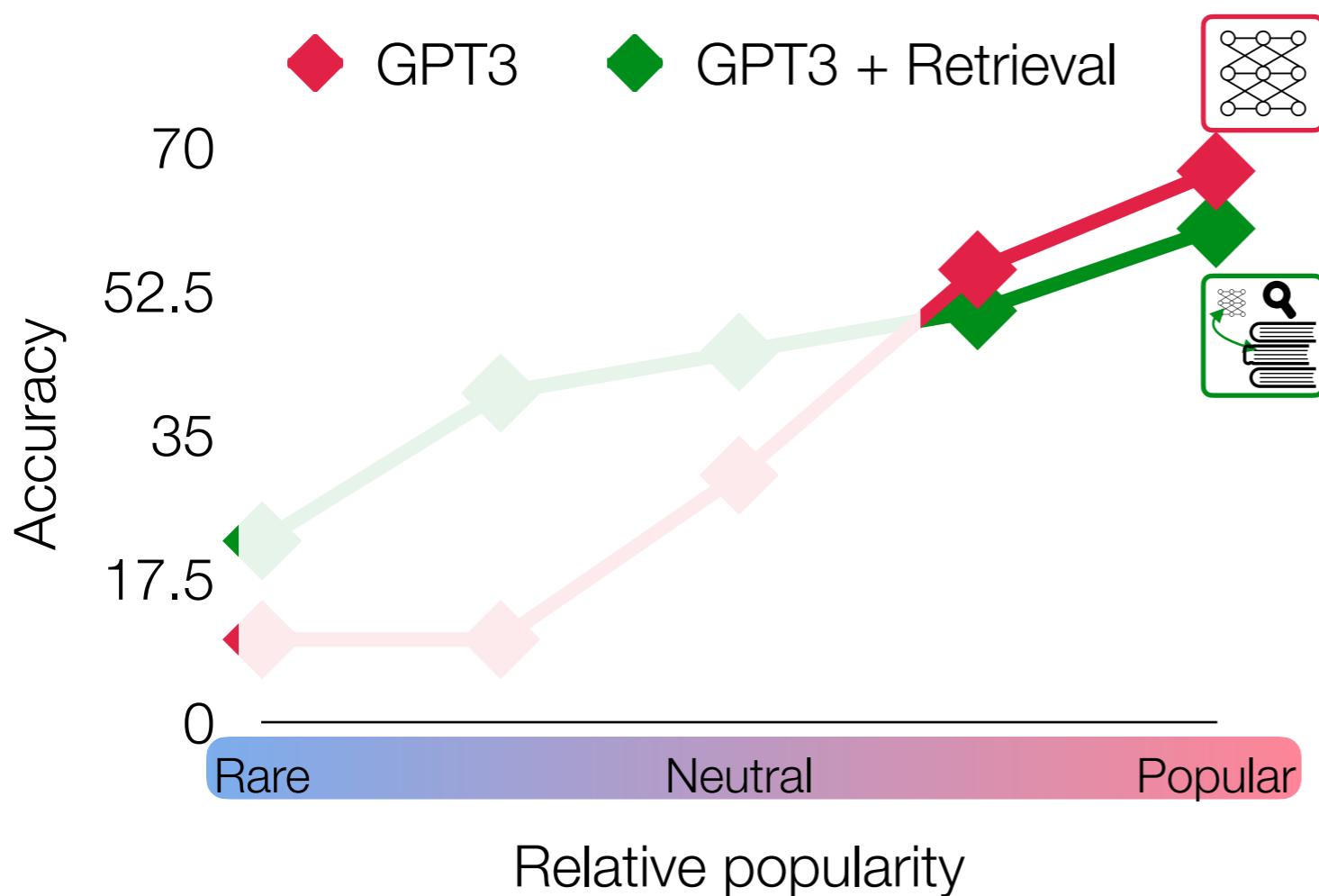
Mallen*, Asai* (contributed equally) et al. 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories

Limitations of In-context RAG



Mallen*, Asai* (contributed equally) et al. 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories

Limitations of In-context RAG



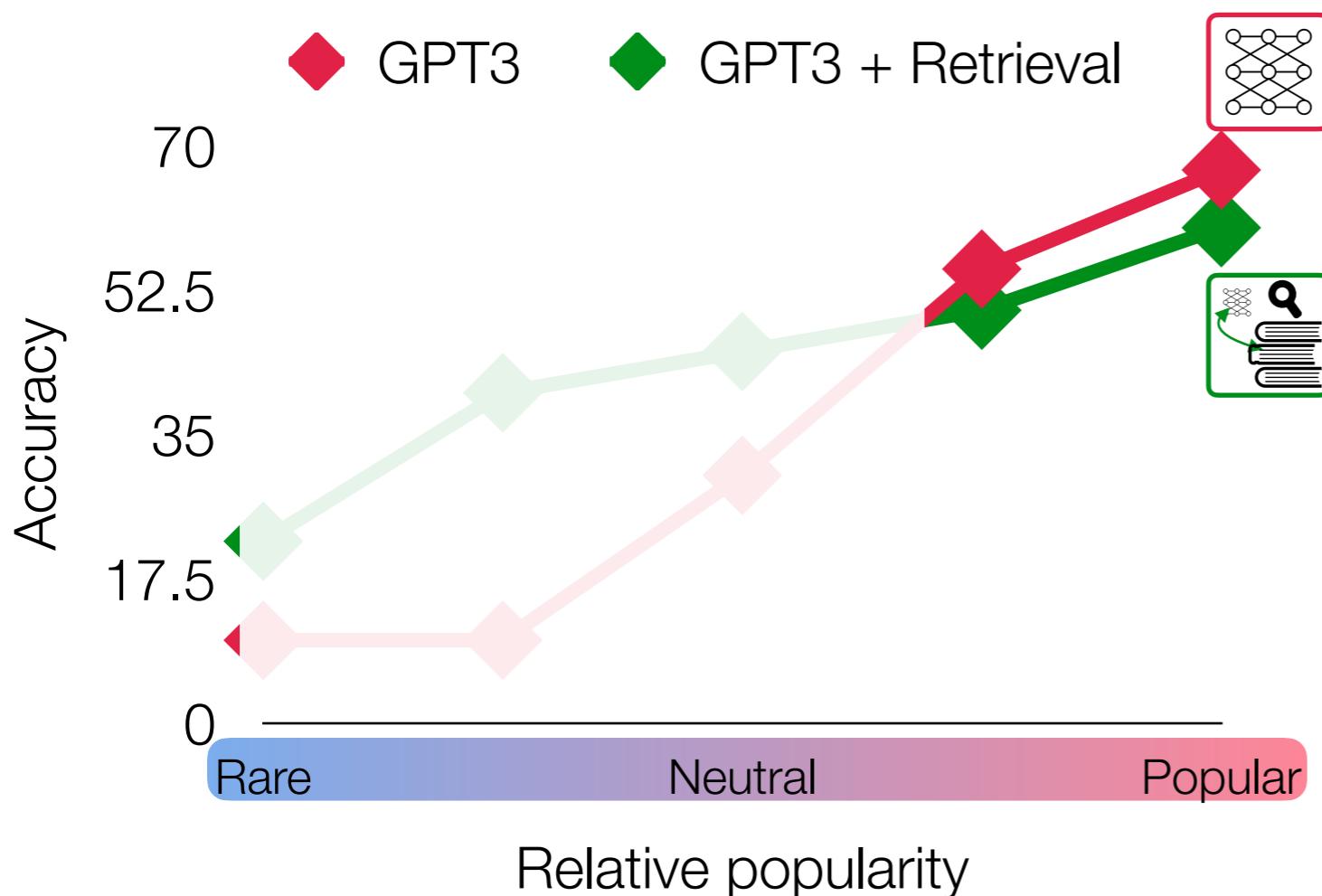
Who is Sam Altman?

Samuel Adams (Sam Adams) was an American statesman, political

He is a founding father of the US

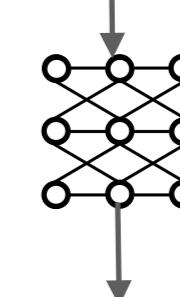
Mallen*, Asai* (contributed equally) et al. 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories

Limitations of In-context RAG



Who is Sam Altman?

Samuel Adams (Sam Adams) was an American statesman, political

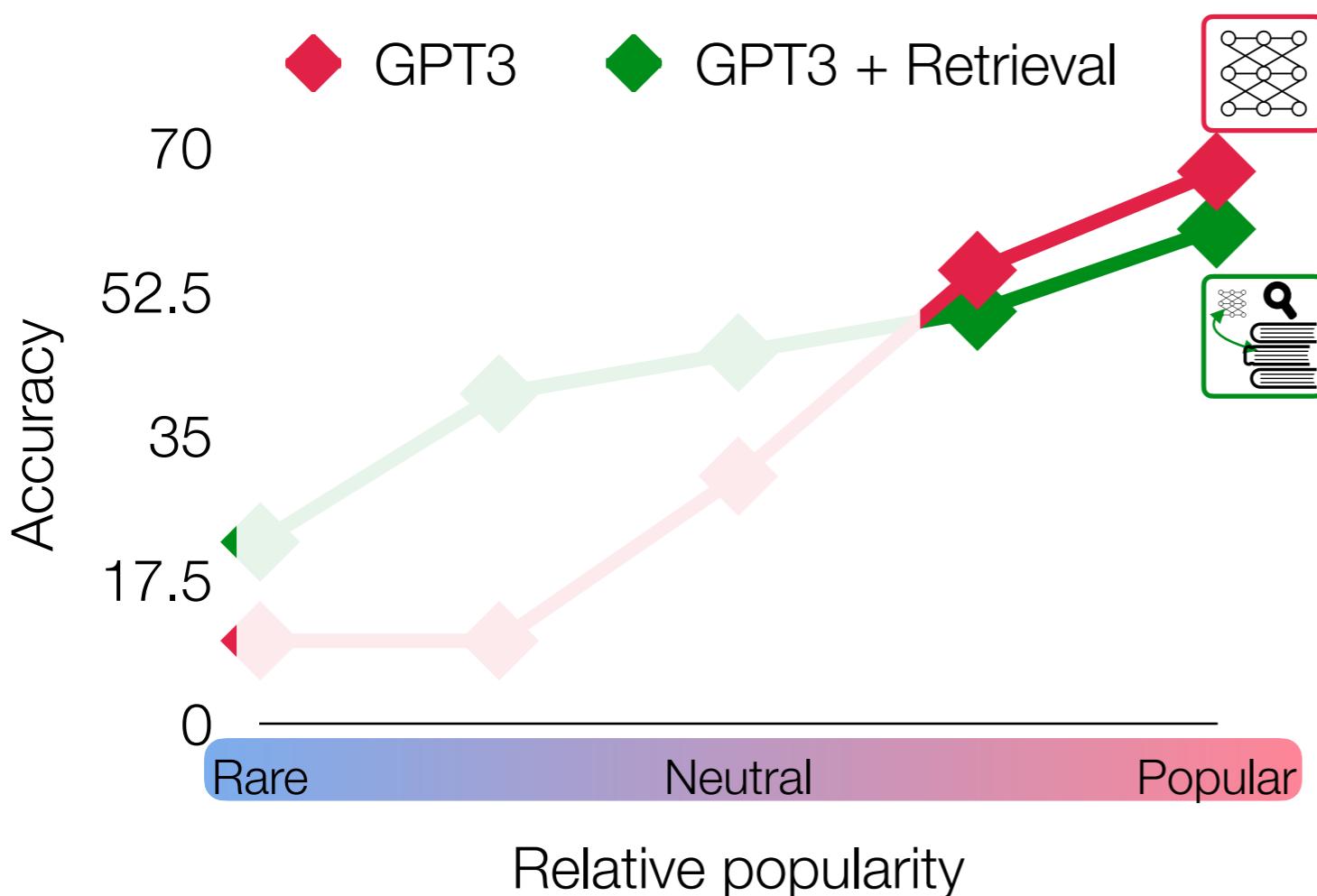


He is a founding father of the US

Mallen*, Asai* (contributed equally) et al. 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories

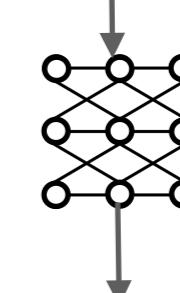
Limitations of In-context RAG

Inflexibility and lack of robustness to unhelpful docs



Who is Sam Altman?

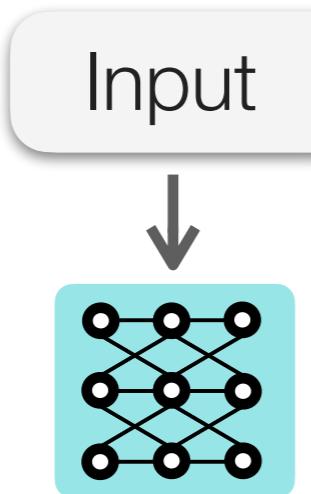
Samuel Adams (Sam Adams) was an American statesman, political



He is a founding father of the US

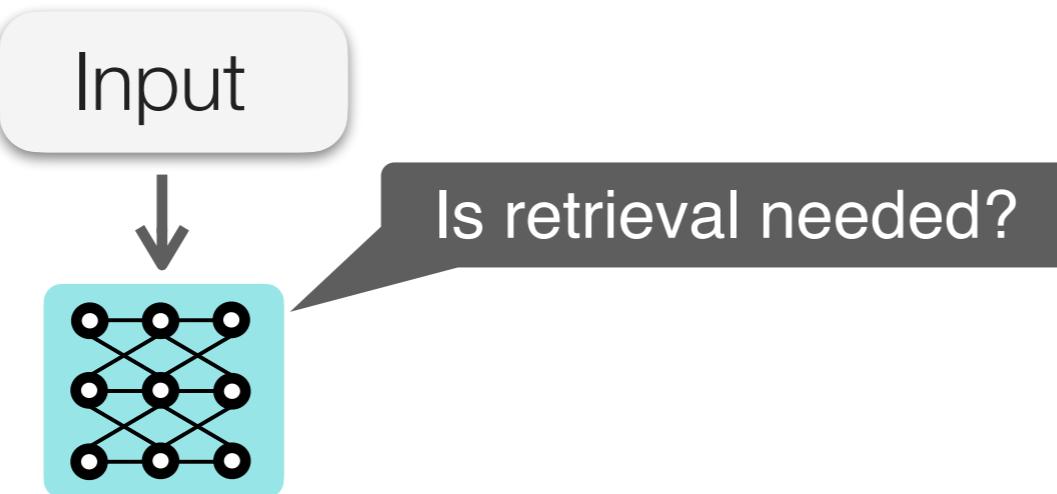
Mallen*, Asai* (contributed equally) et al. 2023. When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories

Self-RAG: Adaptive Retrieval



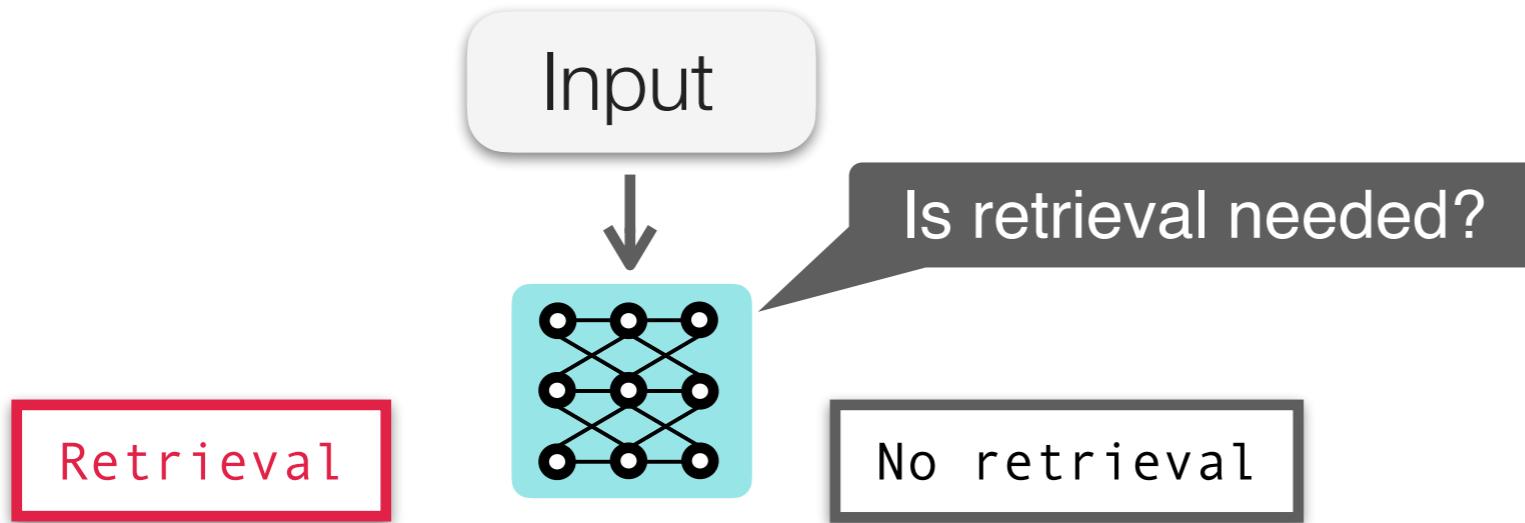
Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



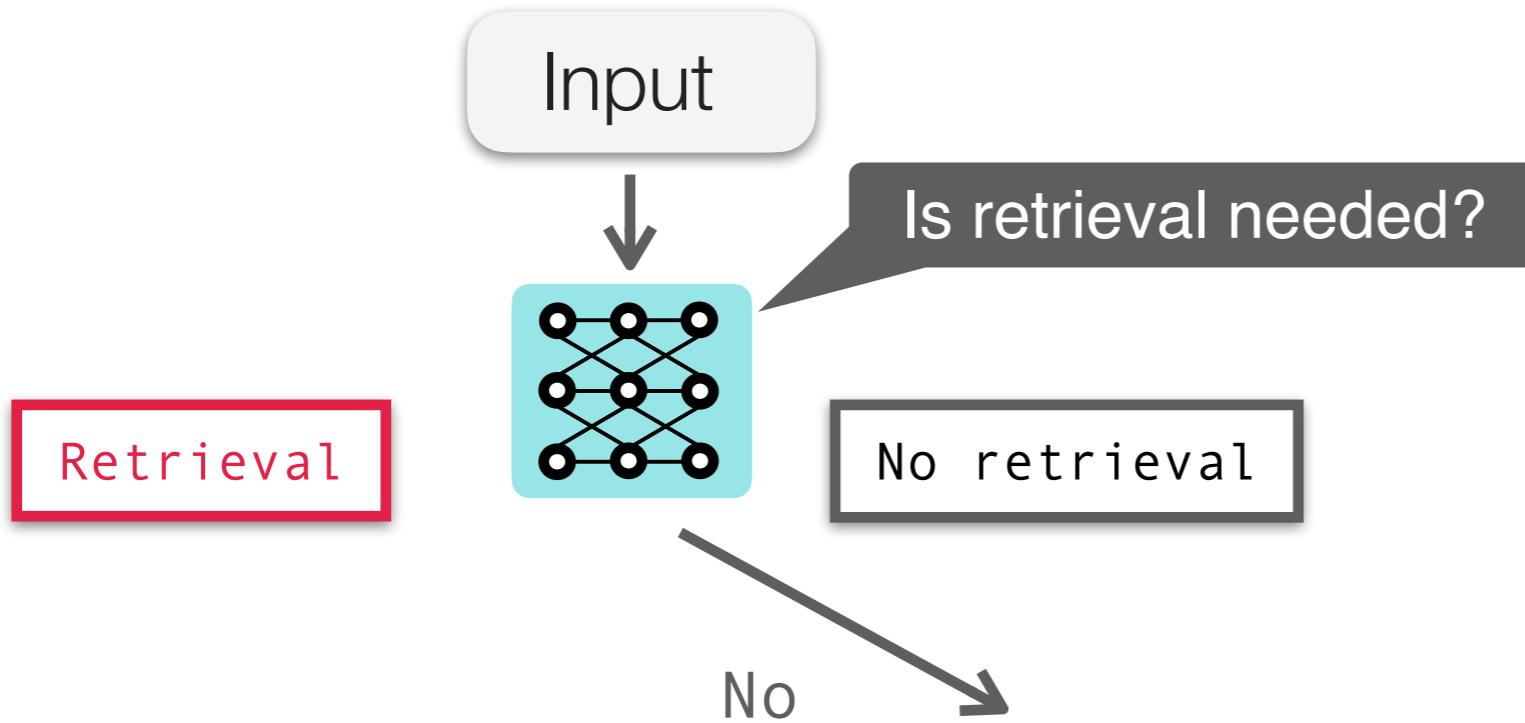
Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



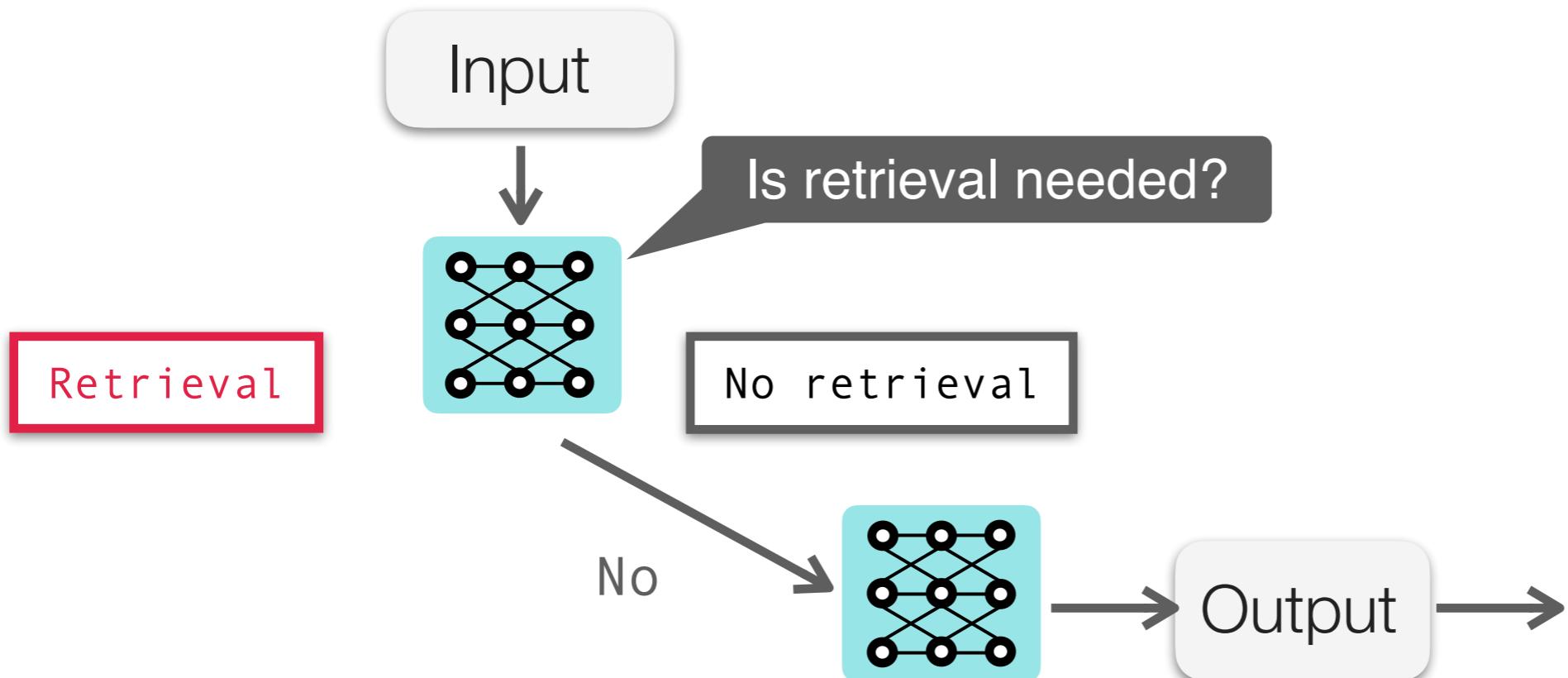
Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



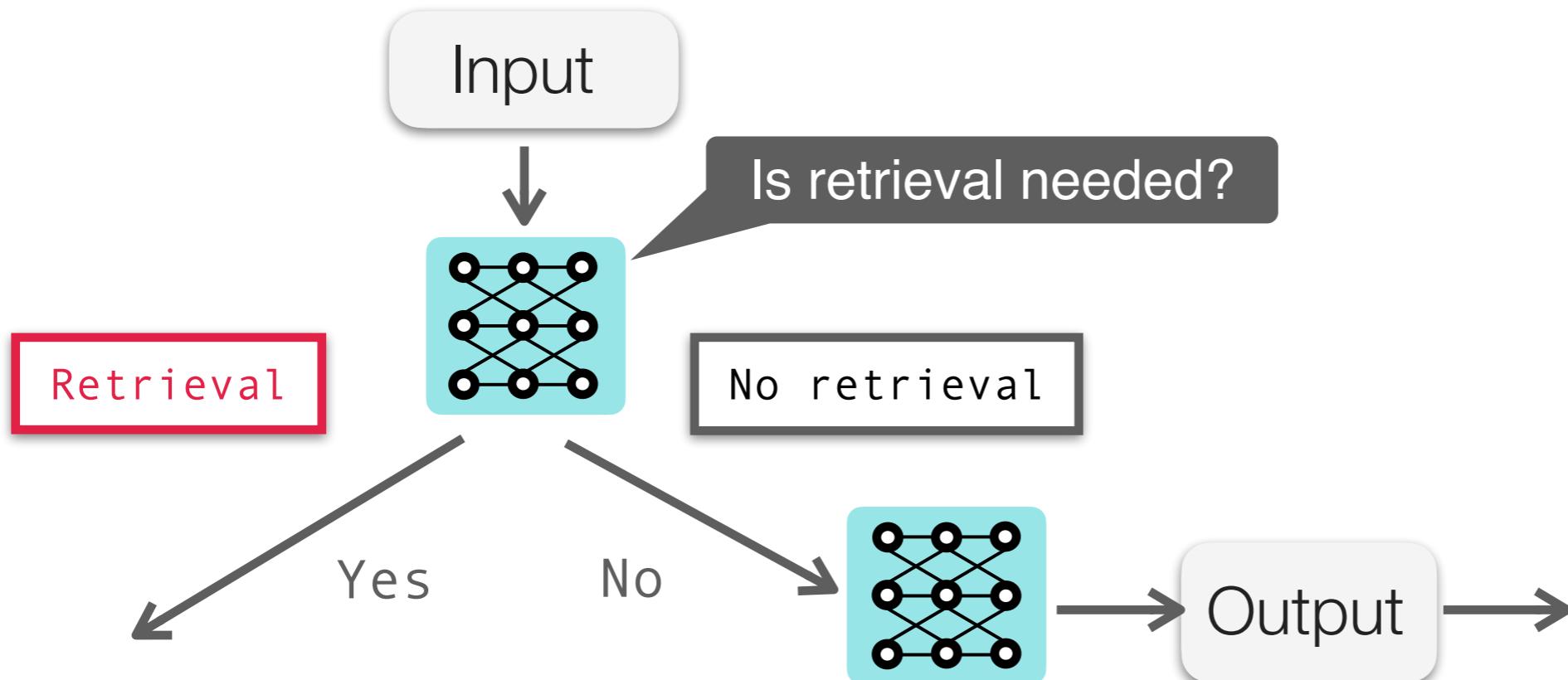
Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



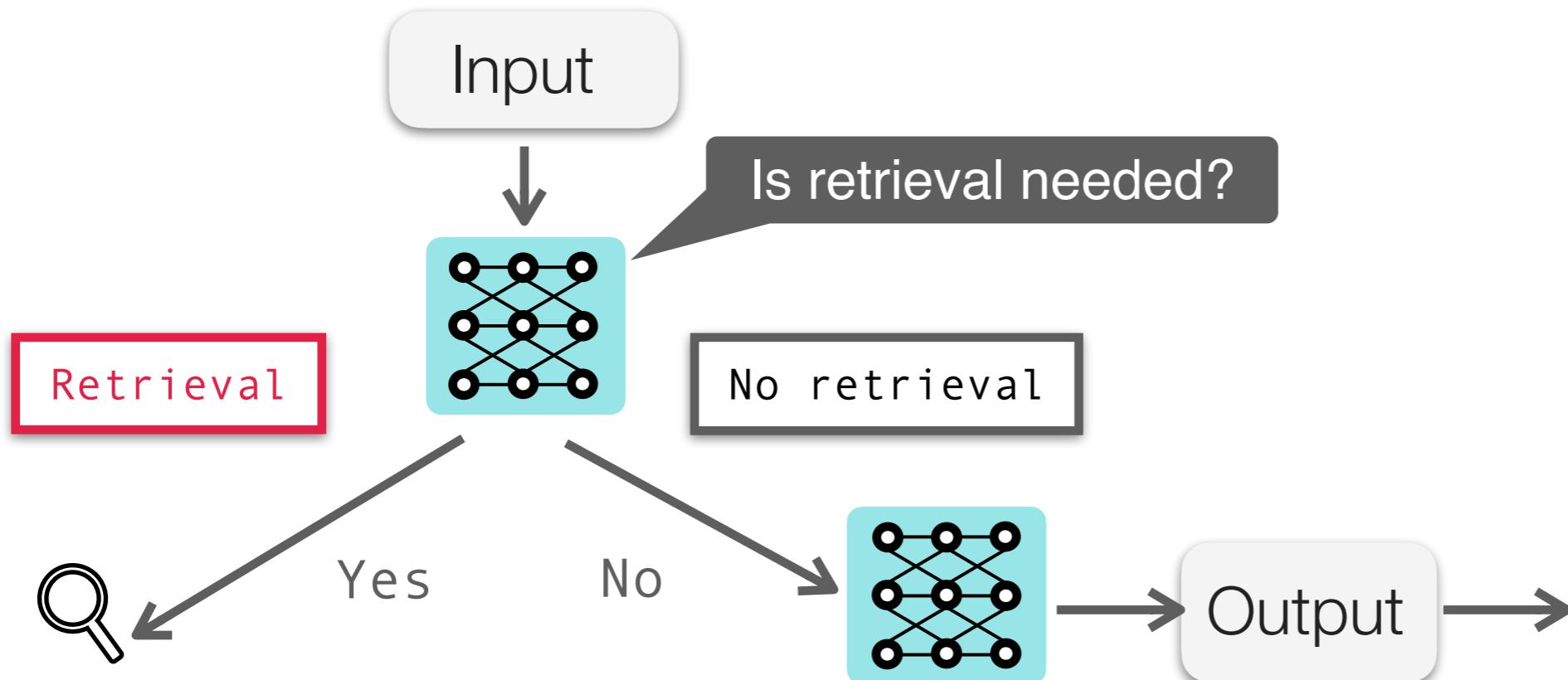
Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



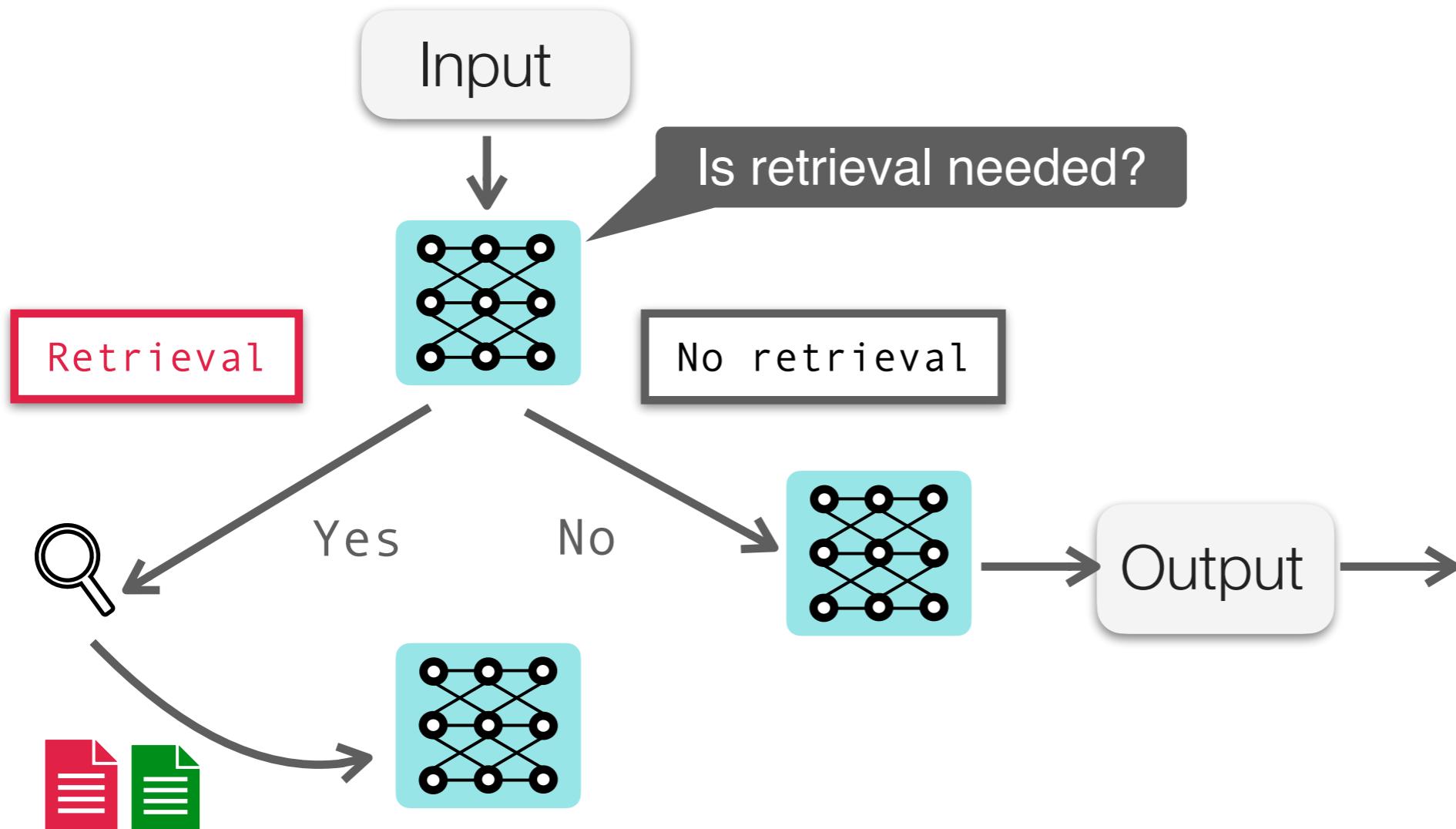
Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



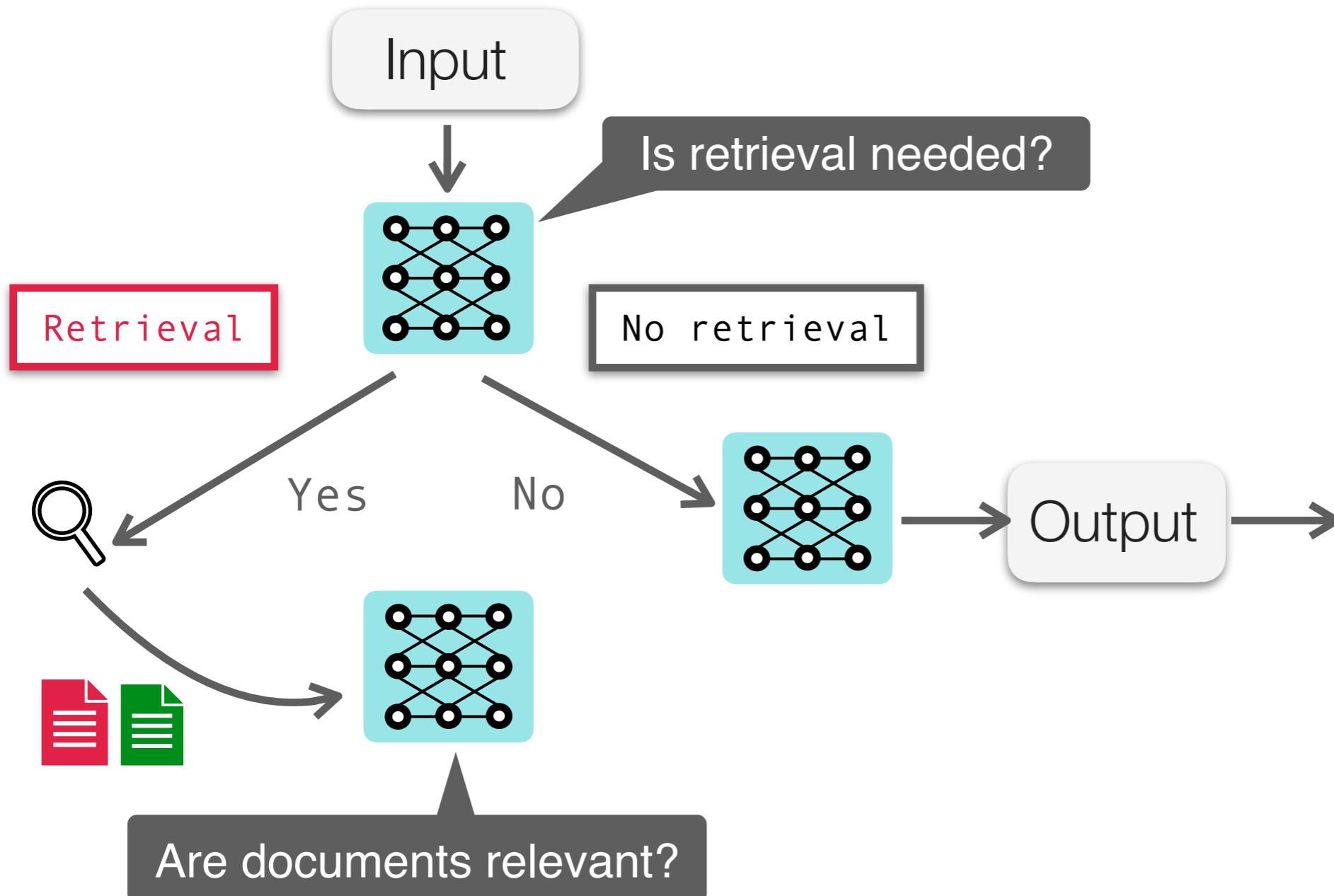
Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



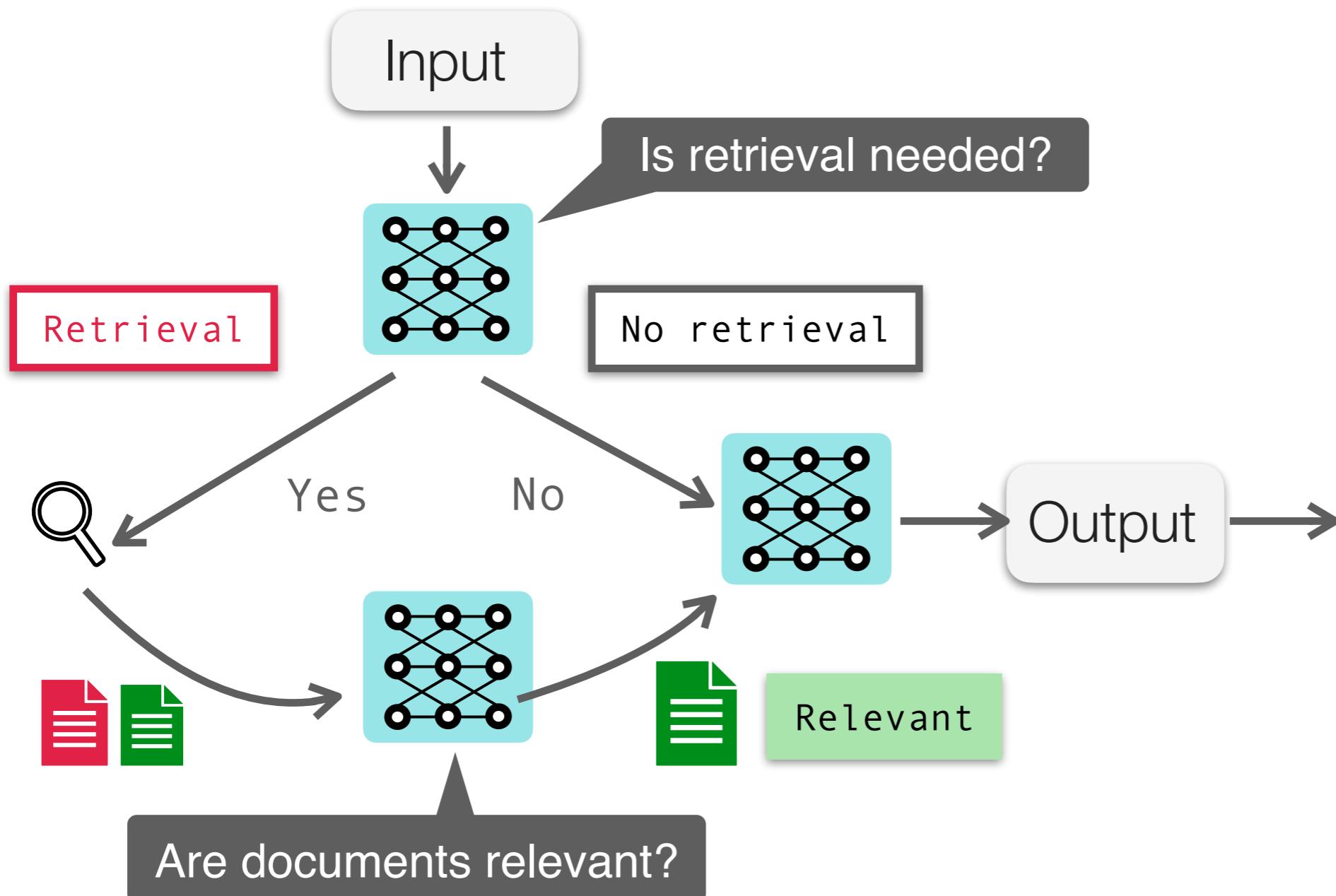
Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



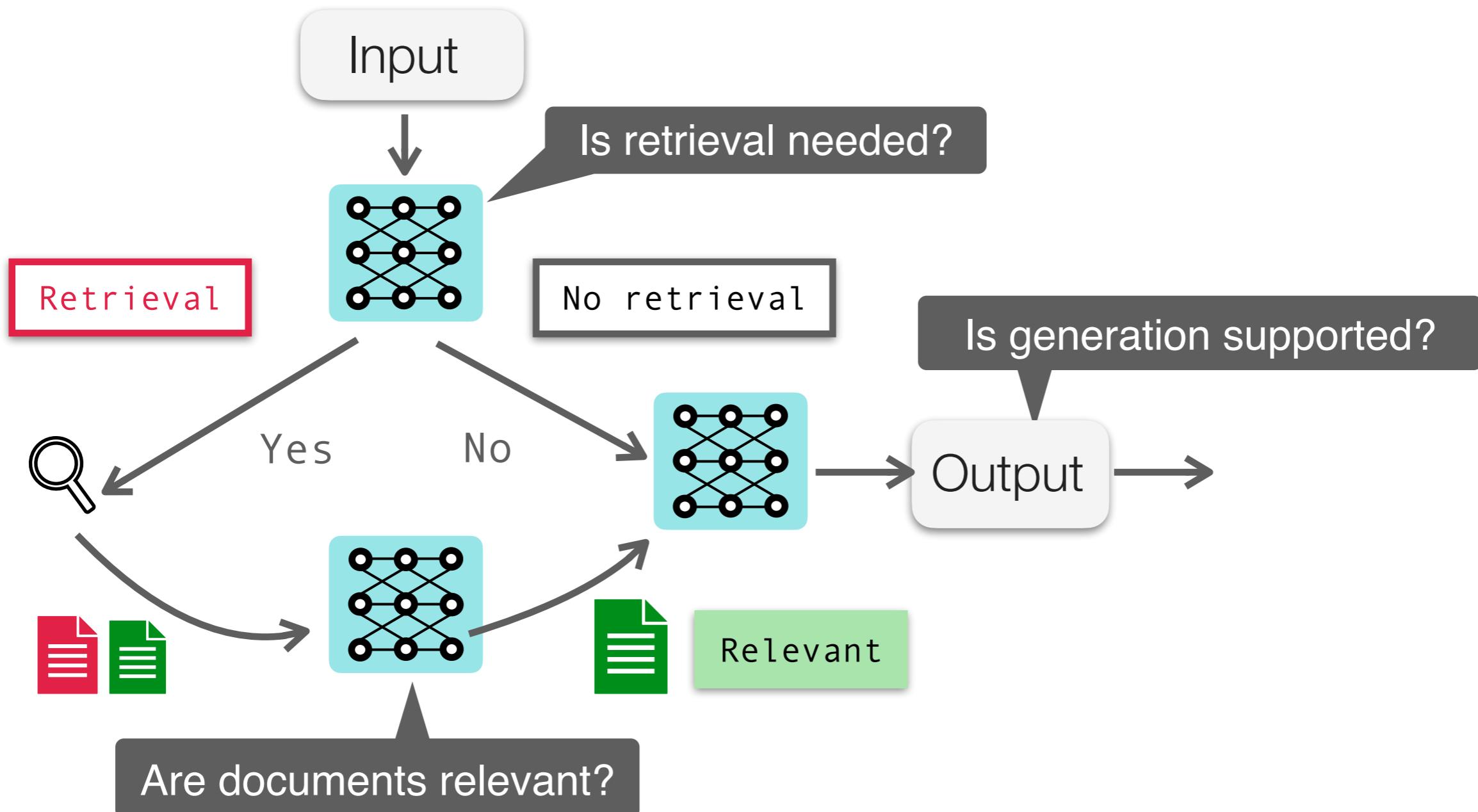
Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



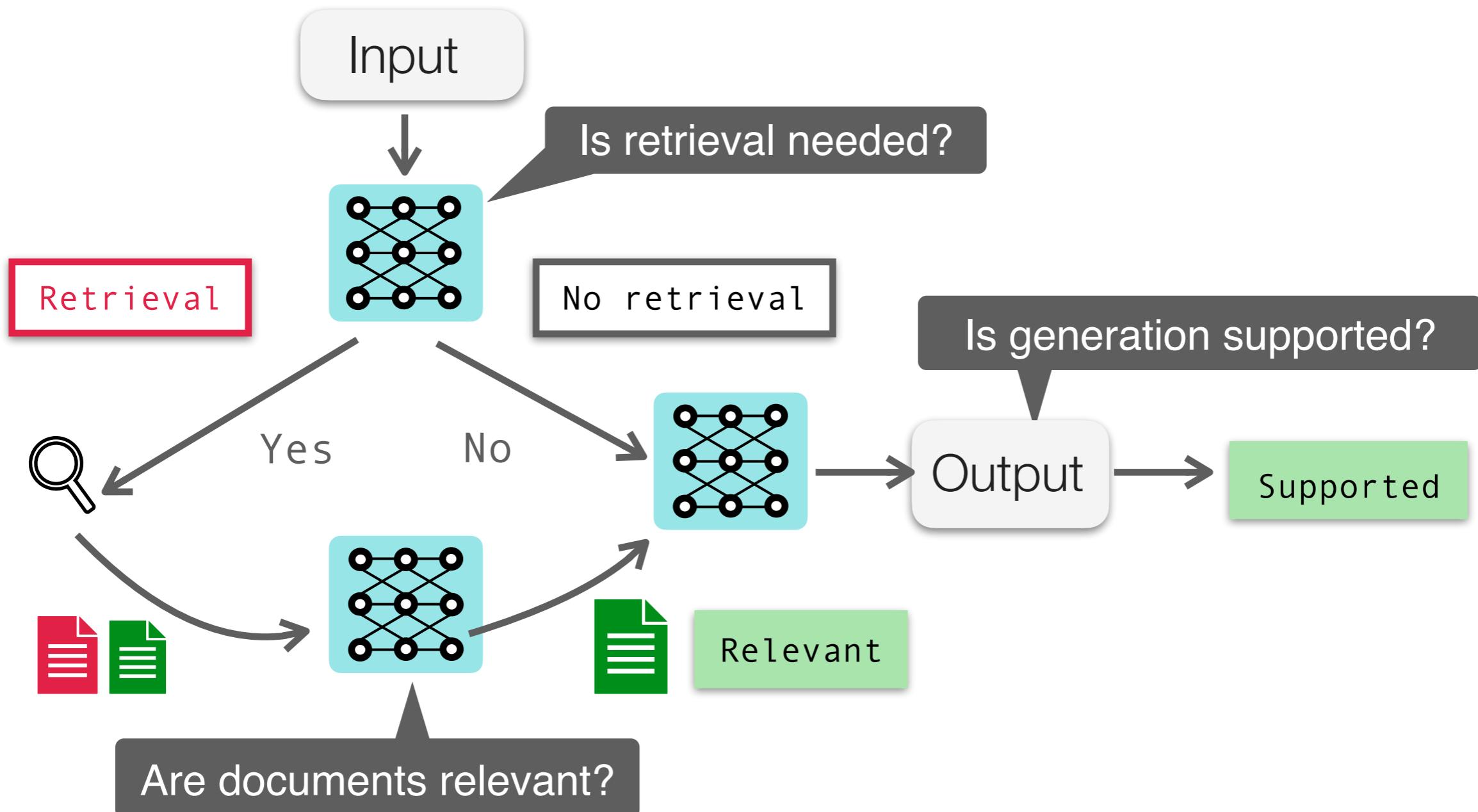
Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



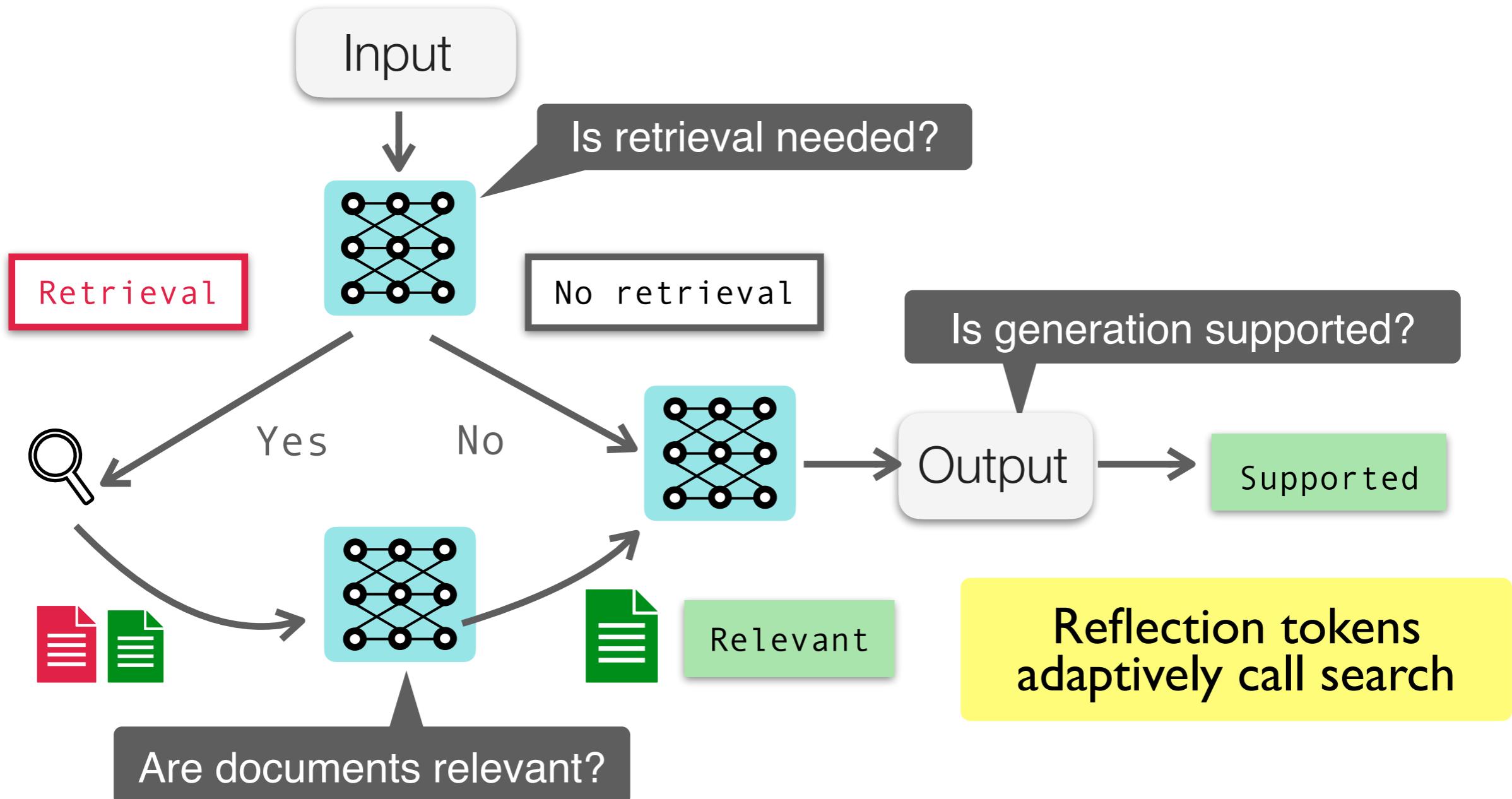
Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Self-RAG: Adaptive Retrieval



Asai et al. 2024..Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

Tool-augmented LMs

- Training LMs to *adaptively* and *iteratively* use external tools at inference time
- LMs can use diverse set of tools, not just retrieval

The Brown Act is California's law [WikiSearch("Brown Act") → The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.] that requires legislative bodies, like city councils, to hold their meetings open to the public.

Tool-augmented LMs

- Training LMs to *adaptively* and *iteratively* use external tools at inference time
- LMs can use diverse set of tools, not just retrieval

The Brown Act is California's law [\[WikiSearch\("Brown Act"\)\]](#) → [\[The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies.\]](#) that requires legislative bodies, like city councils, to hold their meetings open to the public.

Out of 1400 participants, 400 (or [\[Calculator\(400 / 1400\)\]](#) → [\[0.29\]](#) 29%) passed the test.

The name derives from "la tortuga", the Spanish word for [\[MT\("tortuga"\)\]](#) → [\[turtle\]](#) turtle.

Deep Research (DR) Agents

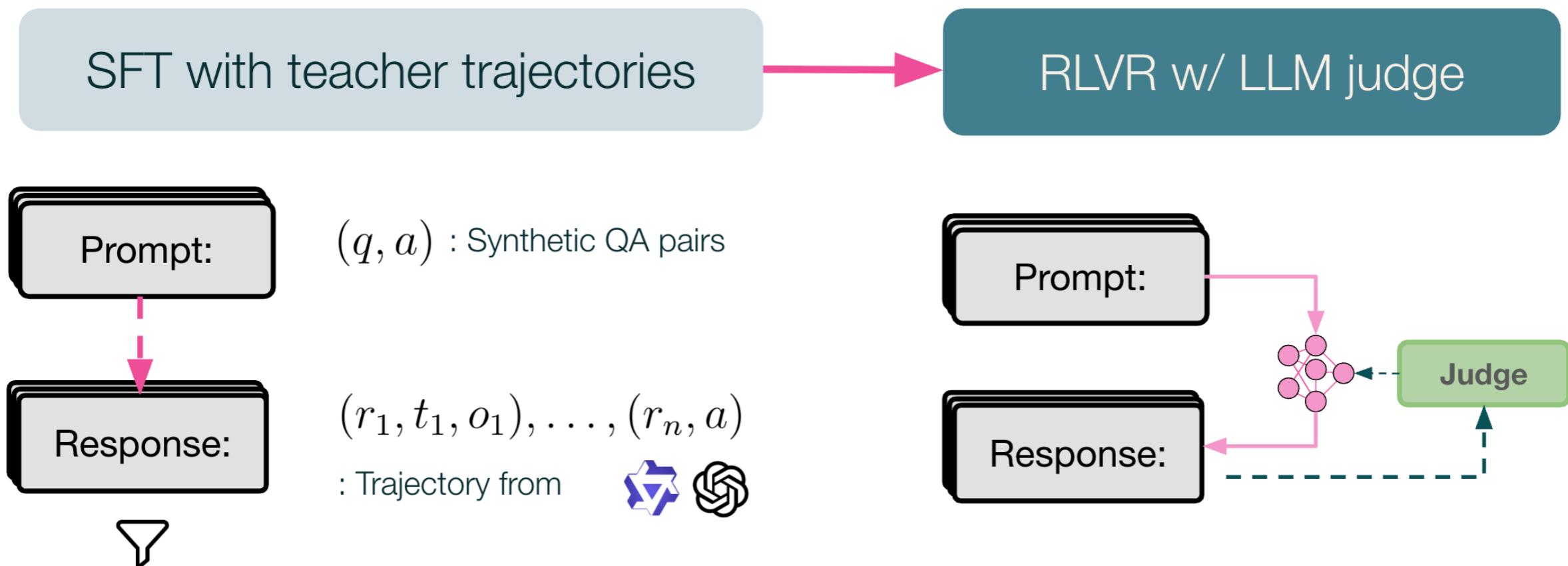
The screenshot shows the DR-Tulu Research Assistant interface. At the top left, the text "Differ" and "DR-Tulu Research Assistant" is visible. At the top right, there is a small square icon with a "U" inside. In the center, a dark rectangular box contains the question "What are the differences between AI2's OLMO2 and OLMo3?". Below this, a circular icon with "DR" and a progress bar with the text "Connecting..." are shown. The main body of the interface is mostly blank. At the bottom, there is a search bar with the placeholder "Ask a research question...". Below the search bar are three buttons: "DR Tulu 8B (1.9k st...)", "Detailed Report", and "Standard". To the right of these buttons are a "C" icon and a small circular icon with a star.

Deep Research (DR) Agents

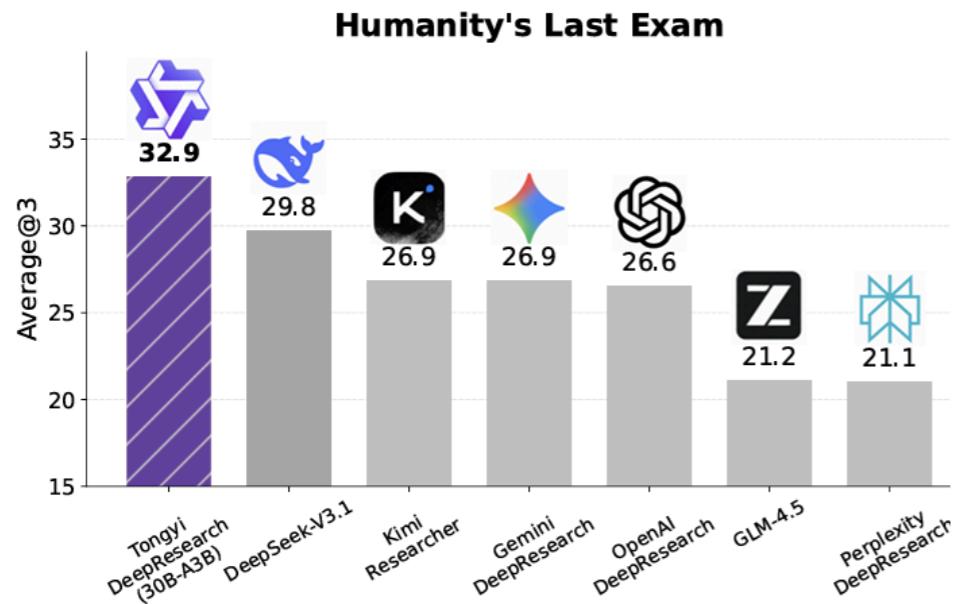
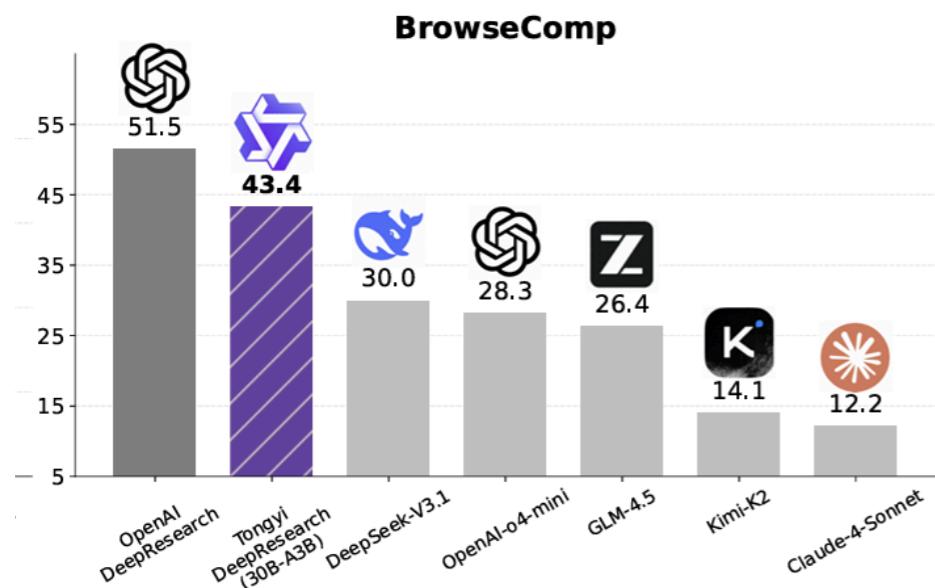
The screenshot shows the DR-Tulu Research Assistant interface. At the top left, the text "Differ" and "DR-Tulu Research Assistant" is visible. At the top right, there is a small square icon with a "U" inside. In the center, a dark rectangular box contains the question "What are the differences between AI2's OLMO2 and OLMo3?". Below this, a circular icon with "DR" and a "Connecting..." message with a lightning bolt icon are shown. The main body of the interface is mostly empty. At the bottom, there is a search bar with the placeholder "Ask a research question...". Below the search bar are three buttons: "DR Tulu 8B (1.9k st...)", "Detailed Report", and "Standard". To the right of these buttons are a "C" icon and a small circular icon with a star and a checkmark.

Training for DR Agents

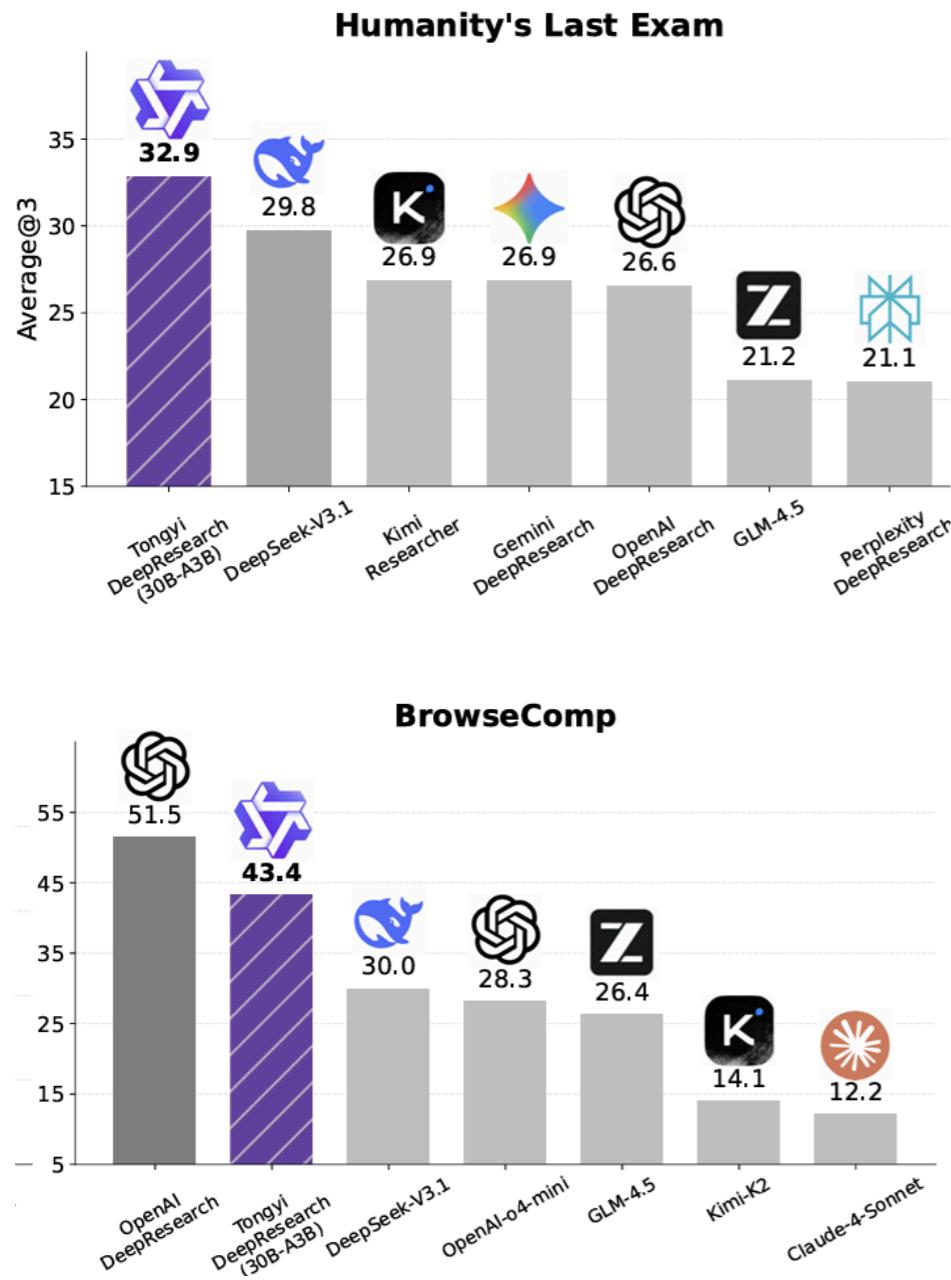
- Large-scale SFT (w. Rejection sampling) followed by RLVR using answer matching as reward



Training for DR Agents



Training for DR Agents

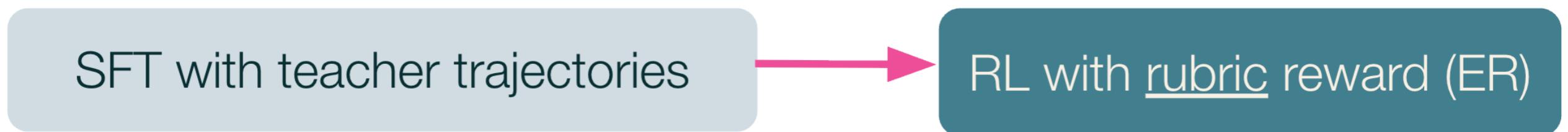
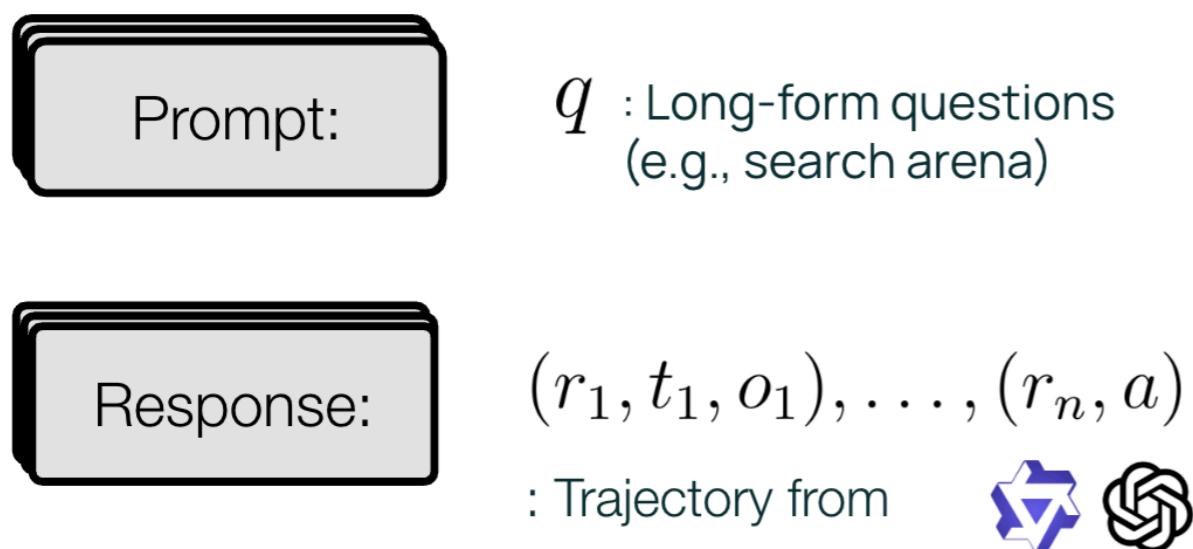
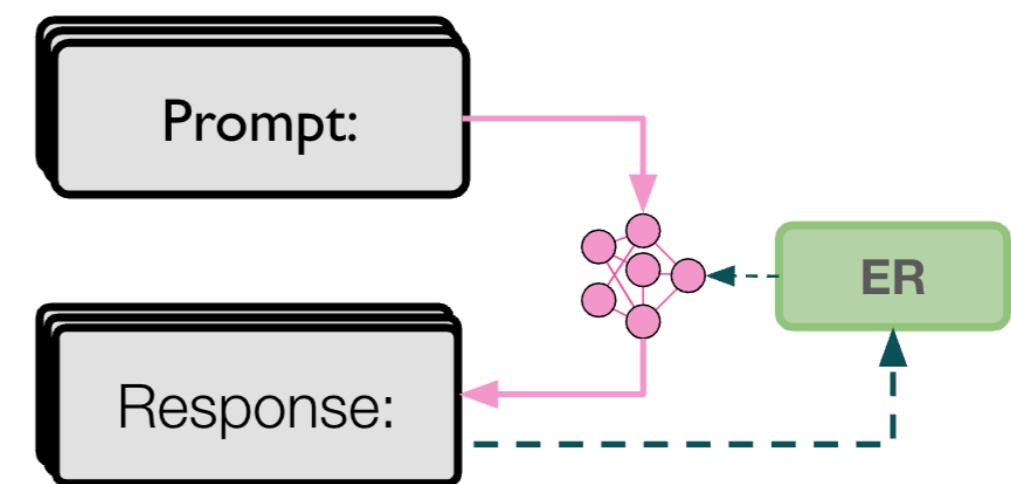


Deep Research Bench (Long-form DR)

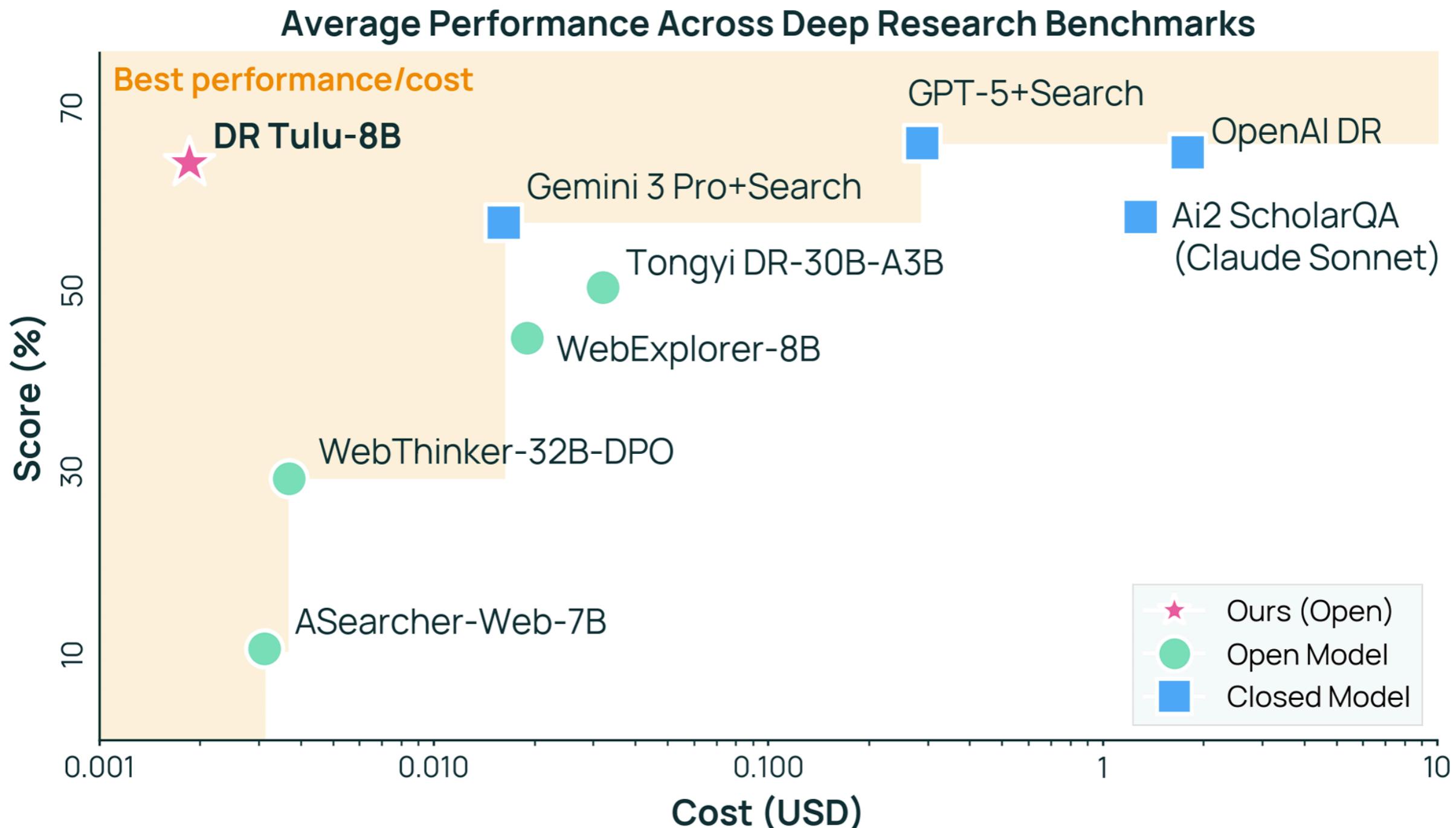
Rank	model	overall
1	cellcog	54.54
2	Qianfan-DeepResearch Pro	54.22
3	Qianfan-DeepResearch	53.02
4	tavily-research	52.44
5	thinkdepthai-deepresearch	52.43
6	salesforce-air-deep-research	50.65
7	langchain-open-deep-research(GPT-5, with gensee search)	50.6
8	gemini-2.5-pro-deepresearch	49.71
9	langchain-open-deep-research(GPT-5, with Tavily)	49.33
10	openai-deepresearch	46.45
17	tongyi-deepresearch-30B-A3B	40.46

Training for DR Agents with Rubrics

- Long-form responses are “hard-to-verify”
- Rubric-reward based RL for DR agent training

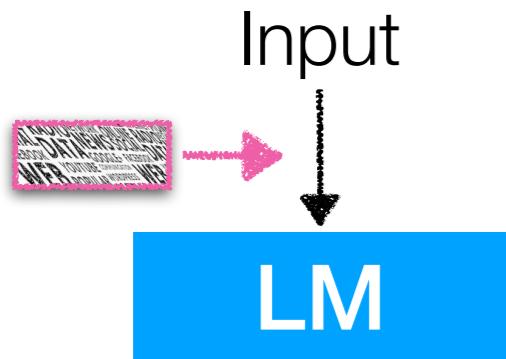


Training for DR Agents with Rubrics



How to Use Retrieval

Input Augmentation



- Augment input of LMs
- Easy to apply (w/o training) & effective
- Difficulty of using many D

e.g., RAG

Intermediate Fusion

Input

Not scalable to many documents
(needs context engineering)

LM

Not strictly grounded

Output Interpolation

Output

- Modify LMs to incorporate D in intermediate layers
- Scalable to many passages
- Requires retraining

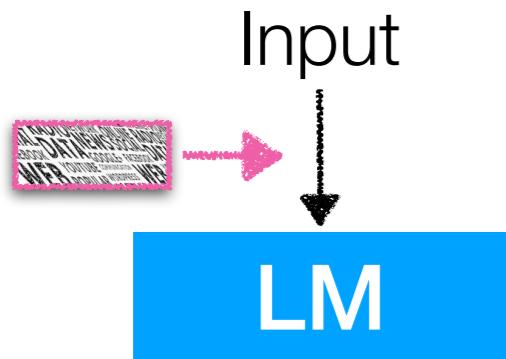
e.g., RETRO, InstructRETRO

- Directly manipulate output token distributions
- No training required*
- Limited effectiveness on tasks

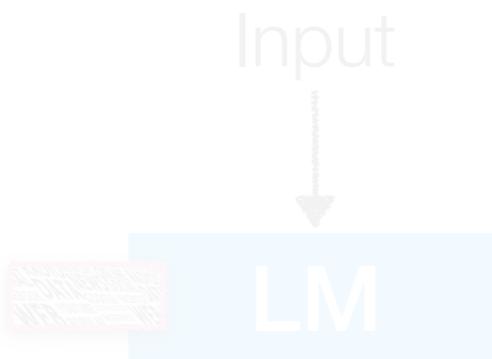
e.g., kNNLM

How to Use Retrieval

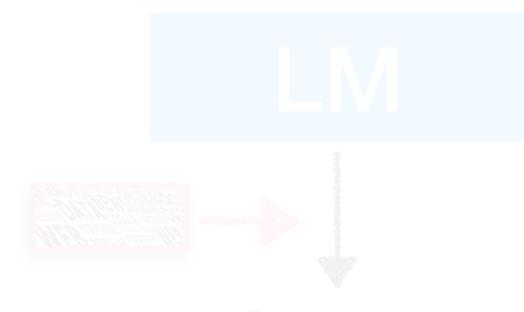
Input Augmentation



Intermediate Fusion



Output Interpolation



- Augment input of LMs
- Easy to apply (w/o training) & effective
- Difficulty of using many D

e.g., RAG

- Modify LMs to incorporate D in intermediate layers
- Scalable to many passages
- Requires retraining

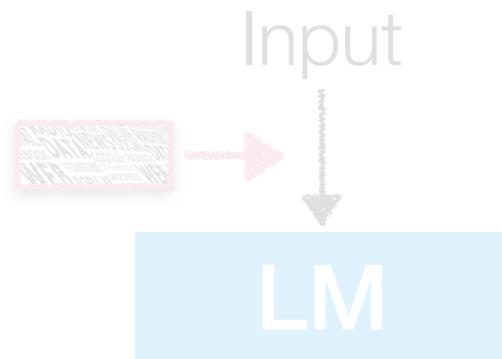
e.g., RETRO, InstructRETRO

- Directly manipulate output token distributions
- No training required*
- Limited effectiveness on tasks

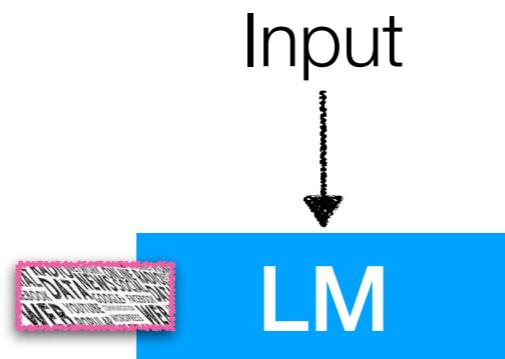
e.g., kNNLM

How to Use Retrieval

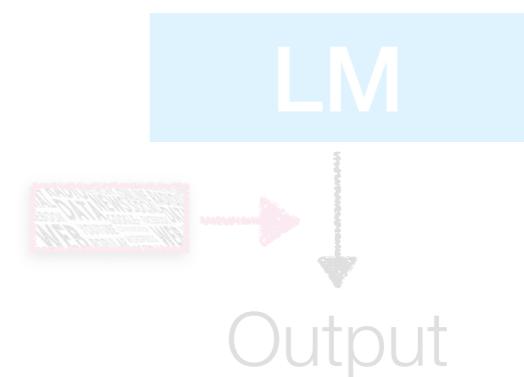
Input Augmentation



Intermediate Fusion



Output Interpolation



- Augment input of LMs
- Easy to apply (w/o training) & effective
- Difficulty of using many D

- Modify LMs to incorporate D in intermediate layers
- Scalable to many passages
- Requires retraining

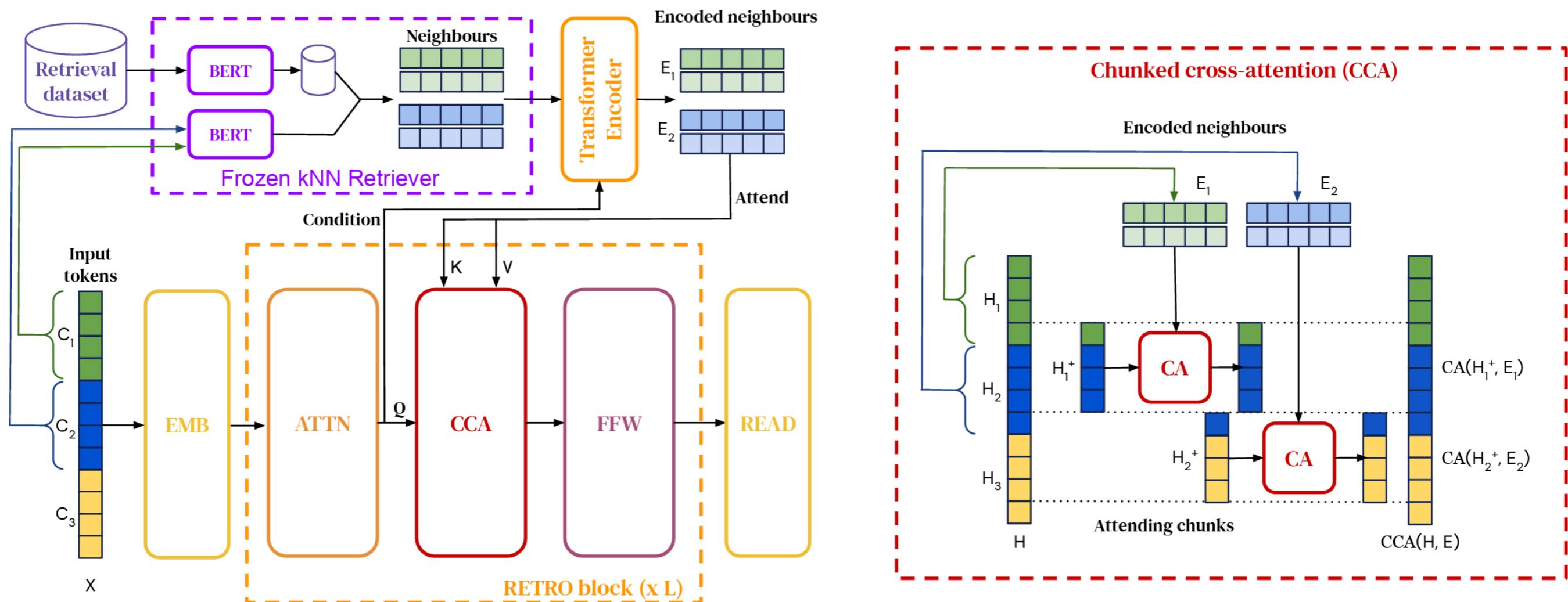
- Directly manipulate output token distributions
- No training required*
- Limited effectiveness on tasks

e.g., RAG

e.g., RETRO, InstructRETRO

e.g., kNNLM

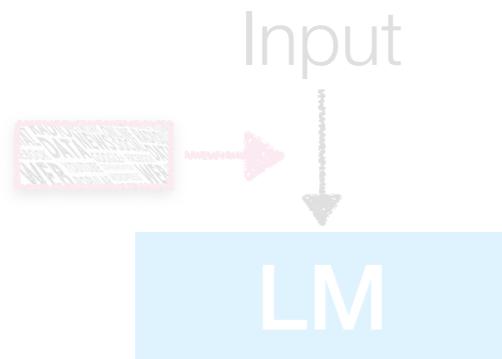
RETRO



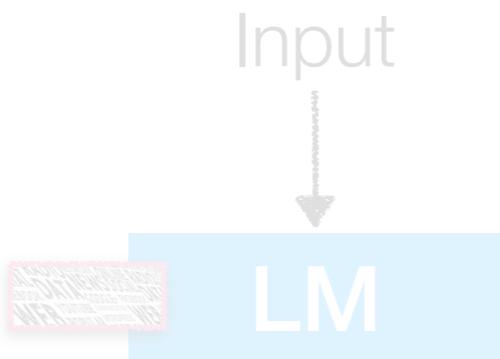
Borgeaud et al. 2022. Improving language models by retrieving from trillions of tokens.

How to Use Retrieval

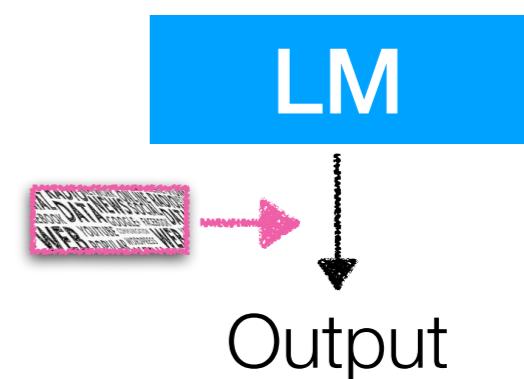
Input Augmentation



Intermediate Fusion



Output Interpolation



- Augment input of LMs
- Easy to apply (w/o training) & effective
- Difficulty of using many D

e.g., RAG

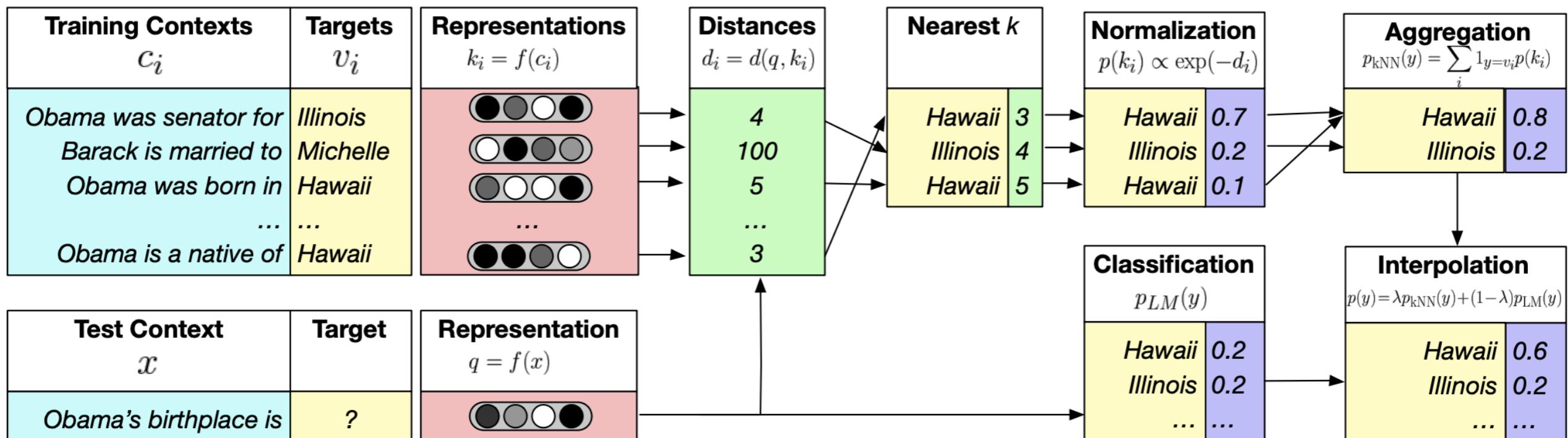
- Modify LMs to incorporate D in intermediate layers
- Scalable to many passages
- Requires retraining

e.g., RETRO, InstructRETRO

- Directly manipulate output token distributions
- No training required*
- Limited effectiveness on tasks

e.g., kNNLM

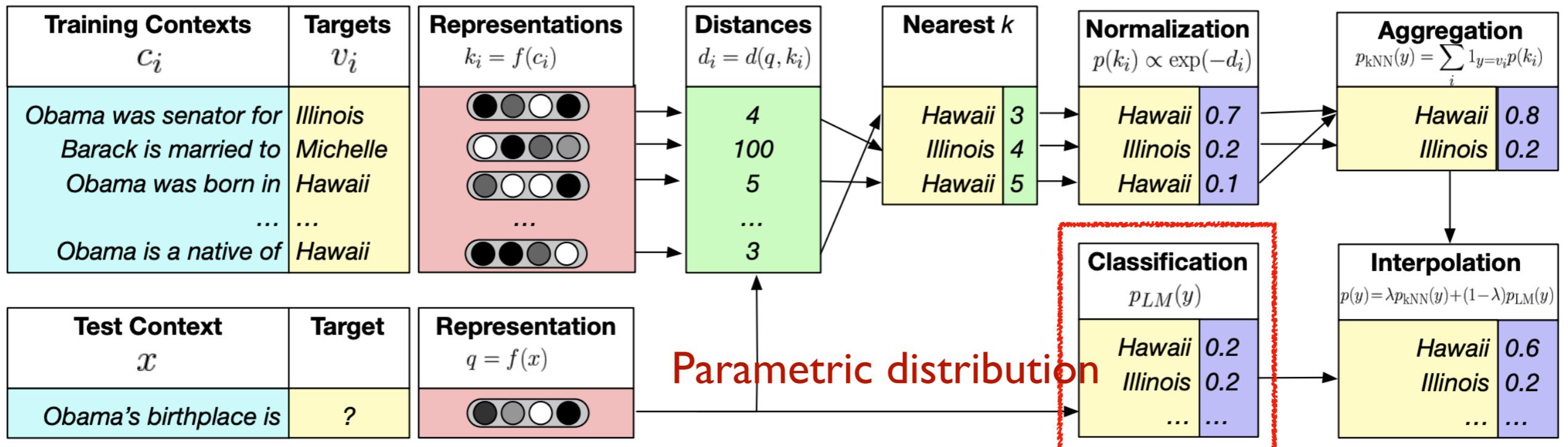
kNN-LM



$$P_{kNN-LM}(y|x) = (1 - \lambda)P_{LM}(y|x) + \lambda P_{kNN}(y|x)$$

Khandelwal et al. 2020. Generalization through Memorization: Nearest Neighbor Language Models.

kNN-LM

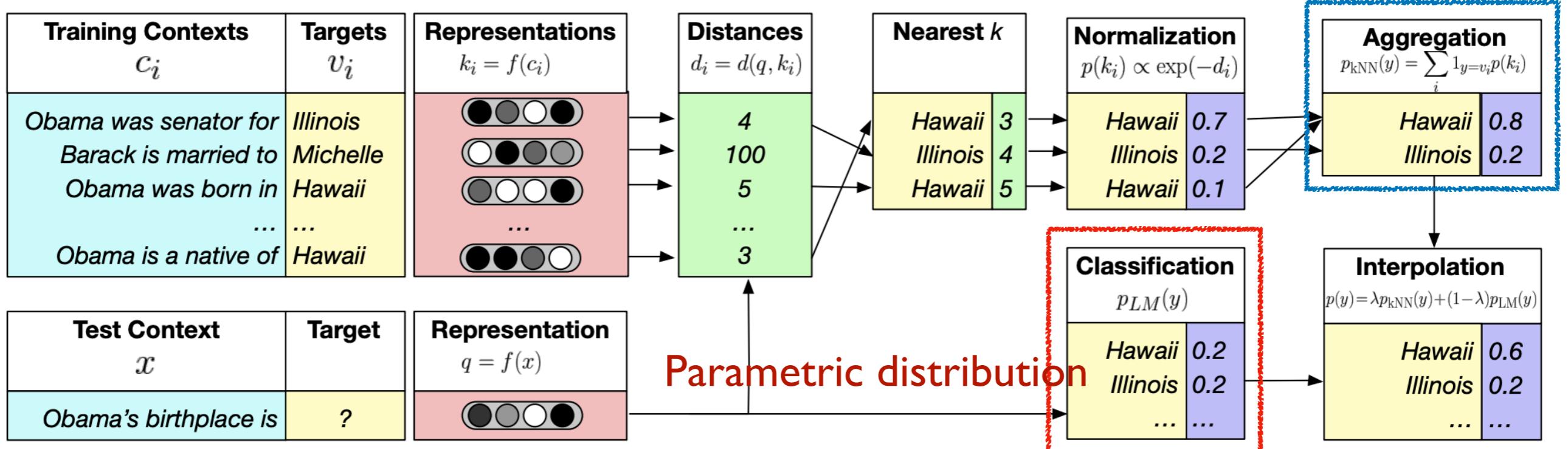


$$P_{kNN-LM}(y|x) = (1 - \lambda)P_{LM}(y|x) + \lambda P_{kNN}(y|x)$$

Khandelwal et al. 2020. Generalization through Memorization: Nearest Neighbor Language Models.

kNN-LM

Nonparametric distribution

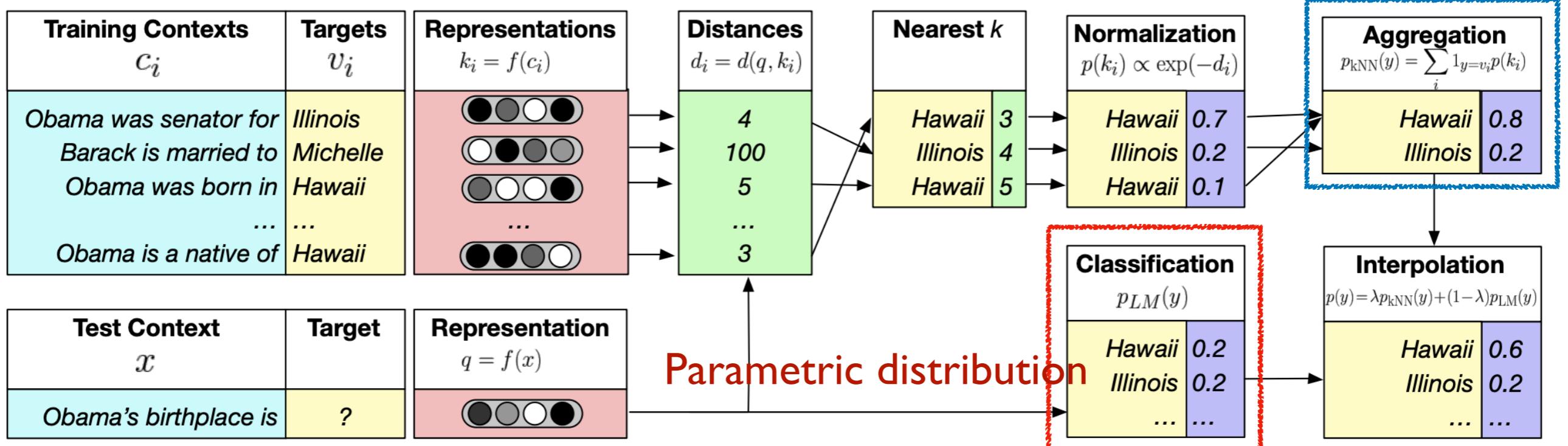


$$P_{kNN-LM}(y|x) = (1 - \lambda)P_{LM}(y|x) + \lambda P_{kNN}(y|x)$$

Khandelwal et al. 2020. Generalization through Memorization: Nearest Neighbor Language Models.

kNN-LM

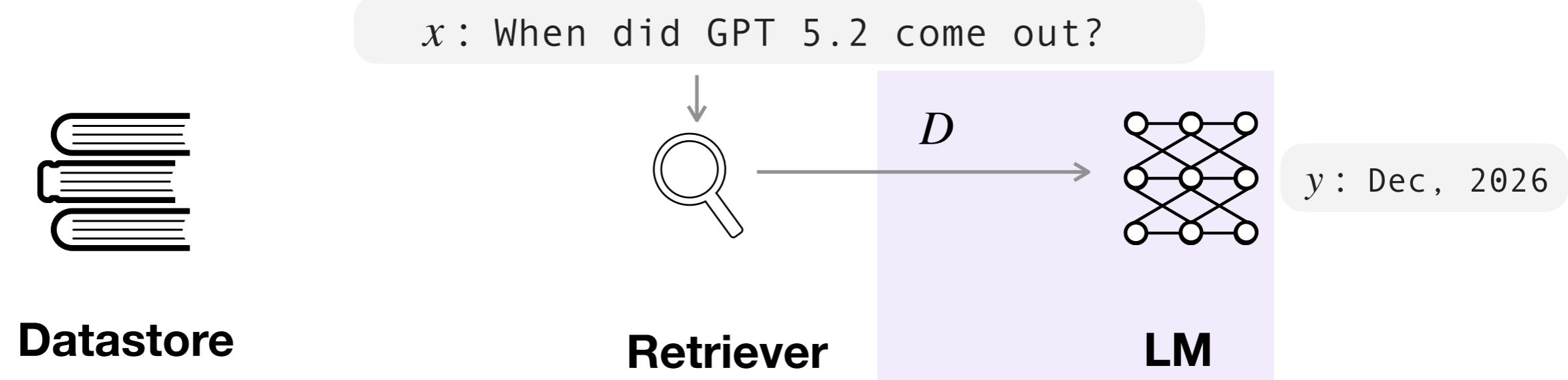
Nonparametric distribution



$$P_{kNN-LM}(y|x) = (1 - \lambda)P_{LM}(y|x) + \lambda P_{kNN}(y|x)$$

Khandelwal et al. 2020. Generalization through Memorization: Nearest Neighbor Language Models.

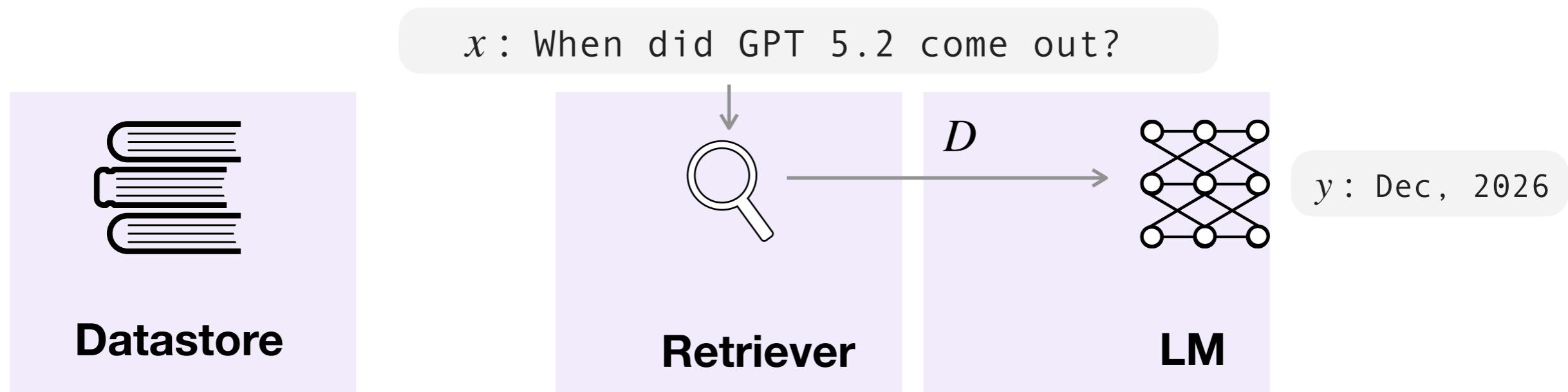
Summary of Part 3



- ✓ Architectures
- ✓ Training
- ✓ Inference

- RAG is widely used but several limitations
- Recent progress to overcome such shortcomings e.g., Deep Research
- Other architectures: intermediate incorporation or output interpolation gain while adding challenges

Retrieval & RAG



✓ Sources of datastore	✓ Types of retrievers	✓ Architectures
✓ Processing	✓ Training	✓ Training
✓ Scaling	✓ Evaluations	✓ Inference

<https://akariasai.github.io/>

aasai@andrew.cmu.edu