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Efficient meta-generation




Efficiency | goals

Scope:

- Basics of efficient generation
- How can we make meta-generation faster?
- Which specific meta-generators are most efficient?
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Efficiency | basics

How do we measure “efficiency”?

- Latency
- How long does a user wait for a response?
- Throughput
- How many requests are completed per second?
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Efficiency | basics

Quah‘tl/

Lo\'te_nct/é > Thr*oughpu't

Latency, Throughput, and Quality often trade off at a given budget.
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Efficiency | hardware

Hardware improvements have driven model improvements %'
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The largest efficiency wins come from mapping operations onto
hardware (more) effectively!

ZFigure: [Hobbhahn et al., 2023] 102



Efficiency | hardware

How do ML accelerator designs impact generation efficiency?

- How much data can we keep on-device?
- VRAM (GB)

- How many operations/second can the device perform?
- FLOP/s

- How long does it take to send operands from GPU memory
(HBM) to the processor?

- Memory Bandwidth (GB/s)
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Efficiency | bottlenecks

- Loading inputs (activations) from memory
- Memory Bandwidth
- Loading weights from memory
- Memory Bandwidth
- Performing computation
- FLOP/s
- Communicating across devices
- Communication Speeds (GB/s)
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Efficiency | bottlenecks

Time per operation can be modeled as?:

) (Operation FLOP  Data Transferred (GB) >
Time = max

Device FLOP/s * Memory Bandwidth (GB/s)

Operations are either “compute-bound” or “memory-bound”??

22[He, 2022]
ZH100 SXM: BF16 dense tensor core max FLOP/s & 1 x 10" FLOP/s, Memory bandwidth
~ 3.35 x 10" byte/s. > 100 FLOP/byte is “free”!
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Efficiency | batching

wmem-bound compute-bound

time

e

drodel x d_F b dmodel dmodel x d 6%

Inputs to a model can be “batched”
together and computed batch size
simultaneously.

Batching can be cost-free for
memory-bound operations!®

Ahttps://www.artfintel.com/p/how-does-

batching-work-on-modern TG



Efficiency | KV cache

(e )

(e )

Softmax(QK™T)

[ ]

(e )

(e )

=
Prefill Stage: process prompt all at Decode Stage: use cached KV values
once. Keys and values retained and to compute attention for current
initialize the “KV Cache”, timestep. Append new K, V to KV cache

Size = (batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)
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Efficient meta-generation

How to speed up sampling a single
token?



Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

- Memory Bandwidth |
- FLOP/s t
- FLOP |
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Efficiency | single-token

Memory Bandwidth |: reduce data transferred
- Quantize weights or activations®

(bytes per parameter) - (total parameters)

INT4 [o] [¢] [] [e] [e] [o] [] []
- Compress or distill model

(bytes per parameter) - (total parameters)

24\/isual from

. . L 109
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization



Efficiency | single-token

FLOP/s 1: improve hardware utilization

(FLOP per second) - (total operation FLOP)

: 19TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)

:12.8 GB/s
(>1TB)
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PyTorch FlashAttention

Flash Attention [Dao et al., 2022] performs the same operations, but
optimizes the implementation to achieve far greater speed
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Efficiency | single-token

FLOP |: reduce operations required

(FLOP per second) - (total operation FLOP)
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Mixture-of-Experts models use fewer FLOP per token than equi-parameter
dense models [Fedus et al., 2022] m



Efficient meta-generation

How to speed up a single generation?



Efficiency | single-generation

Generation of long outputs is bottlenecked by sequential next-token
prediction. But not all tokens are created equal!

... The cow jumped over the moon . <EOS>

How can we spend less time on “easier” tokens?
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Efficiency | single-generation

Decoding is typically memory-bound.

[ SR SR SR ( Verify in Par‘allel
Autoregressive : “\T “\f “\T
Decoding A A 1
£ fF T f 1 ‘ Efficiently Draftid,

=0 X O0#0

Speculative decoding uses a smaller draft model to produce “guesses” for
the next N tokens cheaply, which are then “accepted” or “rejected” in parallel
by the main model [Xia et al., 2024]
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Efficiency | single-generation

In speculative decoding:

- A lighter-weight draft model generates N “proposal” tokens

- These N “proposal” tokens can be passed in parallel into the
main generator

- All tokens which match the main generator’s predictions are
retained, and ones that do not are discarded
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Efficiency | single-generation
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Speculative decoding can harm throughput at low context but improves both
throughput and latency at long context lengths [Chen et al., 2024a]
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Efficient meta-generation

How to speed up meta-generation?



Efficiency | meta-generators

- How do meta-generators interact with real-world efficiency and
hardware utilization?

- Which meta-generators are the fastest? Can we design more
efficient meta-generators?
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Efficiency | meta-generators | KV Cache reuse

Shared Prefix Unique Suffixes
You are ChatGPT, a large language model [ , can you write a...]
trained by OpenAI, based on the GPT-4
architecture.
Knowledge cutoff: 2023-04 [Tell me a funny.. ]
Current date: 2023-11-16

>
Image input capabilities: Enabled [Who 15 Alam Wi ]
When you send a message containing [Debug this Python. . ]
Python code to python, it will be
executed in a stateful Jupyter notebook
enrivonment. Python will respond... [Ignore all previous...]

Shared Prefix Setting

Common deployment and parallel generation scenarios have redundant
shared prefix content in prompts®

SFigure from [Juravsky et al., 2024]
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Efficiency | meta-generators | KV Cache reuse

Physical KV blocks

Block 0
Ref count: 2 — 1
Sample Sample
Al 4Block years | ago our |mothers) A2

Logical KV blocks ‘," Block2 (Copy-on-write Logical KV blocks

Block 0 | Four | score | and | seven |/ .Block 3 years | ago our | fathers | \Block 0 | Four | score | and | seven

Block 1 | years | ago our | fathers { Block 4 Block 1 | years | ago our he

Block 5

Block 6

Block 7 | Four | score | and | seven

Block 8

PagedAttention [Kwon et al., 2023] prevents redundant storage costs by
mapping KV cache blocks to physical “pages” of VRAM
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Efficiency | meta-generators | KV cache reuse

KV Cache reuse is not limited to single-level shared prefixes!

)

Q1: Write a python
program that reads
from...

Q3: Write a python
program that
uses....

Al: x = int(input()) ...
Q2: Write a python

program that
calculates...

Q3: Write a python
program that
prints....

A2: def solve(): ...

—

Multiple levels of prefix sharing can arise frequently: for example, combining
a long few-shot prompt with Best-of-N generation?®

. 119
26Figure from [Juravsky et al., 2024]



Efficiency | meta-generators | KV Cache reuse

o @

@]

You are a helpful assistant.
User: Hello!
Assistant: Hil

You are a helpful assistant.
User: Hello!
Assistant: Hit

User: Solve this problem ..

Assistant: Sure!

(s)

You are a helpful assistant.

User: What can you do?
Assistant: | can

User: Hello!
Assistant: Hil

User: Solve this question. User: Wite a story
Assistant: Sure! .

Assistant: Sure ...

RadixAttention enables complex prefix sharing patterns [Zheng et al., 2024],
evicting least-recently-used KV cache blocks from memory when needed
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Efficiency | meta-generators | KV Cache reuse
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Hydragen [Juravsky et al., 2024] makes shared-prefix attention components

faster via leveraging Tensor Cores -



Efficiency | meta-generators | KV Cache compression

KV Cache size is a key bottleneck to larger batches and to longer
context inference

- Token Dropping: Selectively remove tokens from the KV Cache
- Quantization: Modify KV Cache datatype

- Architectural Modification: Reduce inherent size of a
prospective model’s KV Cache
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Efficiency | meta-generators | KV Cache compression

Token Dropping

(batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)

New Tokens

o
[l ] ¢ ]

3

3
o o o o [ o )
IB@E000 0000D0o
EE0000 000ocoo
BO0000 0D0OCoO

3

3

S D () QS (s e )

An overview of approaches to control KV Cache size via token dropping
[Adams et al., 2024]
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Efficiency | meta-generators | KV Cache compression

Quantization:

(batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)

INT4 (o] (o] [] [e] [¢] [¢] [ ][]

As with model weights, elements of the KV cache can be quantized to reduce
memory overheads
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Efficiency | meta-generators | KV Cache compression

Architectural Modification:

(batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)

Multi-head Grouped-query Multi-query

Val

- 00000000 DO Q0 I

Architectural tweaks such as Multi-Query Attention [Shazeer, 2019] or
Grouped-Query Attention [Ainslie et al., 2023] reduce the number of Key +
Value attention heads to shrink the required KV Cache size
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Efficiency | meta-generators | recap

Which meta-generators are most efficient?

- Parallelizable: trajectories can be run in parallel; not
sequentially bottlenecked

- Prefix-shareable: long inputs are presented as identical shared
prefix content, whose KV Caches can be reused across many
model calls

Token budget is not the only indicator of meta-generator efficiency!

126



References i

@ Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985).
A learning algorithm for boltzmann machines.
Cognitive Science, 9(1):147-169.

W Adams, G, Ladhak, F, Schoelkopf, H., and Biswas, R. (2024).
Cold compress: A toolkit for benchmarking kv cache
compression approaches.

@ Aggarwal, P, Parno, B, and Welleck, S. (2024).
Alphaverus: Bootstrapping formally verified code generation
through self-improving translation and treefinement.
https://arxiv.org/abs/2412.06176.

139


https://arxiv.org/abs/2412.06176

References ii

[@ Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebron, F,
and Sanghai, S. (2023).
Gga: Training generalized multi-query transformer models from
multi-head checkpoints.

@ Ankner, Z, Paul, M., Cui, B, Chang, J. D., and Ammanabrolu, P.
(2024).
Critique-out-loud reward models.

[§ Asai, A, Hex, )., Shao=, R, Shi, W, Singh, A, Chang, J. C, Lo, K.,
Soldaini, L., Feldman, Tian, S., Mike, D., Wadden, D., Latzke, M.,
Minyang, Ji, P, Liu, S., Tong, H., Wu, B., Xiong, Y., Zettlemoyer, L.,
Weld, D., Neubig, G., Downey, D., Yih, W-t,, Koh, P. W., and
Hajishirzi, H. (2024).

OpenScholar: Synthesizing scientific literature with
retrieval-augmented language models.

140



References iii

Arxiv.

[§ Basu, S, Ramachandran, G. S., Keskar, N. S., and Varshney, L. R.
(2021).
Mirostat: a neural text decoding algorithm that directly controls
perplexity.
In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

@ Bertsch, A, Xie, A, Neubig, G., and Gormley, M. (2023).
It's MBR all the way down: Modern generation techniques
through the lens of minimum Bayes risk.
In Elazar, Y, Ettinger, A, Kassner, N., Ruder, S, and A. Smith, N,
editors, Proceedings of the Big Picture Workshop, pages 108122,
Singapore. Association for Computational Linguistics.

141



References iv

[3 Brown, B, Juravsky, J, Ehrlich, R, Clark, R, Le, Q. V., Ré, C., and
Mirhoseini, A. (2024).
Large language monkeys: Scaling inference compute with
repeated sampling.
https://arxiv.org/abs/2407.21787.

[§ Chen, J, Tiwari, V., Sadhukhan, R, Chen, Z., Shi, J,, Yen, I. E-H., and
Chen, B. (2024a).
Magicdec: Breaking the latency-throughput tradeoff for long
context generation with speculative decoding.

[§ Chen, X, Lin, M., Schérli, N., and Zhou, D. (2024b).
Teaching large language models to self-debug.
In The Twelfth International Conference on Learning
Representations.

142


https://arxiv.org/abs/2407.21787

References v

& Chung, H. W., Hou, L., Longpre, S., Zoph, B,, Tay, Y., Fedus, W., Li, Y.,
Wang, X, Dehghani, M., Brahma, S., Webson, A, Gu, S. S, Dai, Z,
Suzgun, M., Chen, X., Chowdhery, A, Castro-Ros, A, Pellat, M.,
Robinson, K, Valter, D., Narang, S., Mishra, G., Yu, A, Zhao, V,
Huang, Y, Dai, A, Yu, H., Petrov, S., Chi, E. H., Dean, J., Devlin, |,
Roberts, A, Zhou, D, Le, Q. V., and Wei, J. (2022).

Scaling instruction-finetuned language models.
https://arxiv.org/abs/2210.11416.

W Cobbe, K, Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L.,
Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., and
Schulman, J. (2021).

Training verifiers to solve math word problems.
https://arxiv.org/abs/2110.14168.

143


https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2110.14168

References vi

[ Dao, T, Fu, D.Y, Ermon, S, Rudra, A, and R'e, C. (2022).
Flashattention: Fast and memory-efficient exact attention with
io-awareness.

ArXiv preprint, abs/220514135.

[@ Dohan, D, Xu, W., Lewkowycz, A, Austin, J., Bieber, D., Lopes, R. G.,
Wu, Y., Michalewski, H., Saurous, R. A, Sohl-dickstein, J., Murphy,
K., and Sutton, C. (2022).
Language model cascades.
https://arxiv.org/abs/2207.10342.

[d Fan, A, Lewis, M., and Dauphin, Y. (2018).
Hierarchical neural story generation.
In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
889-898. Association for Computational Linguistics.

144


https://arxiv.org/abs/2207.10342

References vii

[@ Fedus, W, Zoph, B., and Shazeer, N. (2022).
Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity.

[@ Feng, G, Zhang, B, Gu, Y, Ye, H., He, D., and Wang, L. (2023).
Towards revealing the mystery behind chain of thought: A
theoretical perspective.

In Thirty-seventh Conference on Neural Information Processing
Systems.

[@ Finlayson, M., Hewitt, J., Koller, A, Swayamdipta, S., and
Sabharwal, A. (2024).
Closing the curious case of neural text degeneration.
In The Twelfth International Conference on Learning
Representations.

145



References viii

[@ Freitag, M. and Al-Onaizan, Y. (2017).
Beam search strategies for neural machine translation.
In Proceedings of the First Workshop on Neural Machine
Translation, pages 56-60. Association for Computational
Linguistics.
[ He, H. (2022).
Making deep learning go brrrr from first principles.
[3 Hewitt, J, Manning, C., and Liang, P. (2022).
Truncation sampling as language model desmoothing.
In Findings of the Association for Computational Linguistics:

EMNLP 2022, pages 3414-3427. Association for Computational
Linguistics.

146



References ix

3 Hobbhahn, M., Heim, L., and Aydos, G. (2023).
Trends in machine learning hardware.
Accessed: 2024-11-26.

[3 Holtzman, A, Buys, )., Du, L., Forbes, M., and Choi, Y. (2020).
The curious case of neural text degeneration.
In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

[@ Huang, ). Chen, X, Mishra, S.,, Zheng, H. S., Yu, A. W., Song, X, and
Zhou, D. (2024).
Large language models cannot self-correct reasoning yet.
In The Twelfth International Conference on Learning
Representations.

147



References x

@ Jiang, A. Q. Welleck, S., Zhou, J. P, Lacroix, T, Liu, J., Li, W., Jamnik,
M., Lample, G., and Wu, Y. (2023).
Draft, sketch, and prove: Guiding formal theorem provers with
informal proofs.
In The Eleventh International Conference on Learning
Representations.

E Juravsky, J., Brown, B., Ehrlich, R, Fu, D. Y, Ré, C,, and Mirhoseini, A.
(2024).
Hydragen: High-throughput llm inference with shared prefixes.

@ Kaplan, J., McCandlish, S., Henighan, T, Brown, T. B., Chess, B,
Child, R., Gray, S., Radford, A, Wu, J., and Amodei, D. (2020).
Scaling laws for neural language models.
https://arxiv.org/abs/2001.08361.

148


https://arxiv.org/abs/2001.08361

References xi

[§ Khattab, 0, Santhanam, K, Li, X. L, Hall, D. L. W,, Liang, P, Potts, C,,
and Zaharia, M. A. (2022).
Demonstrate-search-predict: Composing retrieval and language
models for knowledge-intensive nlp.
ArXiv, abs/221214024.

@ Kim, S., Suk, J., Longpre, S, Lin, B. Y., Shin, J., Welleck, S., Neubig, G.,
Lee, M, Lee, K, and Seo, M. (2024).
Prometheus 2: An open source language model specialized in
evaluating other language models.
https://arxiv.org/abs/2405.01535.

3 Koh, .Y, McAleer, S., Fried, D., and Salakhutdinov, R. (2024).
Tree search for language model agents.
arXiv preprint arXiv:2407.01476.

149


https://arxiv.org/abs/2405.01535

References xii

[{ Kudo, T. (2018).
Subword regularization: Improving neural network translation
models with multiple subword candidates.
In Gurevych, I. and Miyao, Y., editors, Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 66-75, Melbourne, Australia.
Association for Computational Linguistics.

@ Kumar, A, Zhuang, V., Agarwal, R, Su, Y., Co-Reyes, J. D., Singh, A,,
Baumli, K., Igbal, S., Bishop, C,, Roelofs, R., Zhang, L. M., McKinney,
K., Shrivastava, D., Paduraru, C., Tucker, G., Precup, D., Behbahani,
F., and Faust, A. (2024).
Training language models to self-correct via reinforcement
learning.

150



References xiii

@ Kwon, W, Li, Z, Zhuang, S., Sheng, Y, Zheng, L., Yu, C. H., Gonzalez,
J. E, Zhang, H., and Stoica, I. (2023).
Efficient memory management for large language model serving
with pagedattention.

[@ Li X L, Holtzman, A, Fried, D., Liang, P, Eisner, )., Hashimoto, T,,
Zettlemoyer, L, and Lewis, M. (2023a).
Contrastive decoding: Open-ended text generation as
optimization.
In Rogers, A, Boyd-Graber, )., and Okazaki, N., editors,
Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
12286-12312. Association for Computational Linguistics.

151



References xiv

& Li Y, Choi, D, Chung, J., Kushman, N., Schrittwieser, J., Leblond, R,
Eccles, T, Keeling, J., Gimeno, F, Lago, A. D., Hubert, T,, Choy, P,
de Masson d'Autume, C.,, Babuschkin, I, Chen, X, Huang, P-S,,
Welbl, J., Gowal, S., Cherepanoy, A, Molloy, J., Mankowitz, D. J.,
Robson, E. S, Kohli, P, de Freitas, N., Kavukcuoglu, K., and Vinyals,
0. (2022).
Competition-level code generation with alphacode.
Science, 378(6624):1092-1097.

@ LY, Lin, Z, Zhang, S. Fu, Q, Chen, B, Lou, J.-G., and Chen, W.
(2023b).
Making language models better reasoners with step-aware
verifier.
In Rogers, A.,, Boyd-Graber, J., and Okazaki, N., editors,
Proceedings of the 61st Annual Meeting of the Association for

152



References xv

Computational Linguistics (Volume 1: Long Papers), pages
5315-5333, Toronto, Canada. Association for Computational
Linguistics.

E Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B, Lee, T,
Leike, J., Schulman, J., Sutskever, I, and Cobbe, K. (2024).
Let's verify step by step.
In The Twelfth International Conference on Learning
Representations.

@ Liu, A, Han, X, Wang, Y., Tsvetkov, Y., Choi, Y, and Smith, N. A.
(2024).
Tuning language models by proxy.

153



References xvi

[@ Liu, A, Sap, M, Lu, X, Swayamdipta, S., Bhagavatula, C., Smith,
N. A, and Choi, Y. (2021).
DExperts: Decoding-time controlled text generation with
experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long
Papers), pages 6691-6706. Association for Computational
Linguistics.

154



References xvii

[@ Lu, X, Brahman, F, West, P, Jung, J., Chandu, K, Ravichander, A.,
Ammanabrolu, P, Jiang, L., Ramnath, S., Dziri, N., Fisher, J., Lin, B,
Hallinan, S., Qin, L, Ren, X, Welleck, S., and Choi, Y. (2023).
Inference-time policy adapters (IPA): Tailoring extreme-scale
LMs without fine-tuning.

In Bouamor, H., Pino, J,, and Bali, K., editors, Proceedings of the
2023 Conference on Empirical Methods in Natural Language
Processing, pages 6863-6883. Association for Computational
Linguistics.

155



References xviii

[ Madaan, A, Tandon, N, Gupta, P, Hallinan, S., Gao, L., Wiegreffe,
S., Alon, U, Dziri, N., Prabhumoye, S, Yang, Y., Gupta, S., Majumder,
B. P, Hermann, K., Welleck, S., Yazdanbakhsh, A., and Clark, P.
(2023).
Self-refine: Iterative refinement with self-feedback.
In Thirty-seventh Conference on Neural Information Processing
Systems.

[§ Meister, C, Cotterell, R, and Vieira, T. (2020).
If beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2173-2185.
Association for Computational Linguistics.

156



References xix

[§ Meister, C, Pimentel, T, Wiher, G., and Cotterell, R. (2022).
Locally typical sampling.
Transactions of the Association for Computational Linguistics,
11:102-121.

[§ Meister, C, Pimentel, T, Wiher, G, and Cotterell, R. (2023).
Locally typical sampling.
Transactions of the Association for Computational Linguistics,
11:102-121.

8 Merrill, W. and Sabharwal, A. (2024).
The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning
Representations.

157



References xx

[ Nakano, R, Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C,, Hesse, C,
Jain, S., Kosaraju, V., Saunders, W., Jiang, X., Cobbe, K., Eloundou,
T, Krueger, G., Button, K., Knight, M., Chess, B., and Schulman, J.
(2022).
Webgpt: Browser-assisted question-answering with human
feedback.
https://arxiv.org/abs/2112.09332.

[§ Nebius (2024).
Leveraging training and search for better software engineering
agents.
https://nebius.com/blog/posts/
training-and-search-for-software-engineering-agents.

158


https://arxiv.org/abs/2112.09332
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents

References xxi

[ Nowak, F, Svete, A, Butoi, A, and Cotterell, R. (2024).
On the representational capacity of neural language models
with chain-of-thought reasoning.
In Ku, L-W., Martins, A, and Srikumar, V., editors, Proceedings of
the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12510-12548, Bangkok,
Thailand. Association for Computational Linguistics.

[3 OpenAl (2024).
Learning to reason with llms.
https://openai.com/index/
learning-to-reason-with-1lms/.

[§ Polu, S. and Sutskever, 1. (2020).
Generative language modeling for automated theorem proving.

159


https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

References xxii

[@ Press, O, Zhang, M., Min, S., Schmidt, L., Smith, N., and Lewis, M.
(2023).
Measuring and narrowing the compositionality gap in language
models.
In Bouamor, H., Pino, J., and Bali, K., editors, Findings of the
Association for Computational Linguistics: EMNLP 2023, pages
5687-5711. Association for Computational Linguistics.

@ Schlag, I, Sukhbaatar, S., Celikyilmaz, A, tau Yih, W., Weston, .,
Schmidhuber, )., and Li, X. (2023).
Large language model programs.
https://arxiv.org/abs/2305.05364.

[§ Shazeer, N.(2019).
Fast transformer decoding: One write-head is all you need.

160


https://arxiv.org/abs/2305.05364

References xxiii

@ shi, C, Yang, H., Cai, D, Zhang, Z, Wang, Y., Yang, Y., and Lam, W.
(2024).
A thorough examination of decoding methods in the era of
LLMs.
In Al-Onaizan, Y, Bansal, M., and Chen, Y.-N,, editors, Proceedings
of the 2024 Conference on Empirical Methods in Natural
Language Processing, pages 8601-8629, Miami, Florida, USA.
Association for Computational Linguistics.

& Silver, D, Huang, A, Maddison, C. J,, Guez, A, Sifre, L., van den
Driessche, G., Schrittwieser, )., Antonoglou, I, Panneershelvam, V.,
Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N.,
Sutskever, |, Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T,
and Hassabis, D. (2016).

161



References xxiv

Mastering the game of go with deep neural networks and tree
search.
Nature, 529:484-503.

[@ stahlberg, F. and Byrne, B. (2019).
On nmt search errors and model errors: Cat got your tongue?
ArXiv, abs/1908.10090.

[ Stiennon, N, Ouyang, L., Wu, J., Ziegler, D., Lowe, R, Voss, C,,
Radford, A, Amodei, D., and Christiano, P. F. (2020).
Learning to summarize with human feedback.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.,
editors, Advances in Neural Information Processing Systems,
volume 33, pages 3008-3021. Curran Associates, Inc.

162



References xxv

@ sun,z,Yu L, Shen, Y, Liu, W, Yang, Y. Welleck, S., and Gan, C.
(2024).
Easy-to-hard generalization: Scalable alignment beyond human
supervision.
In The Thirty-eighth Annual Conference on Neural Information
Processing Systems.

[§ Uesato, J, Kushman, N, Kumar, R, Song, F, Siegel, N., Wang, L,
Creswell, A, Irving, G., and Higgins, I. (2022).
Solving math word problems with process- and outcome-based
feedback.

163



References xxvi

E Wang, P, Li, L, Shao, Z,, Xu, R,, Dai, D,, Li, Y, Chen, D., Wu, Y., and
Sui, Z. (2024a).
Math-shepherd: Verify and reinforce LLMs step-by-step without
human annotations.
In Ku, L-W., Martins, A, and Srikumar, V., editors, Proceedings of
the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9426-9439, Bangkok,
Thailand. Association for Computational Linguistics.

E Wang, X, Wei, ., Schuurmans, D., Le, Q. V,, Chi, E. H,, Narang, S,
Chowdhery, A, and Zhou, D. (2023).
Self-consistency improves chain of thought reasoning in
language models.
In The Eleventh International Conference on Learning
Representations.

164



References xxvii

@ wang, Y, Wu, Y, Wei, Z, Jegelka, S., and Wang, Y. (2024b).
A theoretical understanding of self-correction through
in-context alignment.
https://arxiv.org/abs/2405.18634.

@ Wei, J., Wang, X., Schuurmans, D., Bosma, M., brian ichter, Xia, F,
Chi, E. H., Le, Q. V., and Zhou, D. (2022).

Chain of thought prompting elicits reasoning in large language
models.

In Oh, A. H., Agarwal, A, Belgrave, D., and Cho, K, editors,
Advances in Neural Information Processing Systems.

165


https://arxiv.org/abs/2405.18634

References xxviii

6 Welleck, S, Bertsch, A, Finlayson, M., Schoelkopf, H., Xie, A,
Neubig, G., Kulikov, I, and Harchaoui, Z. (2024).
From decoding to meta-generation: Inference-time algorithms
for large language models.
https://arxiv.org/abs/2406.16838.

6 welleck, S, Kulikov, I, Roller, S, Dinan, E., Cho, K., and Weston, |.
(2020).
Neural text generation with unlikelihood training.
In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

166


https://arxiv.org/abs/2406.16838

References xxix

@ Welleck, S., Lu, X., West, P, Brahman, F, Shen, T., Khashabi, D., and
Choi, Y. (2023).
Generating sequences by learning to self-correct.
In The Eleventh International Conference on Learning
Representations.

[3 Weston, ). and Sukhbaatar, S. (2023).
System 2 attention (is something you might need t0o0).

[ Wu, I, Fernandes, P, Bertsch, A, Kim, S., Pakazad, S., and Neubig,
G. (202z4a).
Better instruction-following through minimum bayes risk.
https://arxiv.org/abs/2410.02902.

167


https://arxiv.org/abs/2410.02902

References xxx

@ wu, Y, Sun, Z, Li, S., Welleck, S., and Yang, Y. (2024b).
Inference scaling laws: An empirical analysis of
compute-optimal inference for problem-solving with language
models.
https://arxiv.org/abs/2408.00724.

E Xia, H., Yang, Z,, Dong, Q., Wang, P, Li, Y, Ge, T, Liu, T, Li, W,, and
Sui, Z. (2024).
Unlocking efficiency in large language model inference: A
comprehensive survey of speculative decoding.

[ Zaharia, M., Khattab, O., Chen, L., Davis, J. Q, Miller, H., Potts, C.,
Zou, J., Carbin, M., Frankle, J., Rao, N., and Ghodsi, A. (2024).
The shift from models to compound ai systems.

https://bair.berkeley.edu/blog/2024/02/18/
compound-ai-systems/

168


https://arxiv.org/abs/2408.00724
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

References xxxi

@ Zhang, L., Hosseini, A, Bansal, H., Kazemi, M., Kumar, A,, and
Agarwal, R. (2024).
Generative verifiers: Reward modeling as next-token prediction.
E Zheng, L, Yin, L, Xie, Z,, Sun, C, Huang, J.,, Yu, C. H, Cao, S.,
Kozyrakis, C., Stoica, |, Gonzalez, J. E., Barrett, C, and Sheng, V.
(2024).
Sglang: Efficient execution of structured language model
programs.

169



	I. Primitive Generators
	Generating one token at a time
	Decoding as optimization
	Sampling
	Constrained decoding

	Meta-generators
	Efficient meta-generation
	How to speed up sampling a single token?
	How to speed up a single generation?
	How to speed up meta-generation?

	Recap and takeaways
	Appendix
	Code examples

