
Beyond Decoding: Meta-Generation Algorithms
for Large Language Models

Presenters: Matthew Finlayson, Hailey Schoelkopf, Sean Welleck
December 11, 2024

I. Primitive Generators

I. Primitive Generators

Generating one token at a time

This tutorial

Beyond Decoding: Meta-Generation Algorithms for LLMs

• Primitive Generators
• Meta-generators
• Efficient meta-generation

18

Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens p✓[xt | x<t].

Taylor Alison Swift (born December 13, 1989) is
x<t

an
a

the
best
one
…

LM

American
actress
English
actor
award

…

Token-level decoding algorithms are primarily concerned with how
to choose the next token.

19

Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens p✓[xt | x<t].

Taylor Alison Swift (born December 13, 1989) is
x<t

an
a

the
best
one
…

*

an
xt

American
actress
English
actor
award

…

Token-level decoding algorithms are primarily concerned with how
to choose the next token.

19

Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens p✓[xt | x<t].

Taylor Alison Swift (born December 13, 1989) is an

x<t

American
actress
English
actor
award

…

Token-level decoding algorithms are primarily concerned with how
to choose the next token.

19

Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens p✓[xt | x<t].

Taylor Alison Swift (born December 13, 1989) is an

x<t

American
actress
English
actor
award

…

Token-level decoding algorithms are primarily concerned with how
to choose the next token.

19

Decoding is search

Each time-step during decoding requires a choice.

Taylor Swift is
the

a

writer

singer

and

song

producer
who

has

is

was.
actress

- song writer

former
contestant

on
the

“ The
of

member

But a search for what? What is our objective? How do we make local
choices that achieve the objective?

20

Token-level generation (outline)

Objectives for decoding

• Optimization
• Sampling
• Constrained generation, structured outputs

21

I. Primitive Generators

Decoding as optimization

Maximum A Posteriori (MAP)

MAP decoding seeks to find the most likely sequence

argmax
x

p✓[x]

• Greedy decoding
• Beam search

22

Greedy decoding

• Choose the most-likely token at each step.

xt = argmax
x

p✓[x | x<t]

• Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swift is a former contestant on
Token prob. 0.023 0.022 0.80 0.0004

23

Greedy decoding

• Choose the most-likely token at each step.

xt = argmax
x

p✓[x | x<t]

• Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swift is a former contestant on
Token prob. 0.023 0.022 0.80 0.0004

23

Greedy decoding

• Choose the most-likely token at each step.

xt = argmax
x

p✓[x | x<t]

• Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swift is a former contestant on
Token prob. 0.023 0.022 0.80 0.0004
Non-greedy Taylor Swift is a singer , song
Token prob. 0.012 0.26 0.21 0.0007

23

Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.

24

Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.

24

Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.

24

Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.

24

Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.
24

Benefits of MAP

MAP decoding works well for closed-ended tasks like translation,
question answering.

[Freitag and Al-Onaizan, 2017] [Shi et al., 2024]

25

Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

26

Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

GPT2, Beam size 32.
Taylor Alison Swift (born December 13, 1989) is an American
singer-songwriter, singer-songwriter, songwriter, and song-
writer. She is best known for her work as a singer-song-
writer, songwriter-songwriter, songwriter-songwriter, song-
writer-songwriter…

Remedies:
• repetition penalty
• unlikelihood training [Welleck et al., 2020]

26

Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

Pr[Taylor Swift is <eos>] > Pr[Taylor Swift is an American singer-…]

Remedy: length normalization

26

Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

• Biased coin Pr[H] = 0.6, Pr[T] = 0.4.
• Most likely outcome from 100 flips is all heads

H H H H H H H H H H …

• But this outcome is atypical.
• Similarly, the most likely generation may also be atypical.

Remedy to all of the above: sampling

26

Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

Takeaway: Approximate MAP (e.g., narrow beam search) works better
than exact MAP [Meister et al., 2020].

26

I. Primitive Generators

Sampling

Objective: Sampling

Modern LLM APIs like Together.AI
offer settings for sampling.

Together.ai playground.
27

Ancestral sampling

• y1 ⇠ p✓(· | x)
• y2 ⇠ p✓(· | x, y1)
• y3 ⇠ p✓(· | x, y2, y3)
• …

Ancestral sampling is equivalent to sequence sampling.

p✓(y) = p✓(y1)p✓(y2 | y1)p✓(y3 | y1y2) . . .p✓(yT | y<T)

28

Ancestral sampling

• y1 ⇠ p✓(· | x)
• y2 ⇠ p✓(· | x, y1)
• y3 ⇠ p✓(· | x, y2, y3)
• …

Ancestral sampling is equivalent to sequence sampling.

p✓(y) = p✓(y1)p✓(y2 | y1)p✓(y3 | y1y2) . . .p✓(yT | y<T)

28

What is wrong with ancestral sampling?

• Greedy decoding causes repetition traps

• But ancestral sampling causes incoherence. Why?
• Low-probability tokens are too likely
• I.e., the distribution has a heavy tail.
• Solution: chop off the tail!

Greedy
(repetition trap)
Taylor Swift is a former contestant on the
reality show … “I think it’s a very sad day
for the show,” he said. “It’s a very sad day
for the show. It’s a very sad day for the
show. It’s a very sad …

29

What is wrong with ancestral sampling?

• Greedy decoding causes repetition traps
• But ancestral sampling causes incoherence. Why?
• Low-probability tokens are too likely
• I.e., the distribution has a heavy tail.

• Solution: chop off the tail!

Greedy Ancestral
(repetition trap) (incoherent)
Taylor Swift is a former contestant on the
reality show … “I think it’s a very sad day
for the show,” he said. “It’s a very sad day
for the show. It’s a very sad day for the
show. It’s a very sad …

Taylor Swift is a huge fan of her latest
album ‘Famous.’ The singer got her first
reaction when she uploaded to Twitter a
video of her dancing and singing at a re-
ception for a Grammy-nominated female
songstress, Beyoncé.

29

What is wrong with ancestral sampling?

• Greedy decoding causes repetition traps
• But ancestral sampling causes incoherence. Why?
• Low-probability tokens are too likely
• I.e., the distribution has a heavy tail.
• Solution: chop off the tail!

Greedy Ancestral Top-k
(repetition trap) (incoherent) (acceptable)
Taylor Swift is a former contestant on the
reality show … “I think it’s a very sad day
for the show,” he said. “It’s a very sad day
for the show. It’s a very sad day for the
show. It’s a very sad …

Taylor Swift is a huge fan of her latest
album ‘Famous.’ The singer got her first
reaction when she uploaded to Twitter a
video of her dancing and singing at a re-
ception for a Grammy-nominated female
songstress, Beyoncé.

Taylor Swift is a writer for IGN and a mem-
ber of IGN’s Television Critics Association.
You can follow her on Twitter at @_MsS-
wift, IGN at MsSwiftIGN, Facebook at MrsS-
wift, or subscribe to her video channels.

29

Truncation sampling

Truncation sampling interpolates greedy and ancestral sampling by
choosing a minimum probability threshold at each time step.

Method Threshold strategy

Top-k Sample from k-most-probable
Top-p Cumulative probability at most p
✏ Probability at least ✏
⌘ Min prob. proportional to entropy
Min-p Prob. at least pmin scaled by max token prob.

30

Truncation sampling

','
' and'
' is'
' ('
'\n'

' said'
' in'

' had'
' at'

' will'
' &'

' of'
"',""'"

'/'
' says'

' recently'
' also'
' (@'
' ,'

' for'
' told'

' released'
' can'

' performed'
' made'

Logprob

Taylor Swift
' is'
','
' and'
' has'
' here'
'?'
' means'
' in'
' would'
' as'
"'?""'"
' you'
' may'
' sounds'
' Is'
' are'
' can'
' goes'
' now'
' came'
' might'
' starts'
"'!""'"
' of'
' really'

My name

31

Truncation sampling

','
' and'
' is'
' ('
'\n'

' said'
' in'

' had'
' at'

' will'
' &'

' of'
"',""'"

'/'
' says'

' recently'
' also'
' (@'
' ,'

' for'
' told'

' released'
' can'

' performed'
' made'

Logprob

Taylor Swift
' is'
','
' and'
' has'
' here'
'?'
' means'
' in'
' would'
' as'
"'?""'"
' you'
' may'
' sounds'
' Is'
' are'
' can'
' goes'
' now'
' came'
' might'
' starts'
"'!""'"
' of'
' really'

Top-k = 5

My name

31

Truncation sampling

','
' and'
' is'
' ('
'\n'

' said'
' in'

' had'
' at'

' will'
' &'

' of'
"',""'"

'/'
' says'

' recently'
' also'
' (@'
' ,'

' for'
' told'

' released'
' can'

' performed'
' made' Top-p = 0.9

Logprob

Taylor Swift
' is'
','
' and'
' has'
' here'
'?'
' means'
' in'
' would'
' as'
"'?""'"
' you'
' may'
' sounds'
' Is'
' are'
' can'
' goes'
' now'
' came'
' might'
' starts'
"'!""'"
' of'
' really'

Top-k = 5
Top-p = 0.9

My name

31

Temperature Sampling

Instead of truncating the tail, make the distribution more “peaked”.

softmax(x, ⌧) = exp(x/⌧)P
i exp(xi/⌧)

Temperature Parameter Pro Con

High ⌧ � 1 Diverse Incoherent
Low ⌧ < 1 Coherent Repetitive

32

Temperature Sampling

Taylor Swift is… softmax(x/⌧)

0 0.4 0.8

' a'
' the'
' an'

' not'
' one'

' back'
' in'

' currently'
' on'

' also'
' now'

' still'
' known'

' set'
' no'

' doing'
' out'

' coming'
' going'

' playing'

Probability

⌧ = 0.5
(peaked)

0 0.4 0.8
Probability

⌧ = 1
(unaltered)

0 0.4 0.8
Probability

⌧ = 2
(near uniform)

33

Sampling implementations
1 probs = model(sequence)
2
3 # Greedy
4 indices, weights = probs.argmax(keepdim=True), None
5
6 # Ancestral
7 indices, weights = vocab_size, probs
8
9 # Top-k
10 topk = probs.topk(k)
11 indices, weights = topk.indices, topk.values
12
13 # Top-p
14 argsort = probs.argsort(descending=True)
15 top_p = (argsort.values.cumsum() < p).sum() + 1
16 indices, weights = argsort.indices[:top_p], argsort.values[:top_p]
17
18 # Epsilon
19 indices, weights = vocab_size, probs * (probs > epsilon)
20
21 # Temperature
22 indices, weights = vocab_size, (logits / temp).softmax(-1)
23
24 # Sample
25 next_token = random.choices(indices, weights=weights, k=1) 34

Batteries-included inference frameworks

1 # vLLM
2 from vllm import LLM, SamplingParams
3 llm = LLM(model="facebook/opt-125m")
4 prompts = ["Hello, my name is"]
5 sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
6 outputs = llm.generate(prompts, sampling_params)
7
8 # Huggingface
9 from transformers import AutoModelForCausalLM, AutoTokenizer
10 model = AutoModelForCausalLM.from_pretrained("gpt2")
11 tokenizer = AutoTokenizer.from_pretrained("gpt2")
12 text = "Hello, my name is"
13 tokens = tokenizer(text, return_tensors="pt")
14 output = model(**tokens).generate(
15 temperature=0.8, top_p=0.95, do_sample=True
16)

35

Why are next-token distributions heavy-tailed?

• Under-training

• Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

• By design low-rank constraints on the LLM
outputs [Finlayson et al., 2024].

Rembed Rvocabunembed
�vocab

softmax

36

Why are next-token distributions heavy-tailed?

• Under-training
• Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

• By design low-rank constraints on the LLM
outputs [Finlayson et al., 2024].

Rembed Rvocabunembed
�vocab

softmax

36

Why are next-token distributions heavy-tailed?

• Under-training
• Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

• By design low-rank constraints on the LLM
outputs [Finlayson et al., 2024].

Rembed Rvocabunembed
�vocab

softmax

36

Sampling adapters

A sampling adapter takes a token distribution p✓(· | x) and re-adjusts
the probabilities.

• Truncation and temperature are adapters.

• Contrastive decoding [Li et al., 2023a, Liu et al., 2021]

p(· | x) / pexpert(· | x)
pantiexpert(· | x)

• Many others
Method Purpose Adapter

Ancestral sampling y ⇠ p✓ –
Temperature sampling [Ackley et al., 1985] y ⇠ q(p✓) Rescale
Greedy decoding y max p✓ Argmax (temperature! 0)
Top-k sampling [Fan et al., 2018] y ⇠ q(p✓) Truncation (top-k)
Nucleus sampling [Holtzman et al., 2020] y ⇠ q(p✓) Truncation (cumulative prob.)
Typical sampling [Meister et al., 2023] y ⇠ q(p✓) Truncation (entropy)
Epsilon sampling [Hewitt et al., 2022] y ⇠ q(p✓) Truncation (probability)
⌘ sampling [Hewitt et al., 2022] y ⇠ q(p✓) Truncation (prob. and entropy)
Mirostat decoding [Basu et al., 2021] Target perplexity Truncation (adaptive top-k)
Basis-aware sampling [Finlayson et al., 2024] y ⇠ q(p✓) Truncation (linear program)
Contrastive decoding [Li et al., 2023a] y ⇠ q(p✓) log p✓0 � log p✓ and truncation
DExperts [Liu et al., 2021] y ⇠ q⇤(·|x, c) / p✓ · (p✓+/p✓�)↵

Inference-time adapters [Lu et al., 2023] y ⇠ q⇤ / r(y) / (p✓ · p✓0)↵

Proxy tuning [Liu et al., 2024] y ⇠ q⇤(·|x, c) / p✓ · (p✓+/p✓�)↵

37

Sampling adapters

A sampling adapter takes a token distribution p✓(· | x) and re-adjusts
the probabilities.

• Truncation and temperature are adapters.
• Contrastive decoding [Li et al., 2023a, Liu et al., 2021]

p(· | x) / pexpert(· | x)
pantiexpert(· | x)

• Many others
Method Purpose Adapter

Ancestral sampling y ⇠ p✓ –
Temperature sampling [Ackley et al., 1985] y ⇠ q(p✓) Rescale
Greedy decoding y max p✓ Argmax (temperature! 0)
Top-k sampling [Fan et al., 2018] y ⇠ q(p✓) Truncation (top-k)
Nucleus sampling [Holtzman et al., 2020] y ⇠ q(p✓) Truncation (cumulative prob.)
Typical sampling [Meister et al., 2023] y ⇠ q(p✓) Truncation (entropy)
Epsilon sampling [Hewitt et al., 2022] y ⇠ q(p✓) Truncation (probability)
⌘ sampling [Hewitt et al., 2022] y ⇠ q(p✓) Truncation (prob. and entropy)
Mirostat decoding [Basu et al., 2021] Target perplexity Truncation (adaptive top-k)
Basis-aware sampling [Finlayson et al., 2024] y ⇠ q(p✓) Truncation (linear program)
Contrastive decoding [Li et al., 2023a] y ⇠ q(p✓) log p✓0 � log p✓ and truncation
DExperts [Liu et al., 2021] y ⇠ q⇤(·|x, c) / p✓ · (p✓+/p✓�)↵

Inference-time adapters [Lu et al., 2023] y ⇠ q⇤ / r(y) / (p✓ · p✓0)↵

Proxy tuning [Liu et al., 2024] y ⇠ q⇤(·|x, c) / p✓ · (p✓+/p✓�)↵

37

Sampling adapters

A sampling adapter takes a token distribution p✓(· | x) and re-adjusts
the probabilities.

• Truncation and temperature are adapters.
• Contrastive decoding [Li et al., 2023a, Liu et al., 2021]

p(· | x) / pexpert(· | x)
pantiexpert(· | x)

• Many others
Method Purpose Adapter

Ancestral sampling y ⇠ p✓ –
Temperature sampling [Ackley et al., 1985] y ⇠ q(p✓) Rescale
Greedy decoding y max p✓ Argmax (temperature! 0)
Top-k sampling [Fan et al., 2018] y ⇠ q(p✓) Truncation (top-k)
Nucleus sampling [Holtzman et al., 2020] y ⇠ q(p✓) Truncation (cumulative prob.)
Typical sampling [Meister et al., 2023] y ⇠ q(p✓) Truncation (entropy)
Epsilon sampling [Hewitt et al., 2022] y ⇠ q(p✓) Truncation (probability)
⌘ sampling [Hewitt et al., 2022] y ⇠ q(p✓) Truncation (prob. and entropy)
Mirostat decoding [Basu et al., 2021] Target perplexity Truncation (adaptive top-k)
Basis-aware sampling [Finlayson et al., 2024] y ⇠ q(p✓) Truncation (linear program)
Contrastive decoding [Li et al., 2023a] y ⇠ q(p✓) log p✓0 � log p✓ and truncation
DExperts [Liu et al., 2021] y ⇠ q⇤(·|x, c) / p✓ · (p✓+/p✓�)↵

Inference-time adapters [Lu et al., 2023] y ⇠ q⇤ / r(y) / (p✓ · p✓0)↵

Proxy tuning [Liu et al., 2024] y ⇠ q⇤(·|x, c) / p✓ · (p✓+/p✓�)↵ 37

I. Primitive Generators

Constrained decoding

Constrained decoding

Embedding LLMs in larger systems requires that they can
communicate with the larger system, e.g., with JSON.

Can we force LLMs to generate structured outputs?

From OpenAI Playground. 38

Worked example: decoding valid JSON

Language models can stuggle with controlled and structured
generation. Prompt:

Key Type
name string
birth year int

Format the following information using the JSON schema:
”Taylor Swift was born December 13, 1989.”

LLM:
{"name": "Taylor Swift", "birth": "1998-12-
13T01:00:00Z", "age…

The LLM output does not match the JSON schema.

39

Worked example: decoding valid JSON

Language models can stuggle with controlled and structured
generation. Prompt:

Key Type
name string
birth year int

Format the following information using the JSON schema:
”Taylor Swift was born December 13, 1989.”

LLM:
{"name": "Taylor Swift", "birth": "1998-12-
13T01:00:00Z", "age…

The LLM output does not match the JSON schema.

39

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.

2. Filter the next-token distribution for valid tokens.
GPT2:

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:

Token Prob.
\n 0.36
" 0.16
{ 0.026
https 0.025
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{

Token Prob.
name 0.31
date 0.069
" 0.039
id 0.033
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "

Token Prob.
Taylor 0.85
T 0.034
S 0.024
The 0.022
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift

Token Prob.
", 0.85
," 0.034
" 0.024
, 0.022
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year":

Token Prob.
" 0.46
int 0.041
' 0.026
1989 0.020
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year": 1989

Token Prob.
, 0.39
} 0.34
}, 0.11
} 0.082
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year": 1989}

40

Side effects of templated/constrained decoding

• Generation speedup
• Reduced performance

41

Token healing

• Templated generation can force unnatural token boundaries

The url is http:

//
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http

://

Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].

42

Token healing

• Templated generation can force unnatural token boundaries

The url is http: //
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http

://

Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].

42

Token healing

• Templated generation can force unnatural token boundaries

The url is http: //
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http:

://

Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].

42

Token healing

• Templated generation can force unnatural token boundaries

The url is http: //
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http://
Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].

42

Summary

• Two views of decoding: optimization, sampling
• The diversity-coherence trade-off
• Constrained decoding enforces structure on LLM outputs

These are the building blocks of modern LLM generation methods.

43

References i

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985).
A learning algorithm for boltzmann machines.
Cognitive Science, 9(1):147–169.
Adams, G., Ladhak, F., Schoelkopf, H., and Biswas, R. (2024).
Cold compress: A toolkit for benchmarking kv cache
compression approaches.
Aggarwal, P., Parno, B., and Welleck, S. (2024).
Alphaverus: Bootstrapping formally verified code generation
through self-improving translation and treefinement.
https://arxiv.org/abs/2412.06176.

139

https://arxiv.org/abs/2412.06176

References ii

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebrón, F.,
and Sanghai, S. (2023).
Gqa: Training generalized multi-query transformer models from
multi-head checkpoints.
Ankner, Z., Paul, M., Cui, B., Chang, J. D., and Ammanabrolu, P.
(2024).
Critique-out-loud reward models.
Asai, A., He*, J., Shao*, R., Shi, W., Singh, A., Chang, J. C., Lo, K.,
Soldaini, L., Feldman, Tian, S., Mike, D., Wadden, D., Latzke, M.,
Minyang, Ji, P., Liu, S., Tong, H., Wu, B., Xiong, Y., Zettlemoyer, L.,
Weld, D., Neubig, G., Downey, D., Yih, W.-t., Koh, P. W., and
Hajishirzi, H. (2024).
OpenScholar: Synthesizing scientific literature with
retrieval-augmented language models.

140

References iii

Arxiv.
Basu, S., Ramachandran, G. S., Keskar, N. S., and Varshney, L. R.
(2021).
Mirostat: a neural text decoding algorithm that directly controls
perplexity.
In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.
Bertsch, A., Xie, A., Neubig, G., and Gormley, M. (2023).
It’s MBR all the way down: Modern generation techniques
through the lens of minimum Bayes risk.
In Elazar, Y., Ettinger, A., Kassner, N., Ruder, S., and A. Smith, N.,
editors, Proceedings of the Big Picture Workshop, pages 108–122,
Singapore. Association for Computational Linguistics.

141

References iv

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V., Ré, C., and
Mirhoseini, A. (2024).
Large language monkeys: Scaling inference compute with
repeated sampling.
https://arxiv.org/abs/2407.21787.
Chen, J., Tiwari, V., Sadhukhan, R., Chen, Z., Shi, J., Yen, I. E.-H., and
Chen, B. (2024a).
Magicdec: Breaking the latency-throughput tradeoff for long
context generation with speculative decoding.
Chen, X., Lin, M., Schärli, N., and Zhou, D. (2024b).
Teaching large language models to self-debug.
In The Twelfth International Conference on Learning
Representations.

142

https://arxiv.org/abs/2407.21787

References v

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y.,
Wang, X., Dehghani, M., Brahma, S., Webson, A., Gu, S. S., Dai, Z.,
Suzgun, M., Chen, X., Chowdhery, A., Castro-Ros, A., Pellat, M.,
Robinson, K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V.,
Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean, J., Devlin, J.,
Roberts, A., Zhou, D., Le, Q. V., and Wei, J. (2022).
Scaling instruction-finetuned language models.
https://arxiv.org/abs/2210.11416.
Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L.,
Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., and
Schulman, J. (2021).
Training verifiers to solve math word problems.
https://arxiv.org/abs/2110.14168.

143

https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2110.14168

References vi

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and R’e, C. (2022).
Flashattention: Fast and memory-efficient exact attention with
io-awareness.
ArXiv preprint, abs/2205.14135.
Dohan, D., Xu, W., Lewkowycz, A., Austin, J., Bieber, D., Lopes, R. G.,
Wu, Y., Michalewski, H., Saurous, R. A., Sohl-dickstein, J., Murphy,
K., and Sutton, C. (2022).
Language model cascades.
https://arxiv.org/abs/2207.10342.
Fan, A., Lewis, M., and Dauphin, Y. (2018).
Hierarchical neural story generation.
In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
889–898. Association for Computational Linguistics.

144

https://arxiv.org/abs/2207.10342

References vii

Fedus, W., Zoph, B., and Shazeer, N. (2022).
Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity.
Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L. (2023).
Towards revealing the mystery behind chain of thought: A
theoretical perspective.
In Thirty-seventh Conference on Neural Information Processing
Systems.
Finlayson, M., Hewitt, J., Koller, A., Swayamdipta, S., and
Sabharwal, A. (2024).
Closing the curious case of neural text degeneration.
In The Twelfth International Conference on Learning
Representations.

145

References viii

Freitag, M. and Al-Onaizan, Y. (2017).
Beam search strategies for neural machine translation.
In Proceedings of the First Workshop on Neural Machine
Translation, pages 56–60. Association for Computational
Linguistics.
He, H. (2022).
Making deep learning go brrrr from first principles.
Hewitt, J., Manning, C., and Liang, P. (2022).
Truncation sampling as language model desmoothing.
In Findings of the Association for Computational Linguistics:
EMNLP 2022, pages 3414–3427. Association for Computational
Linguistics.

146

References ix

Hobbhahn, M., Heim, L., and Aydos, G. (2023).
Trends in machine learning hardware.
Accessed: 2024-11-26.
Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. (2020).
The curious case of neural text degeneration.
In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.
Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu, A. W., Song, X., and
Zhou, D. (2024).
Large language models cannot self-correct reasoning yet.
In The Twelfth International Conference on Learning
Representations.

147

References x

Jiang, A. Q., Welleck, S., Zhou, J. P., Lacroix, T., Liu, J., Li, W., Jamnik,
M., Lample, G., and Wu, Y. (2023).
Draft, sketch, and prove: Guiding formal theorem provers with
informal proofs.
In The Eleventh International Conference on Learning
Representations.
Juravsky, J., Brown, B., Ehrlich, R., Fu, D. Y., Ré, C., and Mirhoseini, A.
(2024).
Hydragen: High-throughput llm inference with shared prefixes.
Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B.,
Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D. (2020).
Scaling laws for neural language models.
https://arxiv.org/abs/2001.08361.

148

https://arxiv.org/abs/2001.08361

References xi

Khattab, O., Santhanam, K., Li, X. L., Hall, D. L. W., Liang, P., Potts, C.,
and Zaharia, M. A. (2022).
Demonstrate-search-predict: Composing retrieval and language
models for knowledge-intensive nlp.
ArXiv, abs/2212.14024.
Kim, S., Suk, J., Longpre, S., Lin, B. Y., Shin, J., Welleck, S., Neubig, G.,
Lee, M., Lee, K., and Seo, M. (2024).
Prometheus 2: An open source language model specialized in
evaluating other language models.
https://arxiv.org/abs/2405.01535.
Koh, J. Y., McAleer, S., Fried, D., and Salakhutdinov, R. (2024).
Tree search for language model agents.
arXiv preprint arXiv:2407.01476.

149

https://arxiv.org/abs/2405.01535

References xii

Kudo, T. (2018).
Subword regularization: Improving neural network translation
models with multiple subword candidates.
In Gurevych, I. and Miyao, Y., editors, Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 66–75, Melbourne, Australia.
Association for Computational Linguistics.
Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes, J. D., Singh, A.,
Baumli, K., Iqbal, S., Bishop, C., Roelofs, R., Zhang, L. M., McKinney,
K., Shrivastava, D., Paduraru, C., Tucker, G., Precup, D., Behbahani,
F., and Faust, A. (2024).
Training language models to self-correct via reinforcement
learning.

150

References xiii

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez,
J. E., Zhang, H., and Stoica, I. (2023).
Efficient memory management for large language model serving
with pagedattention.
Li, X. L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.,
Zettlemoyer, L., and Lewis, M. (2023a).
Contrastive decoding: Open-ended text generation as
optimization.
In Rogers, A., Boyd-Graber, J., and Okazaki, N., editors,
Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
12286–12312. Association for Computational Linguistics.

151

References xiv

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R.,
Eccles, T., Keeling, J., Gimeno, F., Lago, A. D., Hubert, T., Choy, P.,
de Masson d’Autume, C., Babuschkin, I., Chen, X., Huang, P.-S.,
Welbl, J., Gowal, S., Cherepanov, A., Molloy, J., Mankowitz, D. J.,
Robson, E. S., Kohli, P., de Freitas, N., Kavukcuoglu, K., and Vinyals,
O. (2022).
Competition-level code generation with alphacode.
Science, 378(6624):1092–1097.
Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., and Chen, W.
(2023b).
Making language models better reasoners with step-aware
verifier.
In Rogers, A., Boyd-Graber, J., and Okazaki, N., editors,
Proceedings of the 61st Annual Meeting of the Association for

152

References xv

Computational Linguistics (Volume 1: Long Papers), pages
5315–5333, Toronto, Canada. Association for Computational
Linguistics.
Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T.,
Leike, J., Schulman, J., Sutskever, I., and Cobbe, K. (2024).
Let’s verify step by step.
In The Twelfth International Conference on Learning
Representations.
Liu, A., Han, X., Wang, Y., Tsvetkov, Y., Choi, Y., and Smith, N. A.
(2024).
Tuning language models by proxy.

153

References xvi

Liu, A., Sap, M., Lu, X., Swayamdipta, S., Bhagavatula, C., Smith,
N. A., and Choi, Y. (2021).
DExperts: Decoding-time controlled text generation with
experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long
Papers), pages 6691–6706. Association for Computational
Linguistics.

154

References xvii

Lu, X., Brahman, F., West, P., Jung, J., Chandu, K., Ravichander, A.,
Ammanabrolu, P., Jiang, L., Ramnath, S., Dziri, N., Fisher, J., Lin, B.,
Hallinan, S., Qin, L., Ren, X., Welleck, S., and Choi, Y. (2023).
Inference-time policy adapters (IPA): Tailoring extreme-scale
LMs without fine-tuning.
In Bouamor, H., Pino, J., and Bali, K., editors, Proceedings of the
2023 Conference on Empirical Methods in Natural Language
Processing, pages 6863–6883. Association for Computational
Linguistics.

155

References xviii

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe,
S., Alon, U., Dziri, N., Prabhumoye, S., Yang, Y., Gupta, S., Majumder,
B. P., Hermann, K., Welleck, S., Yazdanbakhsh, A., and Clark, P.
(2023).
Self-refine: Iterative refinement with self-feedback.
In Thirty-seventh Conference on Neural Information Processing
Systems.
Meister, C., Cotterell, R., and Vieira, T. (2020).
If beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2173–2185.
Association for Computational Linguistics.

156

References xix

Meister, C., Pimentel, T., Wiher, G., and Cotterell, R. (2022).
Locally typical sampling.
Transactions of the Association for Computational Linguistics,
11:102–121.
Meister, C., Pimentel, T., Wiher, G., and Cotterell, R. (2023).
Locally typical sampling.
Transactions of the Association for Computational Linguistics,
11:102–121.
Merrill, W. and Sabharwal, A. (2024).
The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning
Representations.

157

References xx

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C.,
Jain, S., Kosaraju, V., Saunders, W., Jiang, X., Cobbe, K., Eloundou,
T., Krueger, G., Button, K., Knight, M., Chess, B., and Schulman, J.
(2022).
Webgpt: Browser-assisted question-answering with human
feedback.
https://arxiv.org/abs/2112.09332.
Nebius (2024).
Leveraging training and search for better software engineering
agents.
https://nebius.com/blog/posts/
training-and-search-for-software-engineering-agents.

158

https://arxiv.org/abs/2112.09332
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents

References xxi

Nowak, F., Svete, A., Butoi, A., and Cotterell, R. (2024).
On the representational capacity of neural language models
with chain-of-thought reasoning.
In Ku, L.-W., Martins, A., and Srikumar, V., editors, Proceedings of
the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12510–12548, Bangkok,
Thailand. Association for Computational Linguistics.
OpenAI (2024).
Learning to reason with llms.
https://openai.com/index/
learning-to-reason-with-llms/.
Polu, S. and Sutskever, I. (2020).
Generative language modeling for automated theorem proving.

159

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

References xxii

Press, O., Zhang, M., Min, S., Schmidt, L., Smith, N., and Lewis, M.
(2023).
Measuring and narrowing the compositionality gap in language
models.
In Bouamor, H., Pino, J., and Bali, K., editors, Findings of the
Association for Computational Linguistics: EMNLP 2023, pages
5687–5711. Association for Computational Linguistics.
Schlag, I., Sukhbaatar, S., Celikyilmaz, A., tau Yih, W., Weston, J.,
Schmidhuber, J., and Li, X. (2023).
Large language model programs.
https://arxiv.org/abs/2305.05364.
Shazeer, N. (2019).
Fast transformer decoding: One write-head is all you need.

160

https://arxiv.org/abs/2305.05364

References xxiii

Shi, C., Yang, H., Cai, D., Zhang, Z., Wang, Y., Yang, Y., and Lam, W.
(2024).
A thorough examination of decoding methods in the era of
LLMs.
In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N., editors, Proceedings
of the 2024 Conference on Empirical Methods in Natural
Language Processing, pages 8601–8629, Miami, Florida, USA.
Association for Computational Linguistics.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N.,
Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
and Hassabis, D. (2016).

161

References xxiv

Mastering the game of go with deep neural networks and tree
search.
Nature, 529:484–503.
Stahlberg, F. and Byrne, B. (2019).
On nmt search errors and model errors: Cat got your tongue?
ArXiv, abs/1908.10090.
Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R., Voss, C.,
Radford, A., Amodei, D., and Christiano, P. F. (2020).
Learning to summarize with human feedback.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.,
editors, Advances in Neural Information Processing Systems,
volume 33, pages 3008–3021. Curran Associates, Inc.

162

References xxv

Sun, Z., Yu, L., Shen, Y., Liu, W., Yang, Y., Welleck, S., and Gan, C.
(2024).
Easy-to-hard generalization: Scalable alignment beyond human
supervision.
In The Thirty-eighth Annual Conference on Neural Information
Processing Systems.
Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N., Wang, L.,
Creswell, A., Irving, G., and Higgins, I. (2022).
Solving math word problems with process- and outcome-based
feedback.

163

References xxvi

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D., Wu, Y., and
Sui, Z. (2024a).
Math-shepherd: Verify and reinforce LLMs step-by-step without
human annotations.
In Ku, L.-W., Martins, A., and Srikumar, V., editors, Proceedings of
the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9426–9439, Bangkok,
Thailand. Association for Computational Linguistics.
Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi, E. H., Narang, S.,
Chowdhery, A., and Zhou, D. (2023).
Self-consistency improves chain of thought reasoning in
language models.
In The Eleventh International Conference on Learning
Representations.

164

References xxvii

Wang, Y., Wu, Y., Wei, Z., Jegelka, S., and Wang, Y. (2024b).
A theoretical understanding of self-correction through
in-context alignment.
https://arxiv.org/abs/2405.18634.
Wei, J., Wang, X., Schuurmans, D., Bosma, M., brian ichter, Xia, F.,
Chi, E. H., Le, Q. V., and Zhou, D. (2022).
Chain of thought prompting elicits reasoning in large language
models.
In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors,
Advances in Neural Information Processing Systems.

165

https://arxiv.org/abs/2405.18634

References xxviii

Welleck, S., Bertsch, A., Finlayson, M., Schoelkopf, H., Xie, A.,
Neubig, G., Kulikov, I., and Harchaoui, Z. (2024).
From decoding to meta-generation: Inference-time algorithms
for large language models.
https://arxiv.org/abs/2406.16838.
Welleck, S., Kulikov, I., Roller, S., Dinan, E., Cho, K., and Weston, J.
(2020).
Neural text generation with unlikelihood training.
In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

166

https://arxiv.org/abs/2406.16838

References xxix

Welleck, S., Lu, X., West, P., Brahman, F., Shen, T., Khashabi, D., and
Choi, Y. (2023).
Generating sequences by learning to self-correct.
In The Eleventh International Conference on Learning
Representations.
Weston, J. and Sukhbaatar, S. (2023).
System 2 attention (is something you might need too).
Wu, I., Fernandes, P., Bertsch, A., Kim, S., Pakazad, S., and Neubig,
G. (2024a).
Better instruction-following through minimum bayes risk.
https://arxiv.org/abs/2410.02902.

167

https://arxiv.org/abs/2410.02902

References xxx

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. (2024b).
Inference scaling laws: An empirical analysis of
compute-optimal inference for problem-solving with language
models.
https://arxiv.org/abs/2408.00724.
Xia, H., Yang, Z., Dong, Q., Wang, P., Li, Y., Ge, T., Liu, T., Li, W., and
Sui, Z. (2024).
Unlocking efficiency in large language model inference: A
comprehensive survey of speculative decoding.
Zaharia, M., Khattab, O., Chen, L., Davis, J. Q., Miller, H., Potts, C.,
Zou, J., Carbin, M., Frankle, J., Rao, N., and Ghodsi, A. (2024).
The shift from models to compound ai systems.
https://bair.berkeley.edu/blog/2024/02/18/
compound-ai-systems/.

168

https://arxiv.org/abs/2408.00724
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

References xxxi

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Kumar, A., and
Agarwal, R. (2024).
Generative verifiers: Reward modeling as next-token prediction.
Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H., Cao, S.,
Kozyrakis, C., Stoica, I., Gonzalez, J. E., Barrett, C., and Sheng, Y.
(2024).
Sglang: Efficient execution of structured language model
programs.

169

	I. Primitive Generators
	Generating one token at a time
	Decoding as optimization
	Sampling
	Constrained decoding

	Meta-generators
	Efficient meta-generation
	How to speed up sampling a single token?
	How to speed up a single generation?
	How to speed up meta-generation?

	Recap and takeaways
	Appendix
	Code examples

