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Today’s talk

Algorithms for generating outputs with a
language model



Today’s talk

Algorithms for generating outputs with a
language model

Why? Use test-time compute to improve performance



Language models

Al achieves silver-medal standard solving
International Mathematical Olympiad
problems

Solving olympiad problems

Writing code

Tasks framed as generating sequences: many other applications



Approach 1: scale pretraining compute

[2020-] Scaling pretraining: larger model, larger dataset
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Scaling Laws for Neural Language Models [Kaplan et al., 2020]



Approach 2: scale post-training comput

[2022-] Scaling post-training: e.g, fine-tune on (input, output) pairs

Instruction finetuning

Please answer the following question.
Whatis the bailing point of Nitrogen?

Chain-of-thought finetuning

Answer the following question by
reasoning step-by-step.

The cafeteria had 23 apples. If they
used 20 for lunch and bought 6 more,
how many apples do they have?

| 4 makelunch.So they had 23 -

The cafeteria had 23 apples
originally. They used 20 to

20 = 3. They bought 6 more.
apples, so they have 3 + 6 =9.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.

Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Scaling Instruction-Finetuned Language Models [Chung et al., 2022]



Approach 3: scale test-time compute

[Now] Test-time scaling: increase compute at generation time
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Test-time compute vs. accuracy ([OpenAl, 2024])



Approach 3: scale test-time compute | How?

1. Generate extra tokens

input -> answer input -> (thought|, answer
Model Output
A: The answer is 27. x )

[Wei et al,, 2022]

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. «/




Approach 3: scale test-time compute | How?

1. Generate extra tokens

—e— Standard prompting
—o— Chain-of-thought prompting
Prior supervised best

LaMDA PaLM
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[Wei et al,, 2022]



Approach 3: scale test-time compute | How?

1. Generate extra tokens
2. Call generator multiple times

GitHub CodeContests E Codeforces Large set Selected
! of potential small set
@ Problems ! Problems solutions of candidates
? a5 —@— I
-

”””””””””””””””””” ’ Filtering
& clustering
EARNING

Large scale Execute

] ine-tuni — A
Pre-training —  Fine-tuning sampling & evaluate

Overview of AlphaCode.

AlphaCode [Li et al., 2022]



Approach 3: scale test-time compute | How?

1. Generate extra tokens
2. Call generator multiple times
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AlphaCode [Li et al., 2022]



Approach 3: scale test-time compute | How?

1. Generate extra tokens

2. Call generator multiple times
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Number of generations ' : ‘ : # Responses
Math [Brown et al, 2024] Agents [Nebius, 2024] Chat [Ankner et al, 2024]



Approach 3: scale test-time compute | How?

1. Generate extra tokens
2. Call generator multiple times
3. Incorporate other models/tools

[Zzaharia et al., 2024]

Verifiers, code interpreters, search engines, ...



This tutorial

This tutorial: How? Meta-Generation Algorithms



This tutorial | Generation Algorithms

Generator: Generates a sequence with a language model.

Input sequence —» — Output sequence

- Example: calling an LLM API
- Traditional algorithms

- Greedy decoding
- Temperature sampling

1



This tutorial | Meta-Generation Algorithms

Meta-generator: High-level strategies for calling generators and
using external information.

Meta-Generator

Primitive
Input —» [—]Ge"e""‘” — Output sequence

Strategy | (" Meta-Generator
Primitive
Generator

- Example: call API multiple times, select the best sequence with a
separate model



This tutorial | Meta-Generation Algorithms

Meta-generator: High-level strategies for calling generators and
using external information.

Meta-Generator

Primitive
Input —» g‘sene’a‘“ — Output sequence

Strategy|(” Meta-Generator
Primitive
Generator

Why?

- Generate more to improve task performance
- Combine multiple models (verifiers, retrievers, ...)
- Incorporate external information (tools, feedback, ...)



This tutorial

Beyond Decoding: Meta-Generation Algorithms for LLMs

- I: Primitive generators: Generating one token at a time
- |l: Meta-generators: High-level strategies for calling generators

- |II: Efficient meta-generation: Generating quickly and efficiently

Panel session at the end!
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This tutorial | team and survey

Neurips 2024 Tutorial:
Beyond Decoding: Meta-Generation Algorithms for
Large Language Models

Sean Welleck! Amanda Bertsch! Matthew Finla\/son2 Alex Xie!  Graham Neub\'g1

O O&@

Konstantin Golobokov® Hailey Schoelkopf® llia Kulikov#  Zaid Harchaoui®

TCarnegie Mellon University ZUniversity of Southern California ~ 3Work done while at EleutherAl  4Meta Al

SUniversity of Washington
Survey (TMLR 2024): From Decoding to Meta-Generation:
Inference-time Algorithms for Large Language Models [Welleck et al., 2024]
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This tutorial | resources

cmu-13.github.io/neurips2024-inference-tutorial

Code examples, reading list, slides


https://cmu-l3.github.io/neurips2024-inference-tutorial

I. Primitive Generators



I. Primitive Generators

Generating one token at a time



This tutorial

Beyond Decoding: Meta-Generation Algorithms for LLMs

- Primitive Generators

+ Meta-generators

- Efficient meta-generation



Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens py[x; | X<].
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Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens py[x; | X<].
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Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens py[x; | X<].

American [0

Xo actress D
Enghsh

[[Tay or Alison Swift (born December 13, 1989) |sm]—> actor |

award |
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Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens py[x; | X<].

American [0
X< actress D
Enghsh
[[Tay or Alison Swift (born December 13, 1989) |sm]—> actor |
award |

Token-level decoding algorithms are primarily concerned with how
to choose the next token.

19



Decoding is search

Each time-step during decoding requires a choice.

member
former ___ __of

contestant - “— The
on Z_
the

_—a - — song — writer
Taylor Swift is \ —
\

T~ the \Singer actress
_— . was
writer  and — producer \/ -
who — is
song ~
has

But a search for what? What is our objective? How do we make local
choices that achieve the objective?

20



Token-level generation (outline)

Objectives for decoding

- Optimization
- Sampling
- Constrained generation, structured outputs

21



I. Primitive Generators

Decoding as optimization



Maximum A Posteriori (MAP)

MAP decoding seeks to find the most likely sequence

arg max py[x]
X

- Greedy decoding
- Beam search

22



Greedy decoding

- Choose the most-likely token at each step.

Xt = arg max po[x | X<
X

23



Greedy decoding

- Choose the most-likely token at each step.

Xt = arg max po[x | X<
X

- Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swiftisa  former contestant on
Token prob. 0.023 0.022 0.80 | 0.0004

23



Greedy decoding

- Choose the most-likely token at each step.

Xi = arg max Po[X | X<i]
X

- Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swiftisa former contestant on
Token prob. 0.023 0.022 0.80 | 0.0004
Non-greedy Taylor Swiftisa singer song
Token prob. 0.012 0.26 0.21 | 0.0007

23



Beam-search is a width-limited breadth-first search (BFS).

013
@)

0.03

Taylor Swift is
0.06

GPT2, beam size 2

24



Beam-search is a width-limited breadth-first search (BFS).

0.003

013 former

0.003
writer

o
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Taylor Swift is .

GPT2, beam size 2
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Beam-search is a width-limited breadth-first search (BFS).

0.003

013 0.0004
0.003

A

Taylor Swift is

GPT2, beam size 2
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Beam-search is a width-limited breadth-first search (BFS).

0.003 0.00002

former

013

Taylor Swift is

GPT2, beam size 2
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Beam-search is a width-limited breadth-first search (BFS).

0.003 0.00002

former

013

Taylor Swift is

GPT2, beam size 2

Note: Beam search with beam size 1is greedy decoding. .



Benefits of MAP

MAP decoding works well for closed-ended tasks like translation,

question answering.

28

BLEU

26
BLEU e
average fan out
25.5

5 10 15 20
beam size

[Freitag and Al-Onaizan, 2017]

average fan out per sentence

Model ‘ Dataset

| | Metric | Greedy BS
HumanEval Pass@1 12.80 15.24

MBPP 17.80  19.40

GSMBK Acc 13.87 | 17.21

XSUM RL 2721 21.88
CNN/DM 2343 20.69
De=En 28.80 | 30.14

£ | En=De B4 | 2263 2399
& Zh=>En 19.44 | 20.11
< En=>Zh 1515 14.50
£ CQA Ao 6290 | 6437
3 SQA 60.76  62.25

[Shi et al., 2024]

25



Pitfalls of MAP

Probability maximization causes decoding problems.

- Repetition traps
- Short sequences [Stahlberg and Byrne, 2019]
- Atypicality [Meister et al, 2022]

26



Pitfalls of MAP

Probability maximization causes decoding problems.

- Repetition traps
- Short sequences [Stahlberg and Byrne, 2019]
- Atypicality [Meister et al, 2022]

GPT2, Beam size 32.
Taylor Alison Swift (born December 13, 1989) is an American
singer-songwriter, singer-songwriter, songwriter, and song-
writer. She is best known for her work as a singer-song-
writer, songwriter-songwriter, songwriter-songwriter, song-
writer-songwriter...

Remedies:
- repetition penalty
- unlikelihood training [welleck et al, 2020]

26



Pitfalls of MAP

Probability maximization causes decoding problems.

- Repetition traps
- Short sequences [Stahlberg and Byrne, 2019]
- Atypicality [Meister et al, 2022]

Pr[Taylor Swift is <eos>] > Pr[Taylor Swift is an American singer-..]

Remedy: length normalization

26



Pitfalls of MAP

Probability maximization causes decoding problems.

- Repetition traps
- Short sequences [Stahlberg and Byrne, 2019]
- Atypicality [Meister et al, 2022]

+ Biased coin P = 0.6, Pr@)] = 0.4.

- Most likely outcome from 100 flips is all heads

- But this outcome is atypical.
- Similarly, the most likely generation may also be atypical.
Remedy to all of the above: sampling

26



Pitfalls of MAP

Probability maximization causes decoding problems.

- Repetition traps
- Short sequences [Stahlberg and Byrne, 2019]
- Atypicality [Meister et al, 2022]

Takeaway: Approximate MAP (e.g., narrow beam search) works better
than exact MAP [Meister et al,, 2020].

26



I. Primitive Generators

Sampling



Objective: Sampling

MODEL

Meta Llama 3 8B Chat v
MODIFICATIONS v

PARAMETERS o

Output Length 512

Modern LLM APIs like TogetherAl 0
offer settings for sampling.

Temperature 07

—O

Top-P 07

e —C

Top-K 50

—)

Together.ai playground.
27



Ancestral sampling

* i~ pa(- | X)
“ Yo~ pa(- | X, 01)
* Y3~ po(c | X, Y2, V3)

28



Ancestral sampling

* Y1~ po(-|X)
* Y2~ pol- | X, 1)
“ Y3~ po(- | X,¥2,Y3)

Ancestral sampling is equivalent to sequence sampling.

Po(¥) = Po(y1)Pa(V2 | V1)Pa(y3 | Yay2) - .- Pa(yr | Y1)

28



- Greedy decoding causes repetition traps

Greedy
(repetition trap)

Taylor Swift is a former contestant on the
reality show ... “I think it's a very sad day
for the show,” he said. “It's a very sad day
for the show. It's a very sad day for the
show. It's a very sad

29



- Greedy decoding causes repetition traps

- But ancestral sampling causes incoherence. Why?

- Low-probability tokens are too likely

- l.e, the distribution has a heavy tail.

Greedy
(repetition trap)

Ancestral
(incoherent)

Taylor Swift is a former contestant on the
reality show ... “I think it's a very sad day
for the show,” he said. “It's a very sad day
for the show. It's a very sad day for the
show. It's a very sad ...

Taylor Swift is a huge fan of her latest
album ‘Famous. The singer got her first
reaction when she uploaded to Twitter a
video of her dancing and singing at a re-
ception for a Grammy-nominated female
songstress, Beyoncé.

29



What is wrong with ancestral sampling?

- Greedy decoding causes repetition traps

- But ancestral sampling causes incoherence. Why?

Low-probability tokens are too likely

l.e., the distribution has a heavy tail.

- Solution: chop off the tail!

Greedy
(repetition trap)

Ancestral
(incoherent)

Top-k
(acceptable)

Taylor Swift is a former contestant on the
reality show ... “I think it's a very sad day
for the show,” he said. “It's a very sad day
for the show. It's a very sad day for the
show. It's a very sad ...

Taylor Swift is a huge fan of her latest
album ‘Famous. The singer got her first
reaction when she uploaded to Twitter a
video of her dancing and singing at a re-
ception for a Grammy-nominated female
songstress, Beyoncé.

Taylor Swift is a writer for IGN and a mem-
ber of IGN's Television Critics Association
You can follow her on Twitter at @_MsS-
wift, IGN at MsSwiftIGN, Facebook at MrsS-
wift, or subscribe to her video channels.

29



Truncation sampling

Truncation sampling interpolates greedy and ancestral sampling by
choosing a minimum probability threshold at each time step.

Method

Threshold strategy

Top-k
Top-p
€
n

Min-p

Sample from k-most-probable

Cumulative probability at most p

Probability at least e

Min prob. proportional to entropy

Prob. at least pmin Scaled by max token prob.

30



Truncation sampling
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Truncation sampling
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Truncation sampling

' and’
Vgt
e
\n'
' said'
' ine
' had'
v at
twill!
g
Cof!

e
' says'
' recently’

' also'
C @
)

' for'

' told'

' released'

' can'
' performed’
' made'

0
Logprob

0 fgo

' and’
' has'
' here'
T
' means'
0 Gy
' would'
0 oo
" you'
" may'
' sounds’
' 1s
' are'
' can'
' goes'
' now'
' came'
' might'
' starts’
' of!
' really’

31



Temperature Sampling

Instead of truncating the tail, make the distribution more “peaked”.

exp(X/T)
softmax(x,7) = =———+———
007) = 5 el )
Temperature Parameter Pro Con
High T>1 Diverse Incoherent

Low T <1 Coherent Repetitive

32



Temperature Sampling

Taylor Swift is... softmax(x/7)

T7=0.5 7=1 7= 2
(peaked) (unaltered) (near uniform)

|

of |

0 e
' the'

0 app

' not'

' one'

' back'

0 &

' currently'
0 @

' also'

' now'
tostill!

' known'

' set’

0

' doing’'

' out'

' coming'

' going'

' playing'

\ \ \ \ \ \
0.4 0.8 0.4 0.8 0.4 0.8

Probability Probability Probability

ol 4444—————======:‘:‘DD
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Sampling implementations

probs = model(sequence)

3| # Greedy
.| indices, weights = probs.argmax(keepdim=True), None

6| # Ancestral
/| indices, weights = vocab_size, probs

9| # Top-k
o| topk = probs.topk(k)
1| indices, weights = topk.indices, topk.values

13| # Top-p

.| argsort = probs.argsort(descending=True)

s| top_p = (argsort.values.cumsum() < p).sum() + 1

5| indices, weights = argsort.indices[:top_p], argsort.values[:top_p]

18| # Epsilon
0| indices, weights = vocab_size, probs * (probs > epsilon)

21| # Temperature
indices, weights = vocab_size, (logits / temp).softmax(-1)

24| # Sample
next_token = random.choices(indices, weights=weights, k=1)

N

34



Batteries-included inference frameworks

# VLLM

> from vllm import LLM, SamplingParams
;] Tlm = LLM(model="facebook/opt-125m")

prompts = ["Hello, my name is"]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
outputs = llm.generate(prompts, sampling_params)

8| # Huggingface
o| from transformers import AutoModelForCausallLM, AutoTokenizer
10| model = AutoModelForCausallLM.from_pretrained("gpt2")

tokenizer = AutoTokenizer.from_pretrained("gpt2")
text = "Hello, my name is"

;| tokens = tokenizer(text, return_tensors="pt")

output = model(**tokens).generate(
temperature=0.8, top_p=0.95, do_sample=True

)

35



Why are next-token distributions heavy-tailed?

- Under-training

36



Why are next-token distributions heavy-tailed?

- Under-training

- Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

36



Why are next-token distributions heavy-tailed?

- Under-training

- Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

- By design low-rank constraints on the LLM
outputs [Finlayson et al., 2024].

- unembed p _Softmax. softmax
ReMbed —————— Rvoca vocab

5 A

36



Sampling adapters

A sampling adapter takes a token distribution py(- | X) and re-adjusts
the probabilities.

- Truncation and temperature are adapters.

37



Sampling adapters

A sampling adapter takes a token distribution py(- | X) and re-adjusts
the probabilities.

- Truncation and temperature are adapters.
- Contrastive decoding [Li et al, 2023a, Liu et al, 2021]

pexpert(' | X)

- X) X
p( | ) pantiexpert(' |X)
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Sampling adapters

A sampling adapter takes a token distribution py(- | x) and re-adjusts
the probabilities.

- Truncation and temperature are adapters.
Contrastive decoding [Li et al, 20233, Liu et al, 2021]

pexpert(' | X)

- X) X
p( | ) pantiexpert(' |X)

Many others

Method Purpose Adapter

Ancestral sampling Y ~ Pg =

Temperature sampling [Ackley et al,, 1985] y ~q(pe) Rescale

Greedy decoding Y 4 maxpg Argmax (temperature— 0)
Top-k sampling [Fan et al,, 2018] y ~ q(pe) Truncation (top-k)

Nucleus sampling [Holtzman et al,, 2020] y ~q(pe) Truncation (cumulative prob.)
Typical sampling [Meister et al,, 2023] y ~ q(ps) Truncation (entropy)

Epsilon sampling [Hewitt et al,, 2022] ¥~ q(ps) Truncation (probability)

n sampling [Hewitt et al., 2022] y ~q(pe) Truncation (prob. and entropy)
Mirostat decoding [Basu et al,, 2021] Target perplexity ~ Truncation (adaptive top-k)
Basis-aware sampling [Finlayson et al, 2024] y ~ q(po) Truncation (linear program)
Contrastive decoding [Li et al., 2023a] y ~q(pe) log pgr — log pg and truncation
DExperts [Liu et al, 2021] Y~ q«(:|x,C) o Pg - (Po+/Po-)"
Inference-time adapters [Lu et al, 2023] Y~ Qe o r(y) o (Po - Por)*

Proxy tuning [Liu et al,, 2024] ¥~ qu(:|x,€) o< po - (Po+/Po-)" 37




I. Primitive Generators

Constrained decoding



Constrained decoding

Embedding LLMs in larger systems requires that they can
communicate with the larger system, e.g., with JSON.

Can we force LLMs to generate structured outputs?

Add response format

Use a JSON schema to define the structure of the model's response format. Learn more.

Definition *4$ Generate Examples v

{
"name": "math_response",
"strict": true,
"schema": {
"type": "object"
"properties": {

"steps": {
"type": "array",
"items": {
"+una+ "nhbart!

From OpenAl Playground. -



Worked example: decoding valid JSON

Language models can stuggle with controlled and structured
generation. Prompt:

Key Type
name string
birth year int

Format the following information using the JSON schema:
"Taylor Swift was born December 13, 1989

39



Worked example: decoding valid JSON

Language models can stuggle with controlled and structured
generation. Prompt:

Key Type
name string
birth year int

Format the following information using the JSON schema:
"Taylor Swift was born December 13, 1989

LLM:
{"name": "Taylor Swift", "birth": "1998-12-
13T01:00:002", "age..

The LLM output does not match the JSON schema.

39



Format the following information using the JSON schema:

Taylor Swift was born December 13, 1989.

Key Type

name string
birth year int

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type

name string
birth year int

1. Compile the schema into a state machine.

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

[A-Za-z]

Key Type
name string
birth year int

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

Token Prob.
\n 036
" ]
{ 0.026

https 6825

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

[A-Za-z]

Key Type
name string
birth year int

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

Token  Prob.

name 834
GPT2: date 0069
] { " 0.039

id 86033

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

[A-Za-z]

Key Type

name string
birth year int

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

Token Prob.

Taylor 0.85
GPT2: T 0.034
’ ||namell : n S 0.024

The 0.022

40




Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

[A-Za-z]

Key Type
name string
birth year int

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

" Token Prob.

", 085

GPT2: " 0034
{"name": "Taylor Swift T 0.024

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

[A-Za-z]

Key Type
name string
birth year int

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

Token  Prob.

GPT2: S
"name": "Taylor Swift", "birth int 004
year": Ll

1989 0.020

40



Format the following information using the JSON schema:

Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:

"name": "Taylor Swift",
year": 1989

"birth

Token

[A-Za-z]

Prob.
0.39
0.34
0.082

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type

name string
birth year int

1. Compile the schema into a state machine.

2. Filter the next-token distribution for valid tokens.
GPT2:

"name": "Taylor Swift", "birth
year": 1989}

40



Side effects of templated/constrained decoding

- Generation speedup

- Reduced performance

41



Token healing

- Templated generation can force unnatural token boundaries

TheLur_isLhttp:)
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Token healing

- Templated generation can force unnatural token boundaries

ThelurllisLhttpl//)

- The model has rarely seen the tokenization Chttp(:J//) during
training compared to Chttpl: //)
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Token healing

- Templated generation can force unnatural token boundaries

TheLurtliisthttpl:l//
- The model has rarely seen the tokenization Chttp(:J//) during
training compared to Chttp://)

- Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

Candidates

TheLurl.isLhttp: Y
://

42



Token healing

- Templated generation can force unnatural token boundaries

TheLurtliisthttpl:l//
- The model has rarely seen the tokenization Chttp(:J//) during
training compared to Chttp://)

- Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

Candidates

Thefurliisthttpl//) .,y
://

- Alternative fix: tokenizer regularization during
training [Kudo, 2018].
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- Two views of decoding: optimization, sampling
- The diversity-coherence trade-off
- Constrained decoding enforces structure on LLM outputs

These are the building blocks of modern LLM generation methods.

43



Meta-generators



Goal (system designer)

Design a system G that generates acceptable sequences:

arg max Eyo()AY) (1)

Example acceptability: correctness, human preferences

4l



Goal (system designer)

Design a system G that generates acceptable sequences:

arg max Eyo()AY) (1)

Example acceptability: correctness, human preferences

We know how to sample probable outputs, y ~ pg(y|x)

4l



Meta-generation | Key ideas

1. Take advantage of external information during generation

- Example: Learn an evaluator v(y) ~ A(y) and use it in generation
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Meta-generation | Key ideas

1. Take advantage of external information during generation

- Example: Learn an evaluator v(y) ~ A(y) and use it in generation

Terminology: Evaluator & critic ~ verifier ~ value ~ reward model ~ scoring model

45



Meta-generation | Key ideas

1. Take advantage of external information during generation

2. Call the generator more than once to search for good sequences

. O o O o .
' Easy to evaluate:
o [o) o ','
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Meta-generation | Key ideas

Input:
X: Letf() =283 = F + § + - + zar- Find 82, f(k).
LLEMMA 34B solution:
We have
oo oo 2008 1 2008 oo 1 2008 1 oo 1 2008 1
2 Sm=35=331=31> 5= 1
R=2 k=2 j=2 j=2 k=2 j=2 k=0 j=2 J
B 2008 1 B 2008 ( 1 1)
=10 F\i-1
(oYL (oY (D 1
1 2 2 3 2007 2008
_ 1
- 2008
| 2007
~ | 2008 |
y: Final Answer: The final answer is 2392

)

Example: solve a math problem
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Meta-generation | Key ideas

What if we had an oracle verifier, v(y)?

Repeat: x| @O =EE = gt gl AT
2~ po(z)
Y ~po(ylx,2)
- Stop if v(y) says answer is o
correct =]
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Meta-generation | Key ideas’

MATH (Oracle Evaluator)

1.0
)
8]
QD os
—_
—
o
© o
—
=
n
C 04
<
4+
<C 0.2
0.0 10° 10t 10? 10° 10*
Number of generations
Llama-3-88 —— Llama-3-8B-Instruct —— Llama-3-70B-Instruct Gemma-2B  —— Gemma-7B
—— Pythia-70M  —— Pythia-160M Pythia-410M Pythia-1B Pythia-1.4B

Pythia-2.88 —— Pythia-6.9B Pythia-12B

1Adapted from [Brown et al, 2024]. See also [Li et al., 2022, Cobbe et al,, 2021, Jiang et al., 2023]
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Meta-generation

We formalize these kinds of strategies as meta-generators 2

yNG(y|X;g17927"'7gGa (Ib )
SN——— ~~~

generators Other parameters
Key design choices:

- G: strategy for calling generators
* 91,92, ..,3g: choice of generators

- ¢: other models, number of tokens to generate, ...

2[Welleck et al,, 2024] From Decoding to Meta-Generation: Inference-time Algorithms for LLMs.
S. Welleck, A. Bertsch* M. Finlayson* H. Schoelkopf* A. Xie, G. Neubig, I. Kulikov, Z. Harchaoui.
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Meta-generation

Token-level generators from part 1 are a special case of calling:

y ~ g(yIx; pg, )
Design choices:

- g: sampling adapters, beam search, ...
- ¢: temperature, beam width, ...

50



Meta-generators | outline

am Chained Parallel
- Parallel
- Tree search ( =0 ) [ }
= i
- Refinement/Self-Correction D= @‘
Tree search Refinement

- Scaling meta-generators

51



Meta-generators | chain

Ve I\
P Intermediate Intermediate
input  |—»|| Model |-» —| Model |—» > .| -
[ } { output J [ J { output }
_ J

Compose generators:

V1~ gi(x)
Yo ~ G2(X, 1)
y3 ~ g3(X, y2)

> X

52



Meta-generators | chain

Motivating example: Chain-of-thought [wei et al, 2022]:

input -> answer input ->[thought|, answer
Model Output
A: The answer is 27. x )

A simple decomposition:

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9.

- Generate a thought, z ~ g(-|x)

- Generate an answer, a ~ g(:|x,2)

53



Meta-generators | chain

Motivating example: Chain-of-thought [wei et al, 2022]:

input -> answer input ->|thought|, answer

Model Output
A: The answer is 27. x ]

Increases expressivity?

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9.

- Variable output length, analogous to a writeable tape

3Eg, [Feng et al, 2023, Merrill and Sabharwal, 2024, Nowak et al., 2024]
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Meta-generators |

Extend to multiple steps:

- Each step:
- Generate query
- Call API

- Then generate an answer

Question: In what year was the current tallest wooden lattice tower
completed?

Are follow up questions needed here: Yes.

Follow up: What is the current tallest wooden lattice tower?

IQuery: What is the current tallest wooden lattice tower?

Search |
Engine J|Response: Radio Tower Gliwice

GPT-3

Intermediate answer: Radio Tower Gliwice.
Follow up: When was Gliwice Radio Tower completed?

|Query: When was Gliwice Radio Tower completed?

Response: 1935

Search
Engine

Intermediate answer: 1935.
So the final answer is: 1935.

Self-Ask [Press et al., 2023]
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Meta-generators | chain®

View as programs:
- Quter function ~ meta-generator

- Inner function ~ generator

def search(x: Example) -> Example:
x.hopl = generate (hop template) (x) .pred
x.psgl = retrieve(x.hopl, k=1) [0]
x.hop2 = generate (hop_template) (x) .pred
x.psg2 = retrieve (x.hop2, k=1) [0]

return x

def predict(x: Example) -> Example:
x.context = [x.psgl, x.psg2]
x.pred = generate(qga_template) (x) .pred

return x

Demonstrate-Search-Predict (DSP)
[Khattab et al., 2022]

“4[Khattab et al., 2022, Dohan et al., 2022, Schlag et al., 2023, Zheng et al., 2024]
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Meta-generators | chain

Many other examples!

Rewrite input before generating

(System-2 Attention [Weston and Sukhbaatar, 2023])
- Sketch proof, fill gaps, check proof

(Draft-Sketch-Prove [Jiang et al.,, 2023])

Formal sketch Vsnflad formal proof
Statement Informal Pm°‘ have cl “1%28 = n*4”

If ged(n, 4) = 1 and hwei::olw;:aigtd(u ,b) - lem(a,b) =

lem(n, 4) = 28,

¥, (23
e c2: “n = 1%28/4" then have c2: “n = 1+28/4”
Thenn=1-28/4=7,

show that nis 7. 1 <proots by auto
completing the proof. B then show ?thesis then show ?thesis
<proot> by auto

+
+

Off-the-shelf
Prover

Informal

H Autoformalizer
i..| Proof writer

3

L

Draft informal proof Generate formal sketch Prove remaining gaps

/o
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Meta-generators | chain

Chained meta-generation

- Key idea: decompose generation and incorporate tools/models
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Meta-generators | outline

- Strategies [DDD:D:} [CK%‘EU
- Chain Chained Parallel
- Parallel —
o <=0
- Tree search {D@%%M%[J [ AO=0h }

- Refinement Tree search Refinement
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Meta-generators | parallel

[ output candidate 1 ]

N — | output candidate 2
\ output candidate N

- Generate candidates:

O,y ~ 6

- Aggregate:
y=hy",...,y")
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Meta-generators | parallel | Best-of-N/Rejection Sampling®

— 2+2=5 —> Reward Model m \
Re rd Model
- [Gt} %J (i) - (@ L e

[ Reward Model | — ﬁ /
J

Score outputs with ‘
. reward model :

S~

argmax  V(y)
O,.yMy S~
reward model

5[Stiennon et al., 2020, Nakano et al., 2022]
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Meta-generators | parallel | Best-of-N/Rejection Sampling

Reward model v(y) — [0, 1]:

[Observe that2+2=5.. ... the answer is 5.] —» | Reward Model |—» 0
[Observe that2+2=14.. ... the answer is 4.] —» | Reward Model [ 1

Train reward model with correct and incorrect examples.®

5E.g, [Cobbe et al, 2021]
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Meta-generators | parallel | Best-of-N/Rejection Sampling

Reward model v(y) — [0,1]:

[Hello, you are awesome ] > [Hello, you are #&@#*@#]

Train reward model with preference data.’

6E.g, [Stiennon et al,, 2020]
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Meta-generators | parallel | Best-of-N/Rejection Sampling

Why Best-of-N?

- Approximates maximum acceptability:

Best-of-N = argmax v(y)
ye{y®,...y™}

~ arg max V(y) ()
y

~ arg maxA(Y) (3)
y
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Meta-generators | parallel | Best-of-N/Rejection Sampling

Why Best-of-N?

- Approximates maximum acceptability:

Best-of-N = argmax v(y)

ye{yM,...,yM}
~ arg max V(y) ()
y
~ arg maxA(Y) (3)

y

(2) gets better as number of generations N increases!
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Meta-generators | parallel | Best-of-N/Rejection Sampling

Why Best-of-N?

- Approximates maximum acceptability:

Best-of-N = argmax v(y)

ye{yM,...,yM}
~ arg max V(y) ()
y
~ arg maxA(Y) (3)

y

(2) gets better as number of generations N increases!

(3) Suffers from imperfect reward model, aka “over-optimization”
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Meta-generators | parallel | Best-of-N/Rejection Sampling’

GSM (Learned Evaluator)

42

40

38

36 Over-optimization

Solve rate (%)

34

25 50 100 200 400 800 1600 3200
Number of generations

’Plot adapted from Training Verifiers to Solve Math Word Problems [Cobbe et al., 2021]
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Meta-generators | parallel | voting / self-consistency

Voting aggregation:®

[ First, we will factor the

polynomial ... :
J[Answer: 4}\

» [ Welll solve the problem in
Input —» || Generator :[ three steps. First, ...

Majority
Vote

i[ Let's think step by step. : /
: Letxbe... Answer: 2

Reasoning path ,‘E‘.Answer,i

8[wang et al,, 2023]
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Meta-generators | parallel | weighted voting’

Weighted Voting:

First, we will factor the
polynomial ...

g - )
» ‘We'll solve the problem in
Input —» || Generator [ tnes stone Fial s ][Answer 4):(Beverd Moddl m - Welghted Answe, 2
} Vote
\ We will think step by step .. | Answer: 4 Reward Model 0 2 /'
Let's think step by step. Answer 2 Reward Model
\\ Let x be /

Score outputs W|th -
', reward model

N

argmaxz viy®) {y" =a},

=
=" reward model

°[Li et al., 2023b]
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Meta-generators | parallel | voting

Can outperform Best-of-N, e.g.:"0

MATH (Learned Reward)

50
45
40
35
30
251
20

4507 46353 4662 4653
45.26 50

—— Majority Voting
—— Weighted Voting
—— Best-of-N

Solve rate (%)

1 2 4 8 16 32 64 1282565121024
Number of generations

10[sun et al., 2024] Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision.

Z.Sun, L. Yu, Y. Shen, W. Liu, Y. Yang, S. Welleck, C. Gan. NeurIPS 2024. o



Meta-generators | parallel | why (weighted) voting?

As the number of candidates N — oo, voting accuracy converges to.."

M

1

m > I |ar =argmax > v(x,z,0)g(z, a|x)
i=1 . Z

“Marginalize out paths z”

Notation:

- (x,z,a): (input, solution, answer)

- M: number of test examples

"Theorem 2, [Wu et al, 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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Meta-generators | parallel | why (weighted) voting?

As the number of candidates N — oo, voting accuracy converges to.."

M

1

m > I |ar =argmax > v(x,z,0)g(z, a|x)
i=1 a z

“Marginalize out paths z"

Takeaway 1: Will accuracy keep improving with more samples?

- No, it eventually converges to the accuracy shown above

"Theorem 2, [Wu et al, 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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Meta-generators | parallel | why (weighted) voting?

As the number of candidates N — oo, voting accuracy converges to.."

M

1

i E I|af =arg maxg v(x,z,a)g(z, a|x)
i=1 a z

“Marginalize out paths z"

Takeaway 2: When is weighted voting better than voting?

- When v - g assigns more total mass to correct answers than g

"Theorem 2, [Wu et al, 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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Meta-generators | parallel | why (weighted) voting?

As the number of candidates N — oo, voting accuracy converges to.."

M

1

m > I |ar =argmax > v(x,2,0)g(z, a|x)
i=1 a z

“Marginalize out paths z”

Takeaway 3: How do we improve performance further?

- Improve the reward model v

- Improve the generator g (better model and/or better algorithm)

"Theorem 2, [Wu et al, 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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Meta-generators | parallel

Improve the reward model:

(
! “Let’s verify step by step.” H Average
'
Finetuned Verifier Verification CoT.
GenRM-CoT

Verification CoT

Parallel generation in the reward model too'

2[Zhang et al., 2024]
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Meta-generators | parallel

Parallel meta-generators

- Explores output space by generating full sequences

- Large performance gains in practice
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Meta-generators | parallel

Parallel meta-generators

- Explores output space by generating full sequences

- Large performance gains in practice

Insight: only uses the verifier at the end (on full sequences)

- Next: Can we better leverage intermediate evaluation?

69



Meta-generators | outline

- Strategies [DDD:D:} [CK%‘EU
- Chain Chained Parallel
- Parallel —
<=0
+ Tree search {D@[]S%Uééaj { AO=0h }

- Refinement Tree search Refinement

70



Meta-generators | tree search | basic idea

Call
Output sequence
%@ 4(3 —

71



Meta-generators | tree search | basic idea

Call
Output sequence
%@ 4(3 —

Design choices:

- States s

- Transitions s — s’

- Scores v(s)

- Strategy (breadth-first, depth-first, ...)

71



Meta-generators | tree search | example

1. Scores: “process reward model (PRM)""3

; Process
[ Step 1: ... J[ Step 2: ... ][Step 3:2+2= 5]—’ =» [0,1]
: ; reward model

Solution-so-far

v(X,51,S2,...,5t) = [0,1]

3[Uesato et al, 2022, Lightman et al., 2024, Wang et al., 2024a]

72



Meta-generators | tree search | example (REBASE)

2. Reward Balanced Search (Rebase)"

[ Observethat2 +2 =5.. m
[ Observethat2 + 2 =4... Explore more

[We'll solve this as foltows..i.]

Explore based on
reward model scores

_ exp (v(si)/7)
explore; = Round (BUdgeth@(p(v(sj)/r)> , (4)

T4[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.
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Meta-generators | tree search | aggregation

(| Generator
in put output candldate 2
Aggregator output
\.

é\@ output candldate N

Run tree search to get candidates for aggregation (e.g., voting).
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Meta-generators | tree search | aggregation

(| Generator
input output candldate 2
p Aggregator output
\.

é\@ output candldate N

Run tree search to get candidates for aggregation (e.g., voting).

- Key idea: Leverages scores on intermediate states

- Backtracking
- Exploration
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Meta-generators | tree search | example®™

Llemma-7B

80 e a

754 —e— Sampling W.M.
T Sampling BoN
£ 701 —— REB,f\)SEg\NM
g M.
c 65 1 ~ REBASE BoN
o
° 60 "N
=
© 551
)
[7p]
@ 50

45

4 16 64 256 1024
Infer. FLOPs per question (x101?)

5[Wu et al,, 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference. 75



Meta-generators | tree search | example

Agents [Koh et al, 2024]

Proofs [Polu and Sutskever, 2020]
GO [Silver et al, 2016]
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Meta-generators | tree search

Tree-search meta-generators

- Can backtrack and explore using intermediate scores

- Decomposition into states
- Good reward signal
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Meta-generators | outline

- Strategies —
¢ nain Chained Parallel
- Parallel
- Tree search { =0 j [ }
K=E= i)
- Refinement/self-correction NSS40 l@‘
Tree search Refinement

- Scaling meta-generators
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Meta-generators | refinement / self-correction

Bad generation path.} /Better generation path\}

[ Observethat2 +2=5... ]-’ Corrector —. [ Observethat2 +2=4.. J

Improve a generation
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Meta-generators | refinement / self-correction

Observe that2+2=5..

2 +2=5is wrong
InltlaL Feedback Corrector
Generator

Bad generation Better generation

Improve a generation using feedback
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Meta-generators | refinement / self-correction

2 +2=5iswrong

Feedback > Corrector

Better generation

Observethat2+2=5.. |

Initial
Generator
Bad generation o :
: Quality is important

Improve a generation using feedback
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Meta-generators | refinement

In practice, the is crucial:

- Extrinsic: external information at inference time

- Intrinsic: no external information at inference time
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Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

error: precondition not satisfied
==> /playground/src/main.rs:23:5
|

9 | substring.len() > o,
| - failed precondition

23 | lemma_step_subrange(tail_a, string.skip(1));

error: aborting due to 1 previous error

20 if tail_a.len() > 0 {
21 lenma_step_subrange(tail_a, string.skip(1));

2 ¥

verification results:: 1 verified, 1 errors
Feedback
{ Corrector
Rust Verifier (Vems)

Feedback: external program verifier'

Buggy Rust code

Initial
Generator

16 [Aggarwal et al,, 2024], AlphaVerus. P. Aggarwal, B. Parno, S. Welleck. .



Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

HumanEval-Verus

—
3 030
N—"
)
+—
©
—
g 0.25
o
n
Parallel
Refinement
0.20

64 128 192 256 320 384 448 512

Number of generations
AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.
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Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

HumanEval-Verus

—
3 030
N—"
)
+—
©
—
g 0.25
o
n
Parallel
Refinement
0.20

64 128 192 256 320 384 448 512

Number of generations
Tutorial code demo: github.com/cmu-13/neurips2024-inference-tutorial-code
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https://github.com/cmu-l3/neurips2024-inference-tutorial-code

Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Several success cases:

« Verifiers [aggarwal et al, 2024]
- Code interpreters [Chen et al, 2024b]
- Retrievers [asai et al, 2024]

- Tools + agent environment'®

Intuition: adds new information, can detect and localize errors

16 https://x.com/gneubig/status/1866172948991615177

81


https://x.com/gneubig/status/1866172948991615177

Meta-generators | refinement | intrinsic

2. Intrinsic: Re-prompt the same model:

[ 2+2=5iswrong J

Observe that2 + 2 =5...

Generator Feedback

7

Corrector

Re-prompt a single LLM, e.g. [Madaan et al., 2023]
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Meta-generators | refinement | intrinsic

- Easy to evaluate tasks: positive [wang et al, 2024b]
- E.g, missing info [Asai et al, 2024]

- Mathematical reasoning: mixed"

E.g, [Huang et al,, 2024] Large Language Models Cannot Self-Correct Reasoning Yet
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Meta-generators | refinement | intrinsic

GSMS8k (GPT 3.5)

w I 133 =3 ~
S S S S =)

Percentage (%)

N
S

10 8.8% 7.6% 8.9%
0
No Correct Incorrect Incorrect
Change — Incorrect — Correct — Incorrect

Takeaway: feedback is too noisy From [Huang et al., 2024]
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Meta-generators | refinement

Generate “TAYLORSWIFT”
- Generator:
- p(character)
- Feedback:
- Incorrect characters

" GERCEREENEE

—— Refinement (Feedback noise 0.0)
/ Refinement (Feedback noise 0.01)
ST A ) (" o (Wi v 7] Refinement (Feedback noise 0.4)
UO00000n00G Best-of-N (Feedback noise 0.0)

-~ Optimal

VY WA WA A N, MVVN‘J\/«/\M,AWM PV Wl

- Corrector:
Regenerate incorrect

Correct Characters in Best Sequence

0 50 250 200

100 150 20
Total Sequence Generations
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Meta-generators | refinement | intrinsic

3. Intrinsic: trained corrector

[ Input problem

—»| Corrector |—» L Observe that 2 + 2 = 4... J

[ Observethat2 +2=5... J

Directly learn to correct"”

[welleck et al.,, 2023], Generating Sequences by Learning to [Self-]Correct.
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Meta-generators | refinement | Case 3: fine-tuning

General pattern:'

- Collect (bad, better) pairs by generating and evaluating reward
- Update corrector pg(better|bad) using the collected data
- Repeat

18E.g., Self-corrective learning [Welleck et al., 2023], SCoRe [Kumar et al., 2024].
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Meta-generators | refinement | Case 3: fine-tuning

General pattern:'

- Collect (bad, better) pairs by generating and evaluating reward
- Update corrector pg(better|bad) using the collected data
- Repeat

[ Input problem ]

2\ , — Corrector - [ Observe that 2 + 2 = 4... J
[ Observe thgt 2 + 2 =5... )

/7 \

Prone to behavior collapse

[Kumar et al., 2024]: overcome with regularization + RL

18E.g., Self-corrective learning [Welleck et al., 2023], SCoRe [Kumar et al., 2024].
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Meta-generators | refinement | Case 3: fine-tuning

Scaling Inference Compute: MATH

Self-Consistency@K
(o))
N
N

Parallel Samples
Sequential (Self-Correct)

60%

21 24 23 24 2°
Number of samples (K)

From SCoRe [Kumar et al., 2024]
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Meta-generators | refinement / self-correction

Refinement / self-correction

- Extrinsic
- Positive results for environments that detect or localize errors
- Intrinsic, prompted
- Mixed results, depends on difficulty of verification
- Intrinsic, trained
, requires specific training strategies
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Meta-generators | outline

This talk:
- Strategies [D:’D:’@:’j [CK%:EU
- Chain Chained Parallel
- Parallel
- Tree search <E0
=) (= )
- Refinement

Tree search Refinement
. Scaling meta-generators
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Meta-generation | how do we allocate test-time compute?

Choose strategies based on task performance and compute cost

Cost is a function of:

- Model size
- Number of generated tokens

=0 e8]

Model size Strategy
\ l ("meta-generator")

Inference
Compute
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Meta-generation | compute-optimal inference®

For a compute budget C:

argminy st cost(N,T,S):Cerror(Nv T,S)

- N: number of model parameters
- T: number of generated tokens
- S: inference strategy

- cost(N, T,S): in floating-point operations

9TWu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.
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Meta-generation | compute-optimal inference®

Fix strategy S

k N1
Error N2
N3
N4
e

Compute Buo(get

Choose configurations on the compute-optimal frontier (green)

201wy et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.



Meta-generation | how do we choose a meta-generator?

Question 1: is it better to use:

- A small model and more generations
- A large model and fewer generations

Experiment: Fix strategy, vary model size N and number of tokens T
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Meta-generation | how do we choose a meta-generator?

701 —e— 410M
% 1.4B
E 60 —— 2.8B
410M —— 6.9B

(2 50 COmpute-optimal: —— 12B
o :
5 40 1
= :
(O} 1
) 1
0 30_ 1 2.8B

I Compute-optimal
= :

. 12B

! Compute optlmall

2 8 32 128 512 2048
Inference FLOPs per question (x10%%)

Smaller models can be compute optimal [wu et al, 2024b]. 93



Meta-generation | how do we choose a meta-generator?

Question 2: what is the compute-optimal meta-generation strategy?

Experiment: vary strategy (and model size and number of tokens)

9%



Meta-generation | how do we choose a meta-generator?

751 —e— Sampling (7B)
- Sampling (34B)
|<_( 70+ —e— MCTS (7B)
s MCTS (34B)
o 651 —e— REBASE (7B)
o REBASE (34B)
—_ 4
5 60
e
_8 55 | REBASE 7B
w0 Compute optimal
ks

REBASE 7B
50 Compute optimal

4 16 64 256 1024
Inference FLOPs per question (x10%?)

Tree search (REBASE) can be compute-optimal [wu et al, 2024b].
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Meta-generation | recap

- Performance improves with increased compute...
- ... but it varies by the choice of model size and meta-generator

- The optimal model size and strategy varies with the compute
budget

- Sometimes smaller models are better!
- Goal: design strategies that are universally optimal
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Meta-generation | recap

- Meta-generators: strategies for calling generators and
incorporating external information

- Several patterns: chain, parallel, tree search, refinement
- They can be combined and mixed together

- Choose and design methods based on task performance and
cost
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Meta-generation | speeding up

Next: The preceding meta-generators

- Generate many tokens

- In diverse ways (e.g., tree search)

How do we do this quickly and efficiently?
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Efficient meta-generation




Efficiency | goals

Scope:

- Basics of efficient generation
- How can we make meta-generation faster?
- Which specific meta-generators are most efficient?
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Efficiency | basics

How do we measure “efficiency”?

- Latency
- How long does a user wait for a response?
- Throughput
- How many requests are completed per second?
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Efficiency | basics

Quali‘tt/

Lo:tenct/ < >Tkroughp ut

Latency, Throughput, and Quality often trade off at a given budget.
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Efficiency | hardware

Hardware improvements have driven model improvements %'

s " . P
Peak price-performance of ML hardware for different precisions Z EPOCHAI
OP/$ FP64 @ FP32 FP16 tensor-FP32/TF32 tensor-FP16 tensor-INT8 @ tensor-INT4
0% FP32 and FP64 supported Emergence of new number formats
o
hd . .
10"
6
. e
o o

10" ° ° o

° o * o

. U o~ . & .
© S .
107 3 0e® . .
e . o
.
P32
10
2010 2012 2014 2016 2018 2020 2022 2024
Year

The largest efficiency wins come from mapping operations onto
hardware (more) effectively!

ZFigure: [Hobbhahn et al., 2023] 102



Efficiency | hardware

How do ML accelerator designs impact generation efficiency?

- How much data can we keep on-device?
- VRAM (GB)

- How many operations/second can the device perform?
- FLOP/s

- How long does it take to send operands from GPU memory
(HBM) to the processor?

- Memory Bandwidth (GB/s)
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Efficiency | bottlenecks

- Loading inputs (activations) from memory
- Memory Bandwidth
- Loading weights from memory
- Memory Bandwidth
- Performing computation
- FLOP/s
- Communicating across devices
- Communication Speeds (GB/s)
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Efficiency | bottlenecks

Time per operation can be modeled as?:

) (Operation FLOP  Data Transferred (GB) >
Time = max

Device FLOP/s * Memory Bandwidth (GB/s)

Operations are either “compute-bound” or “memory-bound”??

22[He, 2022]
2H100 SXM: BF16 dense tensor core max FLOP/s & 1 x 10" FLOP/s, Memory bandwidth
~ 3.35 x 10" byte/s. > 100 FLOP/byte is “free”!
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Efficiency | batching

wmem-bound compute-bound

time

e

drodel x d_8F b dmodel dmodel x d 6%

Inputs to a model can be “batched”
together and computed batch size
simultaneously.

Batching can be cost-free for
memory-bound operations!?

Ahttps://www.artfintel.com/p/how-does-

batching-work-on-modern TG



Efficiency | KV cache

(e )

(e )

Softmax(QK™T)

[ ]

(e )

(e )

(e )
Prefill Stage: process prompt all at Decode Stage: use cached KV values
once. Keys and values retained and to compute attention for current
initialize the “KV Cache”, timestep. Append new K, V to KV cache

Size = (batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)
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Efficient meta-generation

How to speed up sampling a single
token?



Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

- Memory Bandwidth |
- FLOP/s t
- FLOP |
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Efficiency | single-token

Memory Bandwidth |: reduce data transferred
- Quantize weights or activations®

(bytes per parameter) - (total parameters)

INT4 [o] [¢] [] [e] [e] [o] [] []
- Compress or distill model

(bytes per parameter) - (total parameters)

24\/isual from

. . L 109
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization



Efficiency | single-token

FLOP/s 1: improve hardware utilization

(FLOP per second) - (total operation FLOP)

: 19TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)

:12.8 GB/s
(>1TB)

Memory Hierarchy with
Bandwidth & Memory Size

Outer Loop

___Outerloor
Ki:dxN
Copy Block to
QNxd _ Outerloop _ vinxd
5

Inner Loop
e mmertoop
DT QKENXN
__..___.*__ -

[ —
Output to HBM
sm(QK)V: Nxd

Inner Loop
FlashAttention

doo71auu]

doo1.1a3nQ

Time (ms)

Attention on GPT-2

] Matmul

15
] Dropout
10
] Softmax
5 Fused
Mask  Kernel
—

]Matmul

PyTorch FlashAttention

Flash Attention [Dao et al., 2022] performs the same operations, but
optimizes the implementation to achieve far greater speed
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Efficiency | single-token

FLOP |: reduce operations required

(FLOP per second) - (total operation FLOP)

e —b{ Add + Normalize ]4—
< A A
------- ® Q- rmne
p=0es h I p=EB
| Router Router
SN —
4{ Add + Normalize ]1—
Self-Attention
N
hRS N )
AN Positional a Positonal gy
S embedding embedding
x1 EEEEEEI x[ITTTT]
More Parameters

Mixture-of-Experts models use fewer FLOP per token than equi-parameter
dense models [Fedus et al., 2022] m



Efficient meta-generation

How to speed up a single generation?



Efficiency | single-generation

Generation of long outputs is bottlenecked by sequential next-token
prediction. But not all tokens are created equal!

... The cow jumped over the moon . <EOS>

How can we spend less time on “easier” tokens?
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Efficiency | single-generation

Decoding is typically memory-bound.

[ SR SR SR ( Verify in Par‘allel
Autoregressive : “\T “\f “\T
Decoding A A 1
£ fF T fF 1 ‘ Efficiently Draftid,

=0 X O0#0

Speculative decoding uses a smaller draft model to produce “guesses” for
the next N tokens cheaply, which are then “accepted” or “rejected” in parallel
by the main model [Xia et al., 2024]
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Efficiency | single-generation

In speculative decoding:

- A lighter-weight draft model generates N “proposal” tokens

- These N “proposal” tokens can be passed in parallel into the
main generator

- All tokens which match the main generator’s predictions are
retained, and ones that do not are discarded
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Efficiency | single-generation

= (Prefill=512) =
= (Prefill=1024)
= (Prefill=2048)
(Prefill=4000) .
6 (Prefill=8000)
= (Prefill=16000) =

.8

£y

Throughput Ratio (SpecDec / Autoreg)

1.2
o . .

W
1 Y

w N

LAY - _—

-
0.8 '
10.0 15.0 20.0 25.0 30.0 35.0

Avg. Tokenwise Latency (ms)

Speculative decoding can harm throughput at low context but improves both
throughput and latency at long context lengths [Chen et al., 2024a]
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Efficient meta-generation

How to speed up meta-generation?



Efficiency | meta-generators

- How do meta-generators interact with real-world efficiency and
hardware utilization?

- Which meta-generators are the fastest? Can we design more
efficient meta-generators?
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Efficiency | meta-generators | KV Cache reuse

Shared Prefix Unique Suffixes
You are ChatGPT, a large language model [ , can you write a...]
trained by OpenAI, based on the GPT-4
architecture.
Knowledge cutoff: 2023-04 [Tell me a funny.. ]
Current date: 2023-11-16

>
Image input capabilities: Enabled [Who 15 Alam Wi ]
When you send a message containing [Debug this Python. . ]
Python code to python, it will be
executed in a stateful Jupyter notebook
enrivonment. Python will respond... [Ignore all previous...]

Shared Prefix Setting

Common deployment and parallel generation scenarios have redundant
shared prefix content in prompts®

2Figure from [Juravsky et al., 2024]
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Efficiency | meta-generators | KV Cache reuse

Physical KV blocks

Block 0
Ref count: 2 — 1
Sample Sample
Al 4Block years | ago our |mothers) A2

Logical KV blocks ‘," Block2 (Copy-on-write Logical KV blocks

Block 0 | Four | score | and | seven |/ .Block 3 years | ago our | fathers | \Block 0 | Four | score | and | seven

Block 1 | years | ago our |fathers { Block 4 Block 1 | years | ago our he

Block 5

Block 6

Block 7 | Four | score | and | seven

Block 8

PagedAttention [Kwon et al., 2023] prevents redundant storage costs by
mapping KV cache blocks to physical “pages” of VRAM
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Efficiency | meta-generators | KV cache reuse

KV Cache reuse is not limited to single-level shared prefixes!

)

Q1: Write a python
program that reads
from...

Q3: Write a python
program that
uses....

Al: x = int(input()) ...
Q2: Write a python

program that
calculates...

Q3: Write a python
program that
prints....

A2: def solve(): ...

—

Multiple levels of prefix sharing can arise frequently: for example, combining
a long few-shot prompt with Best-of-N generation?®

. 119
26Figure from [Juravsky et al., 2024]



Efficiency | meta-generators | KV Cache reuse

o @

@]

You are a helpful assistant.
User: Hello!
Assistant: Hil

You are a helpful assistant.
User: Hello!
Assistant: Hit

User: Solve this problem ..

Assistant: Sure!

(s)

You are a helpful assistant.

User: What can you do?
Assistant: | can

User: Hello!
Assistant: Hil

User: Solve this question. User: Wite a story
Assistant: Sure! .

Assistant: Sure ...

RadixAttention enables complex prefix sharing patterns [Zheng et al., 2024],
evicting least-recently-used KV cache blocks from memory when needed

120



Efficiency | meta-generators | KV Cache reuse

prectcwy LTI
Inter-Sequence - H —
Batch (Q) 1H
]

Attention Over Prefix Matrix-Vector to Matrix-Matrix

KV Q
o K] — Tensor Cores
—_— § soo] ~ General Arithmetic
e
= o,
2016 2018 2020 2022
Attention Over Suffixes Softmax Merging Year
Hydragen Tensor Core vs. General FLOPs

End-to-End Throughput (Prefix Length 2048)

FlashAttention
VLLM

D

o

E

5 15000 VLLM (No Tokenization)

= Hydragen

) mmm Upper Bound (No Attention)

3 10000

=

<

=

2 s000

K

@ 0 I X X X

8 5 > > © O n
> © <y ~» & \9’1«

Batch Size

Hydragen [Juravsky et al., 2024] makes shared-prefix attention components

faster via leveraging Tensor Cores -



Efficiency | meta-generators | KV Cache compression

KV Cache size is a key bottleneck to larger batches and to longer
context inference

- Token Dropping: Selectively remove tokens from the KV Cache
- Quantization: Modify KV Cache datatype

- Architectural Modification: Reduce inherent size of a
prospective model’s KV Cache
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Efficiency | meta-generators | KV Cache compression

Token Dropping

(batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)

New Tokens

o
[l ] ¢ ]

3

3
o o o [ o )
IB@E000 0000D0o
EE0000 000coo
BO0000 0D0O0CDO

3

3

S ) () QS (s e )

An overview of approaches to control KV Cache size via token dropping
[Adams et al., 2024]
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Efficiency | meta-generators | KV Cache compression

Quantization:

(batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)

INT4 (o] (o] [] [e] [¢] [¢] [ ][]

As with model weights, elements of the KV cache can be quantized to reduce
memory overheads
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Efficiency | meta-generators | KV Cache compression

Architectural Modification:

(batch - n_ctx) - (2 - n_layer - n_heads - head_dim) - (n_bytes)

Multi-head Grouped-query Multi-query

Val

- 00000000 DO Q0 I

Architectural tweaks such as Multi-Query Attention [Shazeer, 2019] or
Grouped-Query Attention [Ainslie et al., 2023] reduce the number of Key +
Value attention heads to shrink the required KV Cache size
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Efficiency | meta-generators | recap

Which meta-generators are most efficient?

- Parallelizable: trajectories can be run in parallel; not
sequentially bottlenecked

- Prefix-shareable: long inputs are presented as identical shared
prefix content, whose KV Caches can be reused across many
model calls

Token budget is not the only indicator of meta-generator efficiency!
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Recap and takeaways




This tutorial

Beyond Decoding: Meta-Generation Algorithms for LLMs

- Primitive generators: Generating one token at a time
- Meta-generators: High-level strategies for calling generators

- Efficient meta-generation: Generating quickly and efficiently
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Takeaways | Meta-generators

Meta-generation: strategies for calling generators

- Various strategies: chained, parallel, tree search, refinement
- Spend test-time compute to improve performance
- Use cost-performance tradeoffs to choose/design
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Takeaways | Efficient meta-generation

- Parallelizability decreases latency and boosts throughput of
meta-generation

- Long inputs can be amortized via Prefix Sharing of KV Cache

- Prompt design and meta-generator structure can change
real-world efficiency significantly. Token budget can be an
oversimplification!
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Looking ahead

- Hybrid meta-generators

[Program + Errors ) Program + Errors }

Initialize

Verified Program

Input Spec

Treefinement

[Aggarwal et al., 2024], AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.
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Looking ahead

- Hybrid meta-generators
- Learning to search (e.g,, explore, backtrack, self-correct)
- Agent environments

- How should we allocate compute?
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Looking ahead

- Hybrid meta-generators
- Learning to search (e.g,, explore, backtrack, self-correct)
- Agent environments

- How should we allocate compute?

Science: many conclusions are based on a few tasks!
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Looking ahead

Survey Paper (TMLR 2024):

From Decoding to Meta-Generation:
Inference-time Algorithms for Large Language Models.
Sean Welleck, Amanda Bertsch*, Matt Finlayson*, Hailey Schoelkopf*, Alex
Xie, Graham Neubig, Ilia Kulikov, Zaid Harchaoui. TMLR 2024.
https://arxiv.org/abs/2406.16838
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Thank you!

Neurips 2024 Tutorial:
Beyond Decoding: Meta-Generation Algorithms for
Large Language Models

® & ¢ 3

Sean Welleck! Amanda Bertsch! Matthew Flnlayson7 Alex Xie'  Graham Neubig'

O O=@

Konstantin Golobokov® Hailey Schoe\kopf3 llia Kulikov#  Zaid Harchaoui®

=

'Camegie Mellon University 2Um’vers\'ty of Southern California  3Work done while at EleutherAl  4Meta Al

SUniversity of Washington

https://cmu-13.github.io/neurips2024-inference-tutorial
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Beidi Chen Nouha Dziri Rishabh Agarwal
CMU Al2 DeepMind/McGill

®BeidiChen @nouhadziri Ragarwl_

4
Jakob Foerster Noam Brown Ilia Kulikov (Moderator)
Oxford/Meta Al OpenAl Meta Al
@j_foerst apolynoamial @uralikl

https://cmu-13.github.io/neurips2024-inference-tutorial
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Meta-generators | parallel | pairwise

Pairwise: Minimum Bayes Risk

N
MBR(g,V,N) = arg max Z (v,y™),
ye{yO,..., i

zEy/Np v(y.y")l

where {y(", ... ,y™M} ~ gand v(y,y’) is a “utility” function.
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Meta-generators | parallel | pairwise

Pairwise: Minimum Bayes Risk

N
MBR(g,V,N) = arg max Z (v,y™),
ye{yO,..., i

zEy/Np v(y.y")l

where {y(", ... ,y™M} ~ gand v(y,y’) is a “utility” function.

Intuitively, selects the candidate with the highest “consensus” utility.
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Meta-generators | parallel | pairwise?

Utility: LLM(y,y®) = {1,2,3,4,5}:

50

00 Beam Search
00 BoN (LLM utility)
00 MBR (Rouge)
BEMBR (LLM utility)

40 §

AlpacaEval 2.0 win rate (%)

30 T
Models

2’Example from [Wu et al, 2024a] (Llama 3 70B). Utility: Prometheus 2 [Kim et al,, 2024]. 135



Meta-generators | parallel | connecting MBR and voting

Weighted voting is an instance of Minimum Bayes Risk:?®

vy y?) =1la=a®]. v 5)
utility S~ sequence score

Same answer

where y = (z,a), y®) = (z(),a).

28[Bertsch et al, 2023] It's MBR All the Way Down: Modern Generation Techniques Through the Lens
of Minimum Bayes Risk. A. Bertsch, A. Xie, G. Neubig, M. Gormley.
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Code examples




speculative decoding

1| def speculative_decode(tgt_m, drf_m, tok, inp: torch.Tensor, max_tok:
int, n_spec: int = 5, t: float = 1.0):

gen = inp; max_len = inp.shape[1] + max_tok

3 while gen.shape[1] < max_len:

4 tok_left = max_len - gen.shape[1]

spec_size = min(n_spec, tok_left - 1)

6 if spec_size > 0:

spec_id, spec_lprob = generate(drf_m, tok, gen, spec_size, t)
tgt_lprob = tgt_m(spec_id) # forwarding tgt model

rejs = compute_11_rejs(tgt_lprob, spec_lprob)

0 if len(rejs) > 0:

1 accepted = spec_id[:, :rejs[0]]

12 adj_probs = compute_adjusted_dist(tgt_lprob, spec_lprob)
3 next_tok = Categorical(adj_probs)

4 else:

5 accepted = spec_id

16 next_tok = Categorical(tgt_lprob.exp())

gen = torch.cat([gen, accepted, next_tok])
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speculative decoding

def compute_11_rejs(tgt_lprob: torch.Tensor, spec_lprob: torch.Tensor,
spec_tok_id: torch.Tensor) -> torch.Tensor:
1lrs = tgt_lprob[spec_tok_id] - spec_lprob[spec_tok_id]
uniform_lprobs = torch.log(torch.rand_like(llrs))
rej_idx = torch.nonzero((1llrs <= uniform_lprobs))
return rej_idx

def compute_adjusted_dist(tgt_lprob: torch.Tensor, spec_lprob:

torch.Tensor, rej_idx: torch.Tensor) -> torch.Tensor:

adj_dist = torch.clamp(
torch.exp(tgt_lprob[rej_idx]) - torch.exp(spec_lprob[rej_idx]),
min=0

)

adj_dist = torch.div(adj_dist, adj_dist.sum())

return adj_dist
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