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Limitations of LMs: 
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Architectures 
Training
Inference 

13



Part 1: Datastore 
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What Should be in “data store”?
 when did GPT 5.2 

come out? 
x :  How should I implement 

RAG using LlamaIndex? 
x :
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Documentations 

Community forums 

English Wikipedia

Chen et al., 2017; Gu et al., 2020; 
Asai et al., 2020; Guu et al., 2021; 

Lewis et al., 2021 … etc   

https://dumps.wikimedia.org/
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Scaling Up Datastore

English 
Wikipedia
5B tokens

MassiveDS
1.4 trillion tokens

Shao et al. 2024. Scaling Retrieval-Based Language Models with a Trillion-Token Datastore 

16



Processing Documents

17



Processing Documents

17



Processing Documents

18



Processing Documents
Curate and  

preprocess data 
e.g., HTML -> Plain text 

18



Processing Documents
Curate and  

preprocess data 
e.g., HTML -> Plain text 

18



Processing Documents

Chunking

GPT-4o is a pre-trained 

Transformers is a series of 
science fiction action films based 

GPT4o was released by OpenAI in May 

@I$O@

Paragraph-level (e.g., \n)
Every k words (e.g., 100-250)

Curate and  
preprocess data 

e.g., HTML -> Plain text 

18



Processing Documents

Chunking

GPT-4o is a pre-trained 

Transformers is a series of 
science fiction action films based 

GPT4o was released by OpenAI in May 

@I$O@

Paragraph-level (e.g., \n)
Every k words (e.g., 100-250)

Curate and  
preprocess data 

e.g., HTML -> Plain text 

18



Processing Documents

Chunking

GPT-4o is a pre-trained 

Transformers is a series of 
science fiction action films based 

GPT4o was released by OpenAI in May 

@I$O@

Paragraph-level (e.g., \n)
Every k words (e.g., 100-250)

Post-processing

GPT-4o is a pre-trained 

Transformers is a series of 
science fiction action films based 

GPT4o was released by OpenAI in May 

e.g., Remove short documents  

Curate and  
preprocess data 

e.g., HTML -> Plain text 
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Summary of Part 1

LM Datastore Retriever 

 When did GPT 5.2 come out?x :

 Dec, 2026y :
D

Sources of datastore 

Processing

Scaling

• Choosing the right datastore 
• Chunking and filtering  
• Scaling datastores offer performance 

gain while adding challenges 
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Part 2: Retriever

LM Datastore Retriever 

 When did GPT 5.2 come out?x :

 Dec, 2026y :
D

Types of retrievers 

Training

Evaluations 
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Weighted-term Score

TF(t, d) =
freq(t, d)

∑
t′
freq(t′, d)

IDF(t) = log

(

|D|
∑

d′∈D
δ(freq(t, d′) > 0)

)

TF-IDF(t, d) = TF(t, d)× IDF(t)

BM-25(t, d) = IDF(t) ·
freq(t, d) · (k1 + 1)

freq(t, d) + k1 ·
(

1− b+ b ·
|d|

avgdl

)

Robertson et al. 2009.  The Probabilistic Relevance Framework: BM25 and Beyond. 
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Dense Retrievers: Overview

Encoder

Encoder

Encoder

z = Encoder(z)
Team USA 

celebrated after 

In 2022, the 32 
national teams 

FIFA World Cup 
2026 will expand to 

Encoder

x = Encoder(x)
z1, . . . , zk = argTop-k (x ⋅ z)k retrieved chunks

How many teams will participate in FIFA World x =

29



Dense Retrievers: Embeddings

ℝN×d

e.g., SBERT, SGPT, Qwen Embeddings

• Use output vector of 
[CLS] in masked LMs 

ℝd

e.g., DPR

• Mean / Max pooling of output vectors (can be applied to 
autoregressive LMs) 

Karpukhin et al 2020. Dense Passage Retrieval for Open-Domain Question Answering.  
Muennighoff 2022. SGPT: GPT Sentence Embeddings for Semantic Search.
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Fast Nearest Neighbor Search

https://github.com/
facebookresearch/faiss/wiki 

https://speakerdeck.com/matsui_528/cvpr20-
tutorial-billion-scale-approximate-nearest-
neighbor-search  (CVPR 2020 Tutorial) 
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Fast Nearest Neighbor Search

https://github.com/
facebookresearch/faiss/wiki 

https://speakerdeck.com/matsui_528/cvpr20-
tutorial-billion-scale-approximate-nearest-
neighbor-search  (CVPR 2020 Tutorial) 

Exact search (still fast for 
10^6~10^7 scale) 

Approximate search 
(faster but more memory) 

Reduce index size with quantization
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Evaluation Metrics
Evaluation of unranked retrieval sets

Evaluation of ranked retrieval sets

nDCG@10 is widely used (e.g., BEIR) 



Retrieval Benchmark: MTEB

Thakur et al. 2021.  BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models. 



BEIR Results
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BEIR Results

Izacard et al. TMLR 2022. Unsupervised Dense Information Retrieval with Contrastive Learning.

Adding CE (cross-encoder) helps 

Dense retrievers could 
struggle in OOD

Unsupervised training helps in 
OOD 
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MTEB Leaderboard

https://huggingface.co/spaces/mteb/leaderboard 
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Muennighoff et al. 2022. MTEB: Massive Text Embedding Benchmark. 
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Summary of Part 2

LM Datastore Retriever 

 When did GPT 5.2 come out?x :

 Dec, 2026y :
D

Types of retrievers 

Training

Evaluations 

40

• Different types pf retrievers  
• Training with contrastive loss  
• Common metrics: NDCG@10 … etc 
• Performance v.s. cost trade off



Key Factors & Design Choices

LM Datastore Retriever 

 When did GPT 5.2 come out?x :

 Dec, 2026y :
D

Architectures 
Training
Inference 

41



How to Use Retrieval
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How to Use Retrieval
Input  
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RAG (Lewis et al., 2020)

LM Datastore Retriever 

 When did GPT 5.2 come out?x :

0.9

0.7

Dec 11, 2025 - Open AIL 
GPT‑5.2 Instant is a fast, 
capable workhorse for 

GPT-5 (Wikipedia) Preceded in 
the series by GPT-4, it was 

D ∈ TopkSim( ⋅ |x)
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Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. 
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 Dec, 2026y :

Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. 
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Training RAG
Independent training

• DPR (Karpukhin et al., 2020)

• DRQA (Chen et al., 2017)
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Training RAG

Sequential training

• REPLUG (Shi et al., 2023)
• Evidentiality Generator (Asai et al., 2023)

Joint training 
• RAG (Lewis et al., 2021)

• REALM (Guu et al., 2021)

Independent training
• DPR (Karpukhin et al., 2020)

• DRQA (Chen et al., 2017)
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End-to-end Training for RAG

pRAG ≈ ∏
i

∑
z∈top−k(p(·|x))

pη(z |x)pθ(yi |x, z, y1:i−1)

Retriever score Generator score 

Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. 
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End-to-end Training for RAG

pRAG ≈ ∏
i

∑
z∈top−k(p(·|x))

pη(z |x)pθ(yi |x, z, y1:i−1)

Retriever score Generator score 

48

Now people often combine retrieval with off-the-shelf LMs

Widely referred to as RAG 

Lewis et al. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. 
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Mallen*, Asai* (contributed equally) et al. 2023. When Not to Trust Language Models:  
Investigating Effectiveness of Parametric and Non-Parametric Memories
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RAG constantly gives performance improvements in long-tail
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Inflexibility and lack of robustness to unhelpful docs 
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Self-RAG: Adaptive Retrieval

51

Is retrieval needed?
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Reflection tokens 
adaptively call search  
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Tool-augmented LMs

Schick et al. 2023. Toolformer: Language Models Can Teach Themselves to Use Tools. 

• Training LMs to adaptively and iteratively use 
external tools at inference time  

• LMs can use diverse set of tools, not just retrieval 
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Training for DR Agents
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• Large-scale SFT (w. Rejection sampling) followed by 
RLVR using answer matching as reward 

Tongyi Research. 2025. Tongyi Deep Research Technical Report. 
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Tongyi Research. 2025. Tongyi Deep Research Technical Report. 
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Tongyi Research. 2025. Tongyi Deep Research Technical Report. 

… 

Deep Research Bench (Long-form DR)



Training for DR Agents with Rubrics
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• Long-form responses are “hard-to-verify”  

• Rubric-reward based RL for DR agent training 

Shao*, Asai* et al. 2025. DR Tulu: Reinforcement Learning with 
Evolving Rubrics for Deep Research. 
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Shao*, Asai* et al. 2025. DR Tulu: Reinforcement Learning with 

Evolving Rubrics for Deep Research. 
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Not scalable to many documents 
(needs context engineering) 

Not strictly grounded 
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RETRO
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Borgeaud et al. 2022. Improving language models by retrieving from trillions of tokens. 
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kNN-LM

62

Khandelwal et al. 2020. Generalization through Memorization: Nearest Neighbor Language 
Models. 

PkNN−LM(y |x) = (1 − λ)PLM(y |x) + λPkNN(y |x)
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Khandelwal et al. 2020. Generalization through Memorization: Nearest Neighbor Language 
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Khandelwal et al. 2020. Generalization through Memorization: Nearest Neighbor Language 
Models. 

PkNN−LM(y |x) = (1 − λ)PLM(y |x) + λPkNN(y |x)
: hyperparameterλ

Nonparametric distribution

Parametric distribution 



Summary of Part 3

LM Datastore Retriever 

 When did GPT 5.2 come out?x :

 Dec, 2026y :
D

Architectures 
Training
Inference 
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• RAG is widely used but several limitations 
• Recent progress to overcome such shortcomings 

e.g., Deep Research 
• Other architectures: intermediate incorporation or 

output interpolation gain while adding challenges 



Retrieval & RAG

LM Datastore Retriever 

 When did GPT 5.2 come out?x :

 Dec, 2026y :
D

Types of retrievers 

Training

Evaluations 

Sources of datastore 

Processing

Scaling

Architectures 
Training
Inference 
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