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I. Primitive Generators

Generating one token at a time



This tutorial

Beyond Decoding: Meta-Generation Algorithms for LLMs

• Primitive Generators
• Meta-generators
• Efficient meta-generation
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Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens p✓[xt | x<t].

Taylor Alison Swift (born December 13, 1989) is
x<t

an
a

the
best
one
…

LM

American
actress
English
actor
award

…

Token-level decoding algorithms are primarily concerned with how
to choose the next token.
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Decoding is search

Each time-step during decoding requires a choice.

Taylor Swift is
the

a

writer

singer

and

song

producer
who

has

is

was.
actress

- song writer

former
contestant

on
the

“ The
of

member

But a search for what? What is our objective? How do we make local
choices that achieve the objective?
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Token-level generation (outline)

Objectives for decoding

• Optimization
• Sampling
• Constrained generation, structured outputs
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I. Primitive Generators

Decoding as optimization



Maximum A Posteriori (MAP)

MAP decoding seeks to find the most likely sequence

argmax
x

p✓[x]

• Greedy decoding
• Beam search
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Greedy decoding

• Choose the most-likely token at each step.

xt = argmax
x

p✓[x | x<t]

• Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swift is a former contestant on
Token prob. 0.023 0.022 0.80 0.0004
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Greedy decoding

• Choose the most-likely token at each step.

xt = argmax
x

p✓[x | x<t]

• Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swift is a former contestant on
Token prob. 0.023 0.022 0.80 0.0004
Non-greedy Taylor Swift is a singer , song
Token prob. 0.012 0.26 0.21 0.0007
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Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.
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Benefits of MAP

MAP decoding works well for closed-ended tasks like translation,
question answering.

[Freitag and Al-Onaizan, 2017] [Shi et al., 2024]
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Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]
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Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

GPT2, Beam size 32.
Taylor Alison Swift (born December 13, 1989) is an American
singer-songwriter, singer-songwriter, songwriter, and song-
writer. She is best known for her work as a singer-song-
writer, songwriter-songwriter, songwriter-songwriter, song-
writer-songwriter…

Remedies:
• repetition penalty
• unlikelihood training [Welleck et al., 2020]
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Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

Pr[Taylor Swift is <eos>] > Pr[Taylor Swift is an American singer-…]

Remedy: length normalization
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Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

• Biased coin Pr[ H ] = 0.6, Pr[ T ] = 0.4.
• Most likely outcome from 100 flips is all heads

H H H H H H H H H H …

• But this outcome is atypical.
• Similarly, the most likely generation may also be atypical.

Remedy to all of the above: sampling
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Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

Takeaway: Approximate MAP (e.g., narrow beam search) works better
than exact MAP [Meister et al., 2020].
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I. Primitive Generators

Sampling



Objective: Sampling

Modern LLM APIs like Together.AI
offer settings for sampling.

Together.ai playground.
27



Ancestral sampling

• y1 ⇠ p✓(· | x)
• y2 ⇠ p✓(· | x, y1)
• y3 ⇠ p✓(· | x, y2, y3)
• …

Ancestral sampling is equivalent to sequence sampling.

p✓(y) = p✓(y1)p✓(y2 | y1)p✓(y3 | y1y2) . . .p✓(yT | y<T)
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What is wrong with ancestral sampling?

• Greedy decoding causes repetition traps

• But ancestral sampling causes incoherence. Why?
• Low-probability tokens are too likely
• I.e., the distribution has a heavy tail.
• Solution: chop off the tail!

Greedy
(repetition trap)
Taylor Swift is a former contestant on the
reality show … “I think it’s a very sad day
for the show,” he said. “It’s a very sad day
for the show. It’s a very sad day for the
show. It’s a very sad …
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• But ancestral sampling causes incoherence. Why?
• Low-probability tokens are too likely
• I.e., the distribution has a heavy tail.

• Solution: chop off the tail!

Greedy Ancestral
(repetition trap) (incoherent)
Taylor Swift is a former contestant on the
reality show … “I think it’s a very sad day
for the show,” he said. “It’s a very sad day
for the show. It’s a very sad day for the
show. It’s a very sad …

Taylor Swift is a huge fan of her latest
album ‘Famous.’ The singer got her first
reaction when she uploaded to Twitter a
video of her dancing and singing at a re-
ception for a Grammy-nominated female
songstress, Beyoncé.
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What is wrong with ancestral sampling?

• Greedy decoding causes repetition traps
• But ancestral sampling causes incoherence. Why?
• Low-probability tokens are too likely
• I.e., the distribution has a heavy tail.
• Solution: chop off the tail!

Greedy Ancestral Top-k
(repetition trap) (incoherent) (acceptable)
Taylor Swift is a former contestant on the
reality show … “I think it’s a very sad day
for the show,” he said. “It’s a very sad day
for the show. It’s a very sad day for the
show. It’s a very sad …

Taylor Swift is a huge fan of her latest
album ‘Famous.’ The singer got her first
reaction when she uploaded to Twitter a
video of her dancing and singing at a re-
ception for a Grammy-nominated female
songstress, Beyoncé.

Taylor Swift is a writer for IGN and a mem-
ber of IGN’s Television Critics Association.
You can follow her on Twitter at @_MsS-
wift, IGN at MsSwiftIGN, Facebook at MrsS-
wift, or subscribe to her video channels.
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Truncation sampling

Truncation sampling interpolates greedy and ancestral sampling by
choosing a minimum probability threshold at each time step.

Method Threshold strategy

Top-k Sample from k-most-probable
Top-p Cumulative probability at most p
✏ Probability at least ✏
⌘ Min prob. proportional to entropy
Min-p Prob. at least pmin scaled by max token prob.

30



Truncation sampling

','
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' is'
' ('
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Temperature Sampling

Instead of truncating the tail, make the distribution more “peaked”.

softmax(x, ⌧) = exp(x/⌧)P
i exp(xi/⌧)

Temperature Parameter Pro Con

High ⌧ � 1 Diverse Incoherent
Low ⌧ < 1 Coherent Repetitive

32



Temperature Sampling

Taylor Swift is… softmax(x/⌧)

0 0.4 0.8

' a'
' the'
' an'

' not'
' one'

' back'
' in'

' currently'
' on'

' also'
' now'

' still'
' known'

' set'
' no'

' doing'
' out'

' coming'
' going'

' playing'

Probability

⌧ = 0.5
(peaked)

0 0.4 0.8
Probability

⌧ = 1
(unaltered)

0 0.4 0.8
Probability

⌧ = 2
(near uniform)
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Sampling implementations
1 probs = model(sequence)
2
3 # Greedy
4 indices, weights = probs.argmax(keepdim=True), None
5
6 # Ancestral
7 indices, weights = vocab_size, probs
8
9 # Top-k
10 topk = probs.topk(k)
11 indices, weights = topk.indices, topk.values
12
13 # Top-p
14 argsort = probs.argsort(descending=True)
15 top_p = (argsort.values.cumsum() < p).sum() + 1
16 indices, weights = argsort.indices[:top_p], argsort.values[:top_p]
17
18 # Epsilon
19 indices, weights = vocab_size, probs * (probs > epsilon)
20
21 # Temperature
22 indices, weights = vocab_size, (logits / temp).softmax(-1)
23
24 # Sample
25 next_token = random.choices(indices, weights=weights, k=1) 34



Batteries-included inference frameworks

1 # vLLM
2 from vllm import LLM, SamplingParams
3 llm = LLM(model="facebook/opt-125m")
4 prompts = ["Hello, my name is"]
5 sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
6 outputs = llm.generate(prompts, sampling_params)
7
8 # Huggingface
9 from transformers import AutoModelForCausalLM, AutoTokenizer
10 model = AutoModelForCausalLM.from_pretrained("gpt2")
11 tokenizer = AutoTokenizer.from_pretrained("gpt2")
12 text = "Hello, my name is"
13 tokens = tokenizer(text, return_tensors="pt")
14 output = model(**tokens).generate(
15 temperature=0.8, top_p=0.95, do_sample=True
16 )

35



Why are next-token distributions heavy-tailed?

• Under-training

• Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

• By design low-rank constraints on the LLM
outputs [Finlayson et al., 2024].

Rembed Rvocabunembed
�vocab

softmax
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Sampling adapters

A sampling adapter takes a token distribution p✓(· | x) and re-adjusts
the probabilities.

• Truncation and temperature are adapters.

• Contrastive decoding [Li et al., 2023a, Liu et al., 2021]

p(· | x) / pexpert(· | x)
pantiexpert(· | x)

• Many others
Method Purpose Adapter

Ancestral sampling y ⇠ p✓ –
Temperature sampling [Ackley et al., 1985] y ⇠ q(p✓) Rescale
Greedy decoding y  max p✓ Argmax (temperature! 0)
Top-k sampling [Fan et al., 2018] y ⇠ q(p✓) Truncation (top-k)
Nucleus sampling [Holtzman et al., 2020] y ⇠ q(p✓) Truncation (cumulative prob.)
Typical sampling [Meister et al., 2023] y ⇠ q(p✓) Truncation (entropy)
Epsilon sampling [Hewitt et al., 2022] y ⇠ q(p✓) Truncation (probability)
⌘ sampling [Hewitt et al., 2022] y ⇠ q(p✓) Truncation (prob. and entropy)
Mirostat decoding [Basu et al., 2021] Target perplexity Truncation (adaptive top-k)
Basis-aware sampling [Finlayson et al., 2024] y ⇠ q(p✓) Truncation (linear program)
Contrastive decoding [Li et al., 2023a] y ⇠ q(p✓) log p✓0 � log p✓ and truncation
DExperts [Liu et al., 2021] y ⇠ q⇤(·|x, c) / p✓ · (p✓+/p✓�)↵

Inference-time adapters [Lu et al., 2023] y ⇠ q⇤ / r(y) / (p✓ · p✓0)↵

Proxy tuning [Liu et al., 2024] y ⇠ q⇤(·|x, c) / p✓ · (p✓+/p✓�)↵
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I. Primitive Generators

Constrained decoding



Constrained decoding

Embedding LLMs in larger systems requires that they can
communicate with the larger system, e.g., with JSON.

Can we force LLMs to generate structured outputs?

From OpenAI Playground. 38



Worked example: decoding valid JSON

Language models can stuggle with controlled and structured
generation. Prompt:

Key Type
name string
birth year int

Format the following information using the JSON schema:
”Taylor Swift was born December 13, 1989.”

LLM:
{"name": "Taylor Swift", "birth": "1998-12-
13T01:00:00Z", "age…

The LLM output does not match the JSON schema.

39



Worked example: decoding valid JSON

Language models can stuggle with controlled and structured
generation. Prompt:

Key Type
name string
birth year int

Format the following information using the JSON schema:
”Taylor Swift was born December 13, 1989.”

LLM:
{"name": "Taylor Swift", "birth": "1998-12-
13T01:00:00Z", "age…

The LLM output does not match the JSON schema.
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Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
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Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.

2. Filter the next-token distribution for valid tokens.
GPT2:
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Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:

Token Prob.
\n 0.36
" 0.16
{ 0.026
https 0.025
… …

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{

Token Prob.
name 0.31
date 0.069
" 0.039
id 0.033
… …
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Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "

Token Prob.
Taylor 0.85
T 0.034
S 0.024
The 0.022
… …
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Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift

Token Prob.
", 0.85
," 0.034
" 0.024
, 0.022
… …
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Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year":

Token Prob.
" 0.46
int 0.041
' 0.026
1989 0.020
… …
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Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year": 1989

Token Prob.
, 0.39
} 0.34
}, 0.11
} 0.082
… …

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2
"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year": 1989}

40



Side effects of templated/constrained decoding

• Generation speedup
• Reduced performance
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Token healing

• Templated generation can force unnatural token boundaries

The url is http:

//
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http

://

Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].
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Token healing

• Templated generation can force unnatural token boundaries

The url is http: //
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http://
Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].
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Summary

• Two views of decoding: optimization, sampling
• The diversity-coherence trade-off
• Constrained decoding enforces structure on LLM outputs

These are the building blocks of modern LLM generation methods.
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