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Language models

Solving olympiad problems

Writing code

Tasks framed as generating sequences: many other applications
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Approach 1: scale pretraining compute

[2020-] Scaling pretraining: larger model, larger dataset

Scaling Laws for Neural Language Models [Kaplan et al., 2020]
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Approach 2: scale post-training compute

[2022-] Scaling post-training: e.g., fine-tune on (input, output) pairs

Scaling Instruction-Finetuned Language Models [Chung et al., 2022]
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Approach 3: scale test-time compute

[Now] Test-time scaling: increase compute at generation time

Test-time compute vs. accuracy ([OpenAI, 2024])
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Approach 3: scale test-time compute | How?

1. Generate extra tokens

[Wei et al., 2022]
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Approach 3: scale test-time compute | How?

1. Generate extra tokens
2. Call generator multiple times

Math [Brown et al., 2024] Agents [Nebius, 2024] Chat [Ankner et al., 2024]
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Approach 3: scale test-time compute | How?

1. Generate extra tokens
2. Call generator multiple times
3. Incorporate other models/tools

[Zaharia et al., 2024]

Verifiers, code interpreters, search engines, ...
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This tutorial

This tutorial: How? Meta-Generation Algorithms
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This tutorial | Generation Algorithms

Generator: Generates a sequence with a language model.

• Example: calling an LLM API
• Traditional algorithms

• Greedy decoding
• Temperature sampling
• ...
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This tutorial | Meta-Generation Algorithms

Meta-generator: High-level strategies for calling generators and
using external information.

• Example: call API multiple times, select the best sequence with a
separate model
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This tutorial | Meta-Generation Algorithms

Meta-generator: High-level strategies for calling generators and
using external information.

Why?

• Generate more to improve task performance
• Combine multiple models (verifiers, retrievers, . . .)
• Incorporate external information (tools, feedback, . . .)
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This tutorial

Beyond Decoding: Meta-Generation Algorithms for LLMs

• I: Primitive generators: Generating one token at a time
• II: Meta-generators: High-level strategies for calling generators
• III: Efficient meta-generation: Generating quickly and efficiently

Panel session at the end!
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This tutorial | team and survey

Survey (TMLR 2024): From Decoding to Meta-Generation:
Inference-time Algorithms for Large Language Models [Welleck et al., 2024]
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This tutorial | resources

cmu-l3.github.io/neurips2024-inference-tutorial

Code examples, reading list, slides
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I. Primitive Generators

Generating one token at a time



This tutorial

Beyond Decoding: Meta-Generation Algorithms for LLMs

• Primitive Generators
• Meta-generators
• Efficient meta-generation
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Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens pθ[xt | x<t].

Taylor Alison Swift (born December 13, 1989) is
x<t

an
a

the
best
one
…

LM

American
actress
English
actor
award

…

Token-level decoding algorithms are primarily concerned with how
to choose the next token.
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Decoding is search

Each time-step during decoding requires a choice.

Taylor Swift is
the

a

writer

singer

and

song

producer
who

has

is

was.
actress

- song writer

former
contestant

on
the

“ The
of

member

But a search for what? What is our objective? How do we make local
choices that achieve the objective?
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Token-level generation (outline)

Objectives for decoding

• Optimization
• Sampling
• Constrained generation, structured outputs

21



I. Primitive Generators

Decoding as optimization



Maximum A Posteriori (MAP)

MAP decoding seeks to find the most likely sequence

argmax
x

pθ[x]

• Greedy decoding
• Beam search
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Greedy decoding

• Choose the most-likely token at each step.

xt = argmax
x

pθ[x | x<t]

• Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swift is a former contestant on
Token prob. 0.023 0.022 0.80 0.0004
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Greedy decoding

• Choose the most-likely token at each step.

xt = argmax
x

pθ[x | x<t]

• Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swift is a former contestant on
Token prob. 0.023 0.022 0.80 0.0004
Non-greedy Taylor Swift is a singer , song
Token prob. 0.012 0.26 0.21 0.0007
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Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.
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Benefits of MAP

MAP decoding works well for closed-ended tasks like translation,
question answering.

[Freitag and Al-Onaizan, 2017] [Shi et al., 2024]
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Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]
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Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

GPT2, Beam size 32.
Taylor Alison Swift (born December 13, 1989) is an American
singer-songwriter, singer-songwriter, songwriter, and song-
writer. She is best known for her work as a singer-song-
writer, songwriter-songwriter, songwriter-songwriter, song-
writer-songwriter…

Remedies:
• repetition penalty
• unlikelihood training [Welleck et al., 2020]
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Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

Pr[Taylor Swift is <eos>] > Pr[Taylor Swift is an American singer-…]

Remedy: length normalization
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Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

• Biased coin Pr[ H ] = 0.6, Pr[ T ] = 0.4.
• Most likely outcome from 100 flips is all heads

H H H H H H H H H H …

• But this outcome is atypical.
• Similarly, the most likely generation may also be atypical.

Remedy to all of the above: sampling
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Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

Takeaway: Approximate MAP (e.g., narrow beam search) works better
than exact MAP [Meister et al., 2020].
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I. Primitive Generators

Sampling



Objective: Sampling

Modern LLM APIs like Together.AI
offer settings for sampling.

Together.ai playground.
27



Ancestral sampling

• y1 ∼ pθ(· | x)
• y2 ∼ pθ(· | x, y1)
• y3 ∼ pθ(· | x, y2, y3)
• …

Ancestral sampling is equivalent to sequence sampling.

pθ(y) = pθ(y1)pθ(y2 | y1)pθ(y3 | y1y2) . . .pθ(yT | y<T)
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What is wrong with ancestral sampling?

• Greedy decoding causes repetition traps

• But ancestral sampling causes incoherence. Why?
• Low-probability tokens are too likely
• I.e., the distribution has a heavy tail.
• Solution: chop off the tail!

Greedy
(repetition trap)
Taylor Swift is a former contestant on the
reality show … “I think it’s a very sad day
for the show,” he said. “It’s a very sad day
for the show. It’s a very sad day for the
show. It’s a very sad …
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Taylor Swift is a huge fan of her latest
album ‘Famous.’ The singer got her first
reaction when she uploaded to Twitter a
video of her dancing and singing at a re-
ception for a Grammy-nominated female
songstress, Beyoncé.
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What is wrong with ancestral sampling?

• Greedy decoding causes repetition traps
• But ancestral sampling causes incoherence. Why?
• Low-probability tokens are too likely
• I.e., the distribution has a heavy tail.
• Solution: chop off the tail!

Greedy Ancestral Top-k
(repetition trap) (incoherent) (acceptable)
Taylor Swift is a former contestant on the
reality show … “I think it’s a very sad day
for the show,” he said. “It’s a very sad day
for the show. It’s a very sad day for the
show. It’s a very sad …

Taylor Swift is a huge fan of her latest
album ‘Famous.’ The singer got her first
reaction when she uploaded to Twitter a
video of her dancing and singing at a re-
ception for a Grammy-nominated female
songstress, Beyoncé.

Taylor Swift is a writer for IGN and a mem-
ber of IGN’s Television Critics Association.
You can follow her on Twitter at @_MsS-
wift, IGN at MsSwiftIGN, Facebook at MrsS-
wift, or subscribe to her video channels.
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Truncation sampling

Truncation sampling interpolates greedy and ancestral sampling by
choosing a minimum probability threshold at each time step.

Method Threshold strategy

Top-k Sample from k-most-probable
Top-p Cumulative probability at most p
ε Probability at least ε
η Min prob. proportional to entropy
Min-p Prob. at least pmin scaled by max token prob.
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Truncation sampling

','
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Temperature Sampling

Instead of truncating the tail, make the distribution more “peaked”.

softmax(x, τ) = exp(x/τ)∑
i exp(xi/τ)

Temperature Parameter Pro Con

High τ ≥ 1 Diverse Incoherent
Low τ < 1 Coherent Repetitive

32



Temperature Sampling

Taylor Swift is… softmax(x/τ)

0 0.4 0.8

' a'
' the'
' an'

' not'
' one'

' back'
' in'

' currently'
' on'

' also'
' now'

' still'
' known'

' set'
' no'

' doing'
' out'

' coming'
' going'

' playing'

Probability

τ = 0.5
(peaked)

0 0.4 0.8
Probability

τ = 1
(unaltered)

0 0.4 0.8
Probability

τ = 2
(near uniform)
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Sampling implementations

1 probs = model(sequence)
2

3 # Greedy
4 indices, weights = probs.argmax(keepdim=True), None
5

6 # Ancestral
7 indices, weights = vocab_size, probs
8

9 # Top-k
10 topk = probs.topk(k)
11 indices, weights = topk.indices, topk.values
12

13 # Top-p
14 argsort = probs.argsort(descending=True)
15 top_p = (argsort.values.cumsum() < p).sum() + 1
16 indices, weights = argsort.indices[:top_p], argsort.values[:top_p]
17

18 # Epsilon
19 indices, weights = vocab_size, probs * (probs > epsilon)
20

21 # Temperature
22 indices, weights = vocab_size, (logits / temp).softmax(-1)
23

24 # Sample
25 next_token = random.choices(indices, weights=weights, k=1) 34



Batteries-included inference frameworks

1 # vLLM
2 from vllm import LLM, SamplingParams
3 llm = LLM(model="facebook/opt-125m")
4 prompts = ["Hello, my name is"]
5 sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
6 outputs = llm.generate(prompts, sampling_params)
7

8 # Huggingface
9 from transformers import AutoModelForCausalLM, AutoTokenizer
10 model = AutoModelForCausalLM.from_pretrained("gpt2")
11 tokenizer = AutoTokenizer.from_pretrained("gpt2")
12 text = "Hello, my name is"
13 tokens = tokenizer(text, return_tensors="pt")
14 output = model(**tokens).generate(
15 temperature=0.8, top_p=0.95, do_sample=True
16 )

35



Why are next-token distributions heavy-tailed?

• Under-training

• Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

• By design low-rank constraints on the LLM
outputs [Finlayson et al., 2024].

Rembed Rvocabunembed
∆vocab

softmax

36



Why are next-token distributions heavy-tailed?

• Under-training
• Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

• By design low-rank constraints on the LLM
outputs [Finlayson et al., 2024].

Rembed Rvocabunembed
∆vocab

softmax

36



Why are next-token distributions heavy-tailed?

• Under-training
• Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

• By design low-rank constraints on the LLM
outputs [Finlayson et al., 2024].

Rembed Rvocabunembed
∆vocab

softmax

36



Sampling adapters

A sampling adapter takes a token distribution pθ(· | x) and re-adjusts
the probabilities.

• Truncation and temperature are adapters.

• Contrastive decoding [Li et al., 2023a, Liu et al., 2021]

p(· | x) ∝ pexpert(· | x)
pantiexpert(· | x)

• Many others
Method Purpose Adapter

Ancestral sampling y ∼ pθ –
Temperature sampling [Ackley et al., 1985] y ∼ q(pθ) Rescale
Greedy decoding y ← maxpθ Argmax (temperature→ 0)
Top-k sampling [Fan et al., 2018] y ∼ q(pθ) Truncation (top-k)
Nucleus sampling [Holtzman et al., 2020] y ∼ q(pθ) Truncation (cumulative prob.)
Typical sampling [Meister et al., 2023] y ∼ q(pθ) Truncation (entropy)
Epsilon sampling [Hewitt et al., 2022] y ∼ q(pθ) Truncation (probability)
η sampling [Hewitt et al., 2022] y ∼ q(pθ) Truncation (prob. and entropy)
Mirostat decoding [Basu et al., 2021] Target perplexity Truncation (adaptive top-k)
Basis-aware sampling [Finlayson et al., 2024] y ∼ q(pθ) Truncation (linear program)
Contrastive decoding [Li et al., 2023a] y ∼ q(pθ) log pθ′ − log pθ and truncation
DExperts [Liu et al., 2021] y ∼ q∗(·|x, c) ∝ pθ · (pθ+/pθ−)α

Inference-time adapters [Lu et al., 2023] y ∼ q∗ ∝ r(y) ∝ (pθ · pθ′)α

Proxy tuning [Liu et al., 2024] y ∼ q∗(·|x, c) ∝ pθ · (pθ+/pθ−)α
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I. Primitive Generators

Constrained decoding



Constrained decoding

Embedding LLMs in larger systems requires that they can
communicate with the larger system, e.g., with JSON.

Can we force LLMs to generate structured outputs?

From OpenAI Playground. 38



Worked example: decoding valid JSON

Language models can stuggle with controlled and structured
generation. Prompt:

Key Type
name string
birth year int

Format the following information using the JSON schema:
”Taylor Swift was born December 13, 1989.”

LLM:
{"name": "Taylor Swift", "birth": "1998-12-
13T01:00:00Z", "age…

The LLM output does not match the JSON schema.

39
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”Taylor Swift was born December 13, 1989.”

LLM:
{"name": "Taylor Swift", "birth": "1998-12-
13T01:00:00Z", "age…

The LLM output does not match the JSON schema.
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Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
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Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.

2. Filter the next-token distribution for valid tokens.
GPT2:
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Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:

Token Prob.
\n 0.36
" 0.16
{ 0.026
https 0.025
… …

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{

Token Prob.
name 0.31
date 0.069
" 0.039
id 0.033
… …

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "

Token Prob.
Taylor 0.85
T 0.034
S 0.024
The 0.022
… …

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift

Token Prob.
", 0.85
," 0.034
" 0.024
, 0.022
… …

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year":

Token Prob.
" 0.46
int 0.041
' 0.026
1989 0.020
… …

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year": 1989

Token Prob.
, 0.39
} 0.34
}, 0.11
} 0.082
… …

40



Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year": 1989}
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Side effects of templated/constrained decoding

• Generation speedup
• Reduced performance
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Token healing

• Templated generation can force unnatural token boundaries

The url is http:

//
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http

://

Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].
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Token healing

• Templated generation can force unnatural token boundaries

The url is http: //
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http://
Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].
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Summary

• Two views of decoding: optimization, sampling
• The diversity-coherence trade-off
• Constrained decoding enforces structure on LLM outputs

These are the building blocks of modern LLM generation methods.
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Meta-generators



Goal (system designer)

Design a system G that generates acceptable sequences:

argmax
G

Ey∼G(·)A(y) (1)

Example acceptability: correctness, human preferences

We know how to sample probable outputs, y ∼ pθ(y|x)

• What if these outputs are not acceptable?
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Goal (system designer)

Design a system G that generates acceptable sequences:

argmax
G

Ey∼G(·)A(y) (1)

Example acceptability: correctness, human preferences

We know how to sample probable outputs, y ∼ pθ(y|x)

• What if these outputs are not acceptable?
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Meta-generation | Key ideas

1. Take advantage of external information during generation

• Example: Learn an evaluator v(y) ≈ A(y) and use it in generation

Terminology: Evaluator ≈ critic ≈ verifier ≈ value ≈ reward model ≈ scoring model
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• Example: Learn an evaluator v(y) ≈ A(y) and use it in generation

Terminology: Evaluator ≈ critic ≈ verifier ≈ value ≈ reward model ≈ scoring model
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Meta-generation | Key ideas

1. Take advantage of external information during generation

2. Call the generator more than once to search for good sequences

45



Meta-generation | Key ideas

Example: solve a math problem
46



Meta-generation | Key ideas

What if we had an oracle verifier, v(y)?

Repeat:
• z ∼ pθ(z|x)
• y ∼ pθ(y|x, z)
• Stop if v(y) says answer is
correct

47



Meta-generation | Key ideas1

1Adapted from [Brown et al., 2024]. See also [Li et al., 2022, Cobbe et al., 2021, Jiang et al., 2023]
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Meta-generation

We formalize these kinds of strategies as meta-generators 2

y ∼ G(y|x;g1,g2, . . . ,gG︸ ︷︷ ︸
generators

, φ︸︷︷︸
Other parameters

)

Key design choices:

• G: strategy for calling generators
• g1,g2, . . . ,gG: choice of generators
• φ: other models, number of tokens to generate, ...

2[Welleck et al., 2024] From Decoding to Meta-Generation: Inference-time Algorithms for LLMs.
S. Welleck, A. Bertsch*, M. Finlayson*, H. Schoelkopf*, A. Xie, G. Neubig, I. Kulikov, Z. Harchaoui.
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Meta-generation

Token-level generators from part 1 are a special case of calling:

y ∼ g(y|x;pθ, φ)

Design choices:

• g: sampling adapters, beam search, ....
• φ: temperature, beam width, ...
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Meta-generators | outline

• Strategies
• Chain
• Parallel
• Tree search
• Refinement/Self-Correction

• Scaling meta-generators
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Meta-generators | chain

Compose generators:

y1 ∼ g1(x)
y2 ∼ g2(x, y1)
y3 ∼ g3(x, y2)
...
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Meta-generators | chain

Motivating example: Chain-of-thought [Wei et al., 2022]:

A simple decomposition:

• Generate a thought, z ∼ g(·|x)
• Generate an answer, a ∼ g(·|x, z)
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Meta-generators | chain

Motivating example: Chain-of-thought [Wei et al., 2022]:

Increases expressivity3

• Variable output length, analogous to a writeable tape

3E.g., [Feng et al., 2023, Merrill and Sabharwal, 2024, Nowak et al., 2024]
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Meta-generators | chain

Extend to multiple steps:
• Each step:

• Generate query
• Call API

• Then generate an answer

Self-Ask [Press et al., 2023]
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Meta-generators | chain4

View as programs:

• Outer function ≈ meta-generator

• Inner function ≈ generator

Demonstrate-Search-Predict (DSP)
[Khattab et al., 2022]

4[Khattab et al., 2022, Dohan et al., 2022, Schlag et al., 2023, Zheng et al., 2024]
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Meta-generators | chain

Many other examples!

• Rewrite input before generating
(System-2 Attention [Weston and Sukhbaatar, 2023])

• Sketch proof, fill gaps, check proof
(Draft-Sketch-Prove [Jiang et al., 2023])

• ...
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Meta-generators | chain

Chained meta-generation

• Key idea: decompose generation and incorporate tools/models
• Chaining alone does not explore the output space
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Meta-generators | outline

• Strategies
• Chain
• Parallel
• Tree search
• Refinement
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Meta-generators | parallel

• Generate candidates:

{y(1), . . . , y(N)} ∼ G(·|x)

• Aggregate:
y = h(y(1), . . . , y(N))
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Meta-generators | parallel | Best-of-N/Rejection Sampling5

argmax
{y(1),...,y(N)}

v(y)︸︷︷︸
reward model

5[Stiennon et al., 2020, Nakano et al., 2022]
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Meta-generators | parallel | Best-of-N/Rejection Sampling

Reward model v(y) → [0, 1]:

Train reward model with correct and incorrect examples.6

6E.g., [Cobbe et al., 2021]
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Meta-generators | parallel | Best-of-N/Rejection Sampling

Reward model v(y) → [0, 1]:

Train reward model with preference data.6

6E.g., [Stiennon et al., 2020]
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Meta-generators | parallel | Best-of-N/Rejection Sampling

Why Best-of-N?

• Approximates maximum acceptability:

Best-of-N = argmax
y∈{y(1),...,y(N)}

v(y)

≈ argmax
y

v(y) (2)

≈ argmax
y

A(y) (3)

(2) gets better as number of generations N increases!

(3) Suffers from imperfect reward model, aka “over-optimization”
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Meta-generators | parallel | Best-of-N/Rejection Sampling

Why Best-of-N?

• Approximates maximum acceptability:

Best-of-N = argmax
y∈{y(1),...,y(N)}

v(y)

≈ argmax
y

v(y) (2)

≈ argmax
y

A(y) (3)

(2) gets better as number of generations N increases!

(3) Suffers from imperfect reward model, aka “over-optimization”

62



Meta-generators | parallel | Best-of-N/Rejection Sampling7

7Plot adapted from Training Verifiers to Solve Math Word Problems [Cobbe et al., 2021] 63



Meta-generators | parallel | voting / self-consistency

Voting aggregation:8

argmax
a

N∑
i=1

1{y(i) = a},

8[Wang et al., 2023]
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Meta-generators | parallel | weighted voting9

Weighted Voting:

argmax
a

N∑
i=1

v(y(i))︸ ︷︷ ︸
reward model

·1{y(i) = a},

9[Li et al., 2023b]
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Meta-generators | parallel | voting

Can outperform Best-of-N, e.g.:10

10[Sun et al., 2024] Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision.
Z. Sun, L. Yu, Y. Shen, W. Liu, Y. Yang, S. Welleck, C. Gan. NeurIPS 2024.
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Meta-generators | parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...11

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z, a)g(z, a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Notation:

• (x, z, a): (input, solution, answer)

• M: number of test examples

11Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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Meta-generators | parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...11

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z, a)g(z, a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Takeaway 1: Will accuracy keep improving with more samples?

• No, it eventually converges to the accuracy shown above

11Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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Meta-generators | parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...11

1
M

M∑
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I

a∗i = argmax
a

∑
z
v(x, z, a)g(z, a|x)︸ ︷︷ ︸
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Takeaway 2: When is weighted voting better than voting?

• When v · g assigns more total mass to correct answers than g

11Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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Meta-generators | parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...11

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z, a)g(z, a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Takeaway 3: How do we improve performance further?

• Improve the reward model v
• Improve the generator g (better model and/or better algorithm)

11Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.
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Meta-generators | parallel

Improve the reward model:

Parallel generation in the reward model too12

Active area of research!

12[Zhang et al., 2024]
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Meta-generators | parallel

Parallel meta-generators

• Explores output space by generating full sequences
• Large performance gains in practice
• Bounded by the quality of the evaluator and generator

Insight: only uses the verifier at the end (on full sequences)

• Next: Can we better leverage intermediate evaluation?
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Meta-generators | parallel

Parallel meta-generators

• Explores output space by generating full sequences
• Large performance gains in practice
• Bounded by the quality of the evaluator and generator

Insight: only uses the verifier at the end (on full sequences)

• Next: Can we better leverage intermediate evaluation?
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Meta-generators | outline

• Strategies
• Chain
• Parallel
• Tree search
• Refinement

70



Meta-generators | tree search | basic idea

Design choices:

• States s
• Transitions s→ s′

• Scores v(s)
• Strategy (breadth-first, depth-first, ...)
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Design choices:

• States s
• Transitions s→ s′

• Scores v(s)
• Strategy (breadth-first, depth-first, ...)
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Meta-generators | tree search | example

1. Scores: “process reward model (PRM)”13

v(x, s1, s2, . . . , st)→ [0, 1]

13[Uesato et al., 2022, Lightman et al., 2024, Wang et al., 2024a]
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Meta-generators | tree search | example (Rebase)

2. Reward Balanced Search (Rebase)14

explorei = Round
(
Budget exp (v(si)/τ)∑

j exp (v(sj)/τ)

)
, (4)

14[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.
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Meta-generators | tree search | aggregation

Run tree search to get candidates for aggregation (e.g., voting).

• Key idea: Leverages scores on intermediate states
• Backtracking
• Exploration
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Meta-generators | tree search | aggregation

Run tree search to get candidates for aggregation (e.g., voting).

• Key idea: Leverages scores on intermediate states
• Backtracking
• Exploration
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Meta-generators | tree search | example15

15[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference. 75



Meta-generators | tree search | example

Go [Silver et al., 2016]
Proofs [Polu and Sutskever, 2020]

Agents [Koh et al., 2024]
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Meta-generators | tree search

Tree-search meta-generators

• Can backtrack and explore using intermediate scores
• Requires a suitable environment and value function

• Decomposition into states
• Good reward signal
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Meta-generators | outline

• Strategies
• Chain
• Parallel
• Tree search
• Refinement/self-correction

• Scaling meta-generators
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Meta-generators | refinement / self-correction

Improve a generation
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Meta-generators | refinement / self-correction

Improve a generation using feedback
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Meta-generators | refinement / self-correction

Improve a generation using feedback
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Meta-generators | refinement

In practice, the quality and source of feedback is crucial:

• Extrinsic: external information at inference time
• Intrinsic: no external information at inference time

80



Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Feedback: external program verifier16

16 [Aggarwal et al., 2024], AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.
81



Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.
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Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Tutorial code demo: github.com/cmu-l3/neurips2024-inference-tutorial-code

81
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Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Several success cases:

• Verifiers [Aggarwal et al., 2024]

• Code interpreters [Chen et al., 2024b]
• Retrievers [Asai et al., 2024]

• Tools + agent environment16

• ...

Intuition: adds new information, can detect and localize errors

16https://x.com/gneubig/status/1866172948991615177

81
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Meta-generators | refinement | intrinsic

2. Intrinsic: Re-prompt the same model:

Re-prompt a single LLM, e.g. [Madaan et al., 2023]
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Meta-generators | refinement | intrinsic

Mixed results:

• Easy to evaluate tasks: positive [Wang et al., 2024b]
• E.g., missing info [Asai et al., 2024]

• Mathematical reasoning: mixed17

17E.g., [Huang et al., 2024] Large Language Models Cannot Self-Correct Reasoning Yet
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Meta-generators | refinement | intrinsic

Takeaway: feedback is too noisy From [Huang et al., 2024]
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Meta-generators | refinement

Generate “TAYLORSWIFT”
• Generator:

• p(character)

• Feedback:
• Incorrect characters

• Corrector:
• Regenerate incorrect
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Meta-generators | refinement | intrinsic

3. Intrinsic: trained corrector

Directly learn to correct17

17[Welleck et al., 2023], Generating Sequences by Learning to [Self-]Correct.
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Meta-generators | refinement | Case 3: fine-tuning

General pattern:18

• Collect (bad, better) pairs by generating and evaluating reward
• Update corrector pθ(better|bad) using the collected data
• Repeat

Prone to behavior collapse

• [Kumar et al., 2024]: overcome with regularization + RL

18E.g., Self-corrective learning [Welleck et al., 2023], SCoRe [Kumar et al., 2024].
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Meta-generators | refinement | Case 3: fine-tuning

General pattern:18

• Collect (bad, better) pairs by generating and evaluating reward
• Update corrector pθ(better|bad) using the collected data
• Repeat

Prone to behavior collapse

• [Kumar et al., 2024]: overcome with regularization + RL

18E.g., Self-corrective learning [Welleck et al., 2023], SCoRe [Kumar et al., 2024].
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Meta-generators | refinement | Case 3: fine-tuning

From SCoRe [Kumar et al., 2024]
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Meta-generators | refinement / self-correction

Refinement / self-correction

• Extrinsic
• Positive results for environments that detect or localize errors

• Intrinsic, prompted
• Mixed results, depends on difficulty of verification

• Intrinsic, trained
• Possible improvements, requires specific training strategies
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Meta-generators | outline

This talk:
• Strategies

• Chain
• Parallel
• Tree search
• Refinement

• Scaling meta-generators
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Meta-generation | how do we allocate test-time compute?

Choose strategies based on task performance and compute cost

Cost is a function of:

• Model size
• Number of generated tokens
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Meta-generation | compute-optimal inference19

For a compute budget C:

argminN,T,S s.t. cost(N,T,S)=Cerror(N, T, S)

• N: number of model parameters

• T : number of generated tokens

• S: inference strategy

• cost(N, T, S): in floating-point operations

19[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.
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Meta-generation | compute-optimal inference20

Choose configurations on the compute-optimal frontier (green)

20[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.
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Meta-generation | how do we choose a meta-generator?

Question 1: is it better to use:

• A small model and more generations
• A large model and fewer generations

Experiment: Fix strategy, vary model size N and number of tokens T
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Meta-generation | how do we choose a meta-generator?

Smaller models can be compute optimal [Wu et al., 2024b]. 93



Meta-generation | how do we choose a meta-generator?

Question 2: what is the compute-optimal meta-generation strategy?

Experiment: vary strategy (and model size and number of tokens)
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Meta-generation | how do we choose a meta-generator?

Tree search (Rebase) can be compute-optimal [Wu et al., 2024b].
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Meta-generation | recap

• Performance improves with increased compute...
• ... but it varies by the choice of model size and meta-generator

• The optimal model size and strategy varies with the compute
budget

• Sometimes smaller models are better!
• Goal: design strategies that are universally optimal
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Meta-generation | recap

• Meta-generators: strategies for calling generators and
incorporating external information

• Several patterns: chain, parallel, tree search, refinement
• They can be combined and mixed together
• Choose and design methods based on task performance and
cost
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Meta-generation | speeding up

Next: The preceding meta-generators

• Generate many tokens
• In diverse ways (e.g., tree search)

How do we do this quickly and efficiently?
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Efficient meta-generation



Efficiency | goals

Scope:

• Basics of efficient generation
• How can we make meta-generation faster?
• Which specific meta-generators are most efficient?
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Efficiency | basics

How do we measure “efficiency”?

• Latency
• How long does a user wait for a response?

• Throughput
• How many requests are completed per second?
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Efficiency | basics

Latency, Throughput, and Quality often trade off at a given budget.
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Efficiency | hardware

Hardware improvements have driven model improvements 21

The largest efficiency wins come from mapping operations onto
hardware (more) effectively!

21Figure: [Hobbhahn et al., 2023] 102



Efficiency | hardware

How do ML accelerator designs impact generation efficiency?

• How much data can we keep on-device?
• VRAM (GB)

• How many operations/second can the device perform?
• FLOP/s

• How long does it take to send operands from GPU memory
(HBM) to the processor?

• Memory Bandwidth (GB/s)
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Efficiency | bottlenecks

• Loading inputs (activations) from memory
• Memory Bandwidth

• Loading weights from memory
• Memory Bandwidth

• Performing computation
• FLOP/s

• Communicating across devices
• Communication Speeds (GB/s)

• ...
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Efficiency | bottlenecks

Time per operation can be modeled as22:

Time = max
(

Operation FLOP
Device FLOP/s

,
Data Transferred (GB)

Memory Bandwidth (GB/s)

)

Operations are either “compute-bound” or “memory-bound”23

22[He, 2022]
23H100 SXM: BF16 dense tensor core max FLOP/s ≈ 1× 1015 FLOP/s, Memory bandwidth
≈ 3.35× 1012 byte/s. � 100 FLOP/byte is “free”!
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Efficiency | batching

Inputs to a model can be “batched”
together and computed
simultaneously.

Batching can be cost-free for
memory-bound operations!a

ahttps://www.artfintel.com/p/how-does-
batching-work-on-modern 106



Efficiency | KV cache

Prefill Stage: process prompt all at
once. Keys and values retained and
initialize the “KV Cache”.

Decode Stage: use cached KV values
to compute attention for current
timestep. Append new K, V to KV cache

Size = (batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)
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Efficient meta-generation

How to speed up sampling a single
token?



Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

• Memory Bandwidth ↓
• FLOP/s ↑
• FLOP ↓
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Efficiency | single-token

Memory Bandwidth ↓: reduce data transferred

• Quantize weights or activations24

(bytes per parameter) · (total parameters)

• Compress or distill model

(bytes per parameter) · (total parameters)

24Visual from
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
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Efficiency | single-token

FLOP/s ↑: improve hardware utilization

(FLOP per second) · (total operation FLOP)

Flash Attention [Dao et al., 2022] performs the same operations, but
optimizes the implementation to achieve far greater speed
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Efficiency | single-token

FLOP ↓: reduce operations required

(FLOP per second) · (total operation FLOP)

Mixture-of-Experts models use fewer FLOP per token than equi-parameter
dense models [Fedus et al., 2022] 111



Efficient meta-generation

How to speed up a single generation?



Efficiency | single-generation

Generation of long outputs is bottlenecked by sequential next-token
prediction. But not all tokens are created equal!

... The cow jumped over the moon . <EOS>

How can we spend less time on “easier” tokens?
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Efficiency | single-generation

Decoding is typically memory-bound.

Speculative decoding uses a smaller draft model to produce “guesses” for
the next N tokens cheaply, which are then “accepted” or “rejected” in parallel
by the main model [Xia et al., 2024]
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Efficiency | single-generation

In speculative decoding:

• A lighter-weight draft model generates N “proposal” tokens
• These N “proposal” tokens can be passed in parallel into the
main generator

• All tokens which match the main generator’s predictions are
retained, and ones that do not are discarded
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Efficiency | single-generation

Speculative decoding can harm throughput at low context but improves both
throughput and latency at long context lengths [Chen et al., 2024a]
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Efficient meta-generation

How to speed up meta-generation?



Efficiency | meta-generators

• How do meta-generators interact with real-world efficiency and
hardware utilization?

• Which meta-generators are the fastest? Can we design more
efficient meta-generators?
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Efficiency | meta-generators | KV Cache reuse

Common deployment and parallel generation scenarios have redundant
shared prefix content in prompts25

25Figure from [Juravsky et al., 2024]
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Efficiency | meta-generators | KV Cache reuse

PagedAttention [Kwon et al., 2023] prevents redundant storage costs by
mapping KV cache blocks to physical “pages” of VRAM
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Efficiency | meta-generators | KV cache reuse

KV Cache reuse is not limited to single-level shared prefixes!

Multiple levels of prefix sharing can arise frequently: for example, combining
a long few-shot prompt with Best-of-N generation26

26Figure from [Juravsky et al., 2024]
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Efficiency | meta-generators | KV Cache reuse

RadixAttention enables complex prefix sharing patterns [Zheng et al., 2024],
evicting least-recently-used KV cache blocks from memory when needed
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Efficiency | meta-generators | KV Cache reuse

Hydragen [Juravsky et al., 2024] makes shared-prefix attention components
faster via leveraging Tensor Cores 121



Efficiency | meta-generators | KV Cache compression

KV Cache size is a key bottleneck to larger batches and to longer
context inference

• Token Dropping: Selectively remove tokens from the KV Cache
• Quantization: Modify KV Cache datatype
• Architectural Modification: Reduce inherent size of a
prospective model’s KV Cache
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Efficiency | meta-generators | KV Cache compression

Token Dropping:

(batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

An overview of approaches to control KV Cache size via token dropping
[Adams et al., 2024]
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Efficiency | meta-generators | KV Cache compression

Quantization:

(batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

As with model weights, elements of the KV cache can be quantized to reduce
memory overheads
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Efficiency | meta-generators | KV Cache compression

Architectural Modification:

(batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

Architectural tweaks such as Multi-Query Attention [Shazeer, 2019] or
Grouped-Query Attention [Ainslie et al., 2023] reduce the number of Key +
Value attention heads to shrink the required KV Cache size
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Efficiency | meta-generators | recap

Which meta-generators are most efficient?

• Parallelizable: trajectories can be run in parallel; not
sequentially bottlenecked

• Prefix-shareable: long inputs are presented as identical shared
prefix content, whose KV Caches can be reused across many
model calls

Token budget is not the only indicator of meta-generator efficiency!
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Recap and takeaways



This tutorial

Beyond Decoding: Meta-Generation Algorithms for LLMs

• Primitive generators: Generating one token at a time
• Meta-generators: High-level strategies for calling generators
• Efficient meta-generation: Generating quickly and efficiently
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Takeaways | Meta-generators

Meta-generation: strategies for calling generators

• Various strategies: chained, parallel, tree search, refinement
• Spend test-time compute to improve performance
• Use cost-performance tradeoffs to choose/design
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Takeaways | Efficient meta-generation

• Parallelizability decreases latency and boosts throughput of
meta-generation

• Long inputs can be amortized via Prefix Sharing of KV Cache
• Prompt design and meta-generator structure can change
real-world efficiency significantly. Token budget can be an
oversimplification!
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Looking ahead

• Hybrid meta-generators

[Aggarwal et al., 2024], AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.

• Learning to search (e.g., explore, backtrack, self-correct)

• Agent environments

• How should we allocate compute?

Science: many conclusions are based on a few tasks!
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Looking ahead

Survey Paper (TMLR 2024):

From Decoding to Meta-Generation:
Inference-time Algorithms for Large Language Models.

Sean Welleck, Amanda Bertsch∗, Matt Finlayson∗, Hailey Schoelkopf∗, Alex
Xie, Graham Neubig, Ilia Kulikov, Zaid Harchaoui. TMLR 2024.

https://arxiv.org/abs/2406.16838
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Thank you!

https://cmu-l3.github.io/neurips2024-inference-tutorial
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Appendix



Meta-generators | parallel | pairwise

Pairwise: Minimum Bayes Risk

MBR(g, v,N) = argmax
y∈{y(1),...,y(N)}

1
N

N∑
i=1

v(y, y(i))︸ ︷︷ ︸
≈Ey′∼p[v(y,y′)]

,

where {y(1), . . . , y(N)} ∼ g and v(y, y′) is a “utility” function.

Intuitively, selects the candidate with the highest “consensus” utility.
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Meta-generators | parallel | pairwise27

Utility: LLM(y, y(i)) → {1, 2, 3, 4, 5}:

Models
30

40

50

Al
pa
ca
Ev
al
2.0

w
in
ra
te
(%
) Beam Search

BoN (LLM utility)
MBR (Rouge)

MBR (LLM utility)

27Example from [Wu et al., 2024a] (Llama 3 70B). Utility: Prometheus 2 [Kim et al., 2024]. 135



Meta-generators | parallel | connecting MBR and voting

Weighted voting is an instance of Minimum Bayes Risk:28

v(y, y(i))︸ ︷︷ ︸
utility

= 1
[
a = a(i)

]
︸ ︷︷ ︸
same answer

· v(y(i))︸ ︷︷ ︸
sequence score

, (5)

where y = (z,a), y(i) = (z(i),a(i)).

28[Bertsch et al., 2023] It’s MBR All the Way Down: Modern Generation Techniques Through the Lens
of Minimum Bayes Risk. A. Bertsch, A. Xie, G. Neubig, M. Gormley.
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Code examples



speculative decoding

1 def speculative_decode(tgt_m, drf_m, tok, inp: torch.Tensor, max_tok:
int, n_spec: int = 5, t: float = 1.0):

2 gen = inp; max_len = inp.shape[1] + max_tok
3 while gen.shape[1] < max_len:
4 tok_left = max_len - gen.shape[1]
5 spec_size = min(n_spec, tok_left - 1)
6 if spec_size > 0:
7 spec_id, spec_lprob = generate(drf_m, tok, gen, spec_size, t)
8 tgt_lprob = tgt_m(spec_id) # forwarding tgt model
9 rejs = compute_ll_rejs(tgt_lprob, spec_lprob)
10 if len(rejs) > 0:
11 accepted = spec_id[:, :rejs[0]]
12 adj_probs = compute_adjusted_dist(tgt_lprob, spec_lprob)
13 next_tok = Categorical(adj_probs)
14 else:
15 accepted = spec_id
16 next_tok = Categorical(tgt_lprob.exp())
17 gen = torch.cat([gen, accepted, next_tok])
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speculative decoding

1 def compute_ll_rejs(tgt_lprob: torch.Tensor, spec_lprob: torch.Tensor,
spec_tok_id: torch.Tensor) -> torch.Tensor:

2 llrs = tgt_lprob[spec_tok_id] - spec_lprob[spec_tok_id]
3 uniform_lprobs = torch.log(torch.rand_like(llrs))
4 rej_idx = torch.nonzero((llrs <= uniform_lprobs))
5 return rej_idx
6

7 def compute_adjusted_dist(tgt_lprob: torch.Tensor, spec_lprob:
torch.Tensor, rej_idx: torch.Tensor) -> torch.Tensor:

8 adj_dist = torch.clamp(
9 torch.exp(tgt_lprob[rej_idx]) - torch.exp(spec_lprob[rej_idx]),
10 min=0
11 )
12 adj_dist = torch.div(adj_dist, adj_dist.sum())
13 return adj_dist
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