
Beyond Decoding: Meta-Generation Algorithms
for Large Language Models

Presenters: Matthew Finlayson, Hailey Schoelkopf, Sean Welleck
December 11, 2024

Today’s talk

Algorithms for generating outputs with a
language model

Why? Use test-time compute to improve performance

1

Today’s talk

Algorithms for generating outputs with a
language model
Why? Use test-time compute to improve performance

1

Language models

Solving olympiad problems

Writing code

Tasks framed as generating sequences: many other applications

2

Approach 1: scale pretraining compute

[2020-] Scaling pretraining: larger model, larger dataset

Scaling Laws for Neural Language Models [Kaplan et al., 2020]

3

Approach 2: scale post-training compute

[2022-] Scaling post-training: e.g., fine-tune on (input, output) pairs

Scaling Instruction-Finetuned Language Models [Chung et al., 2022]

4

Approach 3: scale test-time compute

[Now] Test-time scaling: increase compute at generation time

Test-time compute vs. accuracy ([OpenAI, 2024])

5

Approach 3: scale test-time compute | How?

1. Generate extra tokens

[Wei et al., 2022]

6

Approach 3: scale test-time compute | How?

1. Generate extra tokens

[Wei et al., 2022]
6

Approach 3: scale test-time compute | How?

1. Generate extra tokens
2. Call generator multiple times

AlphaCode [Li et al., 2022]

7

Approach 3: scale test-time compute | How?

1. Generate extra tokens
2. Call generator multiple times

AlphaCode [Li et al., 2022]
7

Approach 3: scale test-time compute | How?

1. Generate extra tokens
2. Call generator multiple times

Math [Brown et al., 2024] Agents [Nebius, 2024] Chat [Ankner et al., 2024]

8

Approach 3: scale test-time compute | How?

1. Generate extra tokens
2. Call generator multiple times
3. Incorporate other models/tools

[Zaharia et al., 2024]

Verifiers, code interpreters, search engines, ...

9

This tutorial

This tutorial: How? Meta-Generation Algorithms

10

This tutorial | Generation Algorithms

Generator: Generates a sequence with a language model.

• Example: calling an LLM API
• Traditional algorithms

• Greedy decoding
• Temperature sampling
• ...

11

This tutorial | Meta-Generation Algorithms

Meta-generator: High-level strategies for calling generators and
using external information.

• Example: call API multiple times, select the best sequence with a
separate model

12

This tutorial | Meta-Generation Algorithms

Meta-generator: High-level strategies for calling generators and
using external information.

Why?

• Generate more to improve task performance
• Combine multiple models (verifiers, retrievers, . . .)
• Incorporate external information (tools, feedback, . . .)

12

This tutorial

Beyond Decoding: Meta-Generation Algorithms for LLMs

• I: Primitive generators: Generating one token at a time
• II: Meta-generators: High-level strategies for calling generators
• III: Efficient meta-generation: Generating quickly and efficiently

Panel session at the end!

13

Presenters

Part I

Matthew Finlayson
USC

@mattf1n

Intro/Part II

Sean Welleck
CMU

@wellecks

Part III

Hailey Schoelkopf
EleutherAI

@haileysch__

14

https://twitter.com/mattf1n
https://twitter.com/wellecks
https://twitter.com/haileysch__

Panel

Beidi Chen
CMU

@BeidiChen

Nouha Dziri
AI2

@nouhadziri

Rishabh Agarwal
DeepMind/McGill

@agarwl_

Jakob Foerster
Oxford/Meta AI

@j_foerst

Noam Brown
OpenAI

@polynoamial

Ilia Kulikov (Moderator)
Meta AI
@uralik1

15

https://twitter.com/BeidiChen
https://twitter.com/nouhadziri
https://twitter.com/agarwl_
https://twitter.com/j_foerst
https://twitter.com/polynoamial
https://twitter.com/uralik1

This tutorial | team and survey

Survey (TMLR 2024): From Decoding to Meta-Generation:
Inference-time Algorithms for Large Language Models [Welleck et al., 2024]

16

This tutorial | resources

cmu-l3.github.io/neurips2024-inference-tutorial

Code examples, reading list, slides

17

https://cmu-l3.github.io/neurips2024-inference-tutorial

I. Primitive Generators

I. Primitive Generators

Generating one token at a time

This tutorial

Beyond Decoding: Meta-Generation Algorithms for LLMs

• Primitive Generators
• Meta-generators
• Efficient meta-generation

18

Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens pθ[xt | x<t].

Taylor Alison Swift (born December 13, 1989) is
x<t

an
a

the
best
one
…

LM

American
actress
English
actor
award

…

Token-level decoding algorithms are primarily concerned with how
to choose the next token.

19

Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens pθ[xt | x<t].

Taylor Alison Swift (born December 13, 1989) is
x<t

an
a

the
best
one
…

*

an
xt

American
actress
English
actor
award

…

Token-level decoding algorithms are primarily concerned with how
to choose the next token.

19

Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens pθ[xt | x<t].

Taylor Alison Swift (born December 13, 1989) is an

x<t

American
actress
English
actor
award

…

Token-level decoding algorithms are primarily concerned with how
to choose the next token.

19

Token-level generation

Auto-regressive language modeling uses a causal language model,
which defines a conditional distribution over tokens pθ[xt | x<t].

Taylor Alison Swift (born December 13, 1989) is an

x<t

American
actress
English
actor
award

…

Token-level decoding algorithms are primarily concerned with how
to choose the next token.

19

Decoding is search

Each time-step during decoding requires a choice.

Taylor Swift is
the

a

writer

singer

and

song

producer
who

has

is

was.
actress

- song writer

former
contestant

on
the

“ The
of

member

But a search for what? What is our objective? How do we make local
choices that achieve the objective?

20

Token-level generation (outline)

Objectives for decoding

• Optimization
• Sampling
• Constrained generation, structured outputs

21

I. Primitive Generators

Decoding as optimization

Maximum A Posteriori (MAP)

MAP decoding seeks to find the most likely sequence

argmax
x

pθ[x]

• Greedy decoding
• Beam search

22

Greedy decoding

• Choose the most-likely token at each step.

xt = argmax
x

pθ[x | x<t]

• Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swift is a former contestant on
Token prob. 0.023 0.022 0.80 0.0004

23

Greedy decoding

• Choose the most-likely token at each step.

xt = argmax
x

pθ[x | x<t]

• Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swift is a former contestant on
Token prob. 0.023 0.022 0.80 0.0004

23

Greedy decoding

• Choose the most-likely token at each step.

xt = argmax
x

pθ[x | x<t]

• Does not guarantee the most-likely sequence.

Prefix Continuation Prob.
Greedy Taylor Swift is a former contestant on
Token prob. 0.023 0.022 0.80 0.0004
Non-greedy Taylor Swift is a singer , song
Token prob. 0.012 0.26 0.21 0.0007

23

Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.

24

Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.

24

Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.

24

Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.

24

Beam Search

Beam-search is a width-limited breadth-first search (BFS).

Taylor Swift is

a
0.13 former

0.003

writer
0.003

an
0.03

the
0.06 latest

0.004

to
0.0004 be

0.00002

join
0.00002

in
0.0003

only
0.003 person

0.0004 who
0.00008

to
0.00008

one
0.0002

GPT2, beam size 2

Note: Beam search with beam size 1 is greedy decoding.
24

Benefits of MAP

MAP decoding works well for closed-ended tasks like translation,
question answering.

[Freitag and Al-Onaizan, 2017] [Shi et al., 2024]

25

Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

26

Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

GPT2, Beam size 32.
Taylor Alison Swift (born December 13, 1989) is an American
singer-songwriter, singer-songwriter, songwriter, and song-
writer. She is best known for her work as a singer-song-
writer, songwriter-songwriter, songwriter-songwriter, song-
writer-songwriter…

Remedies:
• repetition penalty
• unlikelihood training [Welleck et al., 2020]

26

Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

Pr[Taylor Swift is <eos>] > Pr[Taylor Swift is an American singer-…]

Remedy: length normalization

26

Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

• Biased coin Pr[H] = 0.6, Pr[T] = 0.4.
• Most likely outcome from 100 flips is all heads

H H H H H H H H H H …

• But this outcome is atypical.
• Similarly, the most likely generation may also be atypical.

Remedy to all of the above: sampling

26

Pitfalls of MAP

Probability maximization causes decoding problems.

• Repetition traps
• Short sequences [Stahlberg and Byrne, 2019]
• Atypicality [Meister et al., 2022]

Takeaway: Approximate MAP (e.g., narrow beam search) works better
than exact MAP [Meister et al., 2020].

26

I. Primitive Generators

Sampling

Objective: Sampling

Modern LLM APIs like Together.AI
offer settings for sampling.

Together.ai playground.
27

Ancestral sampling

• y1 ∼ pθ(· | x)
• y2 ∼ pθ(· | x, y1)
• y3 ∼ pθ(· | x, y2, y3)
• …

Ancestral sampling is equivalent to sequence sampling.

pθ(y) = pθ(y1)pθ(y2 | y1)pθ(y3 | y1y2) . . .pθ(yT | y<T)

28

Ancestral sampling

• y1 ∼ pθ(· | x)
• y2 ∼ pθ(· | x, y1)
• y3 ∼ pθ(· | x, y2, y3)
• …

Ancestral sampling is equivalent to sequence sampling.

pθ(y) = pθ(y1)pθ(y2 | y1)pθ(y3 | y1y2) . . .pθ(yT | y<T)

28

What is wrong with ancestral sampling?

• Greedy decoding causes repetition traps

• But ancestral sampling causes incoherence. Why?
• Low-probability tokens are too likely
• I.e., the distribution has a heavy tail.
• Solution: chop off the tail!

Greedy
(repetition trap)
Taylor Swift is a former contestant on the
reality show … “I think it’s a very sad day
for the show,” he said. “It’s a very sad day
for the show. It’s a very sad day for the
show. It’s a very sad …

29

What is wrong with ancestral sampling?

• Greedy decoding causes repetition traps
• But ancestral sampling causes incoherence. Why?
• Low-probability tokens are too likely
• I.e., the distribution has a heavy tail.

• Solution: chop off the tail!

Greedy Ancestral
(repetition trap) (incoherent)
Taylor Swift is a former contestant on the
reality show … “I think it’s a very sad day
for the show,” he said. “It’s a very sad day
for the show. It’s a very sad day for the
show. It’s a very sad …

Taylor Swift is a huge fan of her latest
album ‘Famous.’ The singer got her first
reaction when she uploaded to Twitter a
video of her dancing and singing at a re-
ception for a Grammy-nominated female
songstress, Beyoncé.

29

What is wrong with ancestral sampling?

• Greedy decoding causes repetition traps
• But ancestral sampling causes incoherence. Why?
• Low-probability tokens are too likely
• I.e., the distribution has a heavy tail.
• Solution: chop off the tail!

Greedy Ancestral Top-k
(repetition trap) (incoherent) (acceptable)
Taylor Swift is a former contestant on the
reality show … “I think it’s a very sad day
for the show,” he said. “It’s a very sad day
for the show. It’s a very sad day for the
show. It’s a very sad …

Taylor Swift is a huge fan of her latest
album ‘Famous.’ The singer got her first
reaction when she uploaded to Twitter a
video of her dancing and singing at a re-
ception for a Grammy-nominated female
songstress, Beyoncé.

Taylor Swift is a writer for IGN and a mem-
ber of IGN’s Television Critics Association.
You can follow her on Twitter at @_MsS-
wift, IGN at MsSwiftIGN, Facebook at MrsS-
wift, or subscribe to her video channels.

29

Truncation sampling

Truncation sampling interpolates greedy and ancestral sampling by
choosing a minimum probability threshold at each time step.

Method Threshold strategy

Top-k Sample from k-most-probable
Top-p Cumulative probability at most p
ε Probability at least ε
η Min prob. proportional to entropy
Min-p Prob. at least pmin scaled by max token prob.

30

Truncation sampling

','
' and'
' is'
' ('
'\n'

' said'
' in'

' had'
' at'

' will'
' &'

' of'
"',""'"

'/'
' says'

' recently'
' also'
' (@'
' ,'

' for'
' told'

' released'
' can'

' performed'
' made'

Logprob

Taylor Swift

' is'
','
' and'
' has'
' here'
'?'
' means'
' in'
' would'
' as'
"'?""'"
' you'
' may'
' sounds'
' Is'
' are'
' can'
' goes'
' now'
' came'
' might'
' starts'
"'!""'"
' of'
' really'

My name

31

Truncation sampling

','
' and'
' is'
' ('
'\n'

' said'
' in'

' had'
' at'

' will'
' &'

' of'
"',""'"

'/'
' says'

' recently'
' also'
' (@'
' ,'

' for'
' told'

' released'
' can'

' performed'
' made'

Logprob

Taylor Swift

' is'
','
' and'
' has'
' here'
'?'
' means'
' in'
' would'
' as'
"'?""'"
' you'
' may'
' sounds'
' Is'
' are'
' can'
' goes'
' now'
' came'
' might'
' starts'
"'!""'"
' of'
' really'

Top-k = 5

My name

31

Truncation sampling

','
' and'
' is'
' ('
'\n'

' said'
' in'

' had'
' at'

' will'
' &'

' of'
"',""'"

'/'
' says'

' recently'
' also'
' (@'
' ,'

' for'
' told'

' released'
' can'

' performed'
' made' Top-p = 0.9

Logprob

Taylor Swift

' is'
','
' and'
' has'
' here'
'?'
' means'
' in'
' would'
' as'
"'?""'"
' you'
' may'
' sounds'
' Is'
' are'
' can'
' goes'
' now'
' came'
' might'
' starts'
"'!""'"
' of'
' really'

Top-k = 5
Top-p = 0.9

My name

31

Temperature Sampling

Instead of truncating the tail, make the distribution more “peaked”.

softmax(x, τ) = exp(x/τ)∑
i exp(xi/τ)

Temperature Parameter Pro Con

High τ ≥ 1 Diverse Incoherent
Low τ < 1 Coherent Repetitive

32

Temperature Sampling

Taylor Swift is… softmax(x/τ)

0 0.4 0.8

' a'
' the'
' an'

' not'
' one'

' back'
' in'

' currently'
' on'

' also'
' now'

' still'
' known'

' set'
' no'

' doing'
' out'

' coming'
' going'

' playing'

Probability

τ = 0.5
(peaked)

0 0.4 0.8
Probability

τ = 1
(unaltered)

0 0.4 0.8
Probability

τ = 2
(near uniform)

33

Sampling implementations

1 probs = model(sequence)
2

3 # Greedy
4 indices, weights = probs.argmax(keepdim=True), None
5

6 # Ancestral
7 indices, weights = vocab_size, probs
8

9 # Top-k
10 topk = probs.topk(k)
11 indices, weights = topk.indices, topk.values
12

13 # Top-p
14 argsort = probs.argsort(descending=True)
15 top_p = (argsort.values.cumsum() < p).sum() + 1
16 indices, weights = argsort.indices[:top_p], argsort.values[:top_p]
17

18 # Epsilon
19 indices, weights = vocab_size, probs * (probs > epsilon)
20

21 # Temperature
22 indices, weights = vocab_size, (logits / temp).softmax(-1)
23

24 # Sample
25 next_token = random.choices(indices, weights=weights, k=1) 34

Batteries-included inference frameworks

1 # vLLM
2 from vllm import LLM, SamplingParams
3 llm = LLM(model="facebook/opt-125m")
4 prompts = ["Hello, my name is"]
5 sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
6 outputs = llm.generate(prompts, sampling_params)
7

8 # Huggingface
9 from transformers import AutoModelForCausalLM, AutoTokenizer
10 model = AutoModelForCausalLM.from_pretrained("gpt2")
11 tokenizer = AutoTokenizer.from_pretrained("gpt2")
12 text = "Hello, my name is"
13 tokens = tokenizer(text, return_tensors="pt")
14 output = model(**tokens).generate(
15 temperature=0.8, top_p=0.95, do_sample=True
16)

35

Why are next-token distributions heavy-tailed?

• Under-training

• Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

• By design low-rank constraints on the LLM
outputs [Finlayson et al., 2024].

Rembed Rvocabunembed
∆vocab

softmax

36

Why are next-token distributions heavy-tailed?

• Under-training
• Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

• By design low-rank constraints on the LLM
outputs [Finlayson et al., 2024].

Rembed Rvocabunembed
∆vocab

softmax

36

Why are next-token distributions heavy-tailed?

• Under-training
• Mode-seeking: cross-entropy loss punishes probability
underestimation more than overestimation.

• By design low-rank constraints on the LLM
outputs [Finlayson et al., 2024].

Rembed Rvocabunembed
∆vocab

softmax

36

Sampling adapters

A sampling adapter takes a token distribution pθ(· | x) and re-adjusts
the probabilities.

• Truncation and temperature are adapters.

• Contrastive decoding [Li et al., 2023a, Liu et al., 2021]

p(· | x) ∝ pexpert(· | x)
pantiexpert(· | x)

• Many others
Method Purpose Adapter

Ancestral sampling y ∼ pθ –
Temperature sampling [Ackley et al., 1985] y ∼ q(pθ) Rescale
Greedy decoding y ← maxpθ Argmax (temperature→ 0)
Top-k sampling [Fan et al., 2018] y ∼ q(pθ) Truncation (top-k)
Nucleus sampling [Holtzman et al., 2020] y ∼ q(pθ) Truncation (cumulative prob.)
Typical sampling [Meister et al., 2023] y ∼ q(pθ) Truncation (entropy)
Epsilon sampling [Hewitt et al., 2022] y ∼ q(pθ) Truncation (probability)
η sampling [Hewitt et al., 2022] y ∼ q(pθ) Truncation (prob. and entropy)
Mirostat decoding [Basu et al., 2021] Target perplexity Truncation (adaptive top-k)
Basis-aware sampling [Finlayson et al., 2024] y ∼ q(pθ) Truncation (linear program)
Contrastive decoding [Li et al., 2023a] y ∼ q(pθ) log pθ′ − log pθ and truncation
DExperts [Liu et al., 2021] y ∼ q∗(·|x, c) ∝ pθ · (pθ+/pθ−)α

Inference-time adapters [Lu et al., 2023] y ∼ q∗ ∝ r(y) ∝ (pθ · pθ′)α

Proxy tuning [Liu et al., 2024] y ∼ q∗(·|x, c) ∝ pθ · (pθ+/pθ−)α

37

Sampling adapters

A sampling adapter takes a token distribution pθ(· | x) and re-adjusts
the probabilities.

• Truncation and temperature are adapters.
• Contrastive decoding [Li et al., 2023a, Liu et al., 2021]

p(· | x) ∝ pexpert(· | x)
pantiexpert(· | x)

• Many others
Method Purpose Adapter

Ancestral sampling y ∼ pθ –
Temperature sampling [Ackley et al., 1985] y ∼ q(pθ) Rescale
Greedy decoding y ← maxpθ Argmax (temperature→ 0)
Top-k sampling [Fan et al., 2018] y ∼ q(pθ) Truncation (top-k)
Nucleus sampling [Holtzman et al., 2020] y ∼ q(pθ) Truncation (cumulative prob.)
Typical sampling [Meister et al., 2023] y ∼ q(pθ) Truncation (entropy)
Epsilon sampling [Hewitt et al., 2022] y ∼ q(pθ) Truncation (probability)
η sampling [Hewitt et al., 2022] y ∼ q(pθ) Truncation (prob. and entropy)
Mirostat decoding [Basu et al., 2021] Target perplexity Truncation (adaptive top-k)
Basis-aware sampling [Finlayson et al., 2024] y ∼ q(pθ) Truncation (linear program)
Contrastive decoding [Li et al., 2023a] y ∼ q(pθ) log pθ′ − log pθ and truncation
DExperts [Liu et al., 2021] y ∼ q∗(·|x, c) ∝ pθ · (pθ+/pθ−)α

Inference-time adapters [Lu et al., 2023] y ∼ q∗ ∝ r(y) ∝ (pθ · pθ′)α

Proxy tuning [Liu et al., 2024] y ∼ q∗(·|x, c) ∝ pθ · (pθ+/pθ−)α

37

Sampling adapters

A sampling adapter takes a token distribution pθ(· | x) and re-adjusts
the probabilities.

• Truncation and temperature are adapters.
• Contrastive decoding [Li et al., 2023a, Liu et al., 2021]

p(· | x) ∝ pexpert(· | x)
pantiexpert(· | x)

• Many others
Method Purpose Adapter

Ancestral sampling y ∼ pθ –
Temperature sampling [Ackley et al., 1985] y ∼ q(pθ) Rescale
Greedy decoding y ← maxpθ Argmax (temperature→ 0)
Top-k sampling [Fan et al., 2018] y ∼ q(pθ) Truncation (top-k)
Nucleus sampling [Holtzman et al., 2020] y ∼ q(pθ) Truncation (cumulative prob.)
Typical sampling [Meister et al., 2023] y ∼ q(pθ) Truncation (entropy)
Epsilon sampling [Hewitt et al., 2022] y ∼ q(pθ) Truncation (probability)
η sampling [Hewitt et al., 2022] y ∼ q(pθ) Truncation (prob. and entropy)
Mirostat decoding [Basu et al., 2021] Target perplexity Truncation (adaptive top-k)
Basis-aware sampling [Finlayson et al., 2024] y ∼ q(pθ) Truncation (linear program)
Contrastive decoding [Li et al., 2023a] y ∼ q(pθ) log pθ′ − log pθ and truncation
DExperts [Liu et al., 2021] y ∼ q∗(·|x, c) ∝ pθ · (pθ+/pθ−)α

Inference-time adapters [Lu et al., 2023] y ∼ q∗ ∝ r(y) ∝ (pθ · pθ′)α

Proxy tuning [Liu et al., 2024] y ∼ q∗(·|x, c) ∝ pθ · (pθ+/pθ−)α 37

I. Primitive Generators

Constrained decoding

Constrained decoding

Embedding LLMs in larger systems requires that they can
communicate with the larger system, e.g., with JSON.

Can we force LLMs to generate structured outputs?

From OpenAI Playground. 38

Worked example: decoding valid JSON

Language models can stuggle with controlled and structured
generation. Prompt:

Key Type
name string
birth year int

Format the following information using the JSON schema:
”Taylor Swift was born December 13, 1989.”

LLM:
{"name": "Taylor Swift", "birth": "1998-12-
13T01:00:00Z", "age…

The LLM output does not match the JSON schema.

39

Worked example: decoding valid JSON

Language models can stuggle with controlled and structured
generation. Prompt:

Key Type
name string
birth year int

Format the following information using the JSON schema:
”Taylor Swift was born December 13, 1989.”

LLM:
{"name": "Taylor Swift", "birth": "1998-12-
13T01:00:00Z", "age…

The LLM output does not match the JSON schema.

39

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.

2. Filter the next-token distribution for valid tokens.
GPT2:

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:

Token Prob.
\n 0.36
" 0.16
{ 0.026
https 0.025
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{

Token Prob.
name 0.31
date 0.069
" 0.039
id 0.033
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "

Token Prob.
Taylor 0.85
T 0.034
S 0.024
The 0.022
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift

Token Prob.
", 0.85
," 0.034
" 0.024
, 0.022
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year":

Token Prob.
" 0.46
int 0.041
' 0.026
1989 0.020
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year": 1989

Token Prob.
, 0.39
} 0.34
}, 0.11
} 0.082
… …

40

Format the following information using the JSON schema:
Taylor Swift was born December 13, 1989.

Key Type
name string
birth year int

0start 1
{

2

"name": "

[A-Za-z]

6

"

4
"birth year":

\d

,

,
7

}

}

1. Compile the schema into a state machine.
2. Filter the next-token distribution for valid tokens.

GPT2:
{"name": "Taylor Swift", "birth

year": 1989}

40

Side effects of templated/constrained decoding

• Generation speedup
• Reduced performance

41

Token healing

• Templated generation can force unnatural token boundaries

The url is http:

//
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http

://

Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].

42

Token healing

• Templated generation can force unnatural token boundaries

The url is http: //
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http

://

Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].

42

Token healing

• Templated generation can force unnatural token boundaries

The url is http: //
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http:

://

Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].

42

Token healing

• Templated generation can force unnatural token boundaries

The url is http: //
• The model has rarely seen the tokenization http:// during
training compared to http://.

• Token healing rewinds the tokenizer and enforces the
untokenized text as a prefix to the next token.

The url is http://
Candidates

s://
://

• Alternative fix: tokenizer regularization during
training [Kudo, 2018].

42

Summary

• Two views of decoding: optimization, sampling
• The diversity-coherence trade-off
• Constrained decoding enforces structure on LLM outputs

These are the building blocks of modern LLM generation methods.

43

Meta-generators

Goal (system designer)

Design a system G that generates acceptable sequences:

argmax
G

Ey∼G(·)A(y) (1)

Example acceptability: correctness, human preferences

We know how to sample probable outputs, y ∼ pθ(y|x)

• What if these outputs are not acceptable?

44

Goal (system designer)

Design a system G that generates acceptable sequences:

argmax
G

Ey∼G(·)A(y) (1)

Example acceptability: correctness, human preferences

We know how to sample probable outputs, y ∼ pθ(y|x)

• What if these outputs are not acceptable?

44

Meta-generation | Key ideas

1. Take advantage of external information during generation

• Example: Learn an evaluator v(y) ≈ A(y) and use it in generation

Terminology: Evaluator ≈ critic ≈ verifier ≈ value ≈ reward model ≈ scoring model

45

Meta-generation | Key ideas

1. Take advantage of external information during generation

• Example: Learn an evaluator v(y) ≈ A(y) and use it in generation

Terminology: Evaluator ≈ critic ≈ verifier ≈ value ≈ reward model ≈ scoring model

45

Meta-generation | Key ideas

1. Take advantage of external information during generation

2. Call the generator more than once to search for good sequences

45

Meta-generation | Key ideas

Example: solve a math problem
46

Meta-generation | Key ideas

What if we had an oracle verifier, v(y)?

Repeat:
• z ∼ pθ(z|x)
• y ∼ pθ(y|x, z)
• Stop if v(y) says answer is
correct

47

Meta-generation | Key ideas1

1Adapted from [Brown et al., 2024]. See also [Li et al., 2022, Cobbe et al., 2021, Jiang et al., 2023]

48

Meta-generation

We formalize these kinds of strategies as meta-generators 2

y ∼ G(y|x;g1,g2, . . . ,gG︸ ︷︷ ︸
generators

, φ︸︷︷︸
Other parameters

)

Key design choices:

• G: strategy for calling generators
• g1,g2, . . . ,gG: choice of generators
• φ: other models, number of tokens to generate, ...

2[Welleck et al., 2024] From Decoding to Meta-Generation: Inference-time Algorithms for LLMs.
S. Welleck, A. Bertsch*, M. Finlayson*, H. Schoelkopf*, A. Xie, G. Neubig, I. Kulikov, Z. Harchaoui.

49

Meta-generation

Token-level generators from part 1 are a special case of calling:

y ∼ g(y|x;pθ, φ)

Design choices:

• g: sampling adapters, beam search,
• φ: temperature, beam width, ...

50

Meta-generators | outline

• Strategies
• Chain
• Parallel
• Tree search
• Refinement/Self-Correction

• Scaling meta-generators

51

Meta-generators | chain

Compose generators:

y1 ∼ g1(x)
y2 ∼ g2(x, y1)
y3 ∼ g3(x, y2)
...

52

Meta-generators | chain

Motivating example: Chain-of-thought [Wei et al., 2022]:

A simple decomposition:

• Generate a thought, z ∼ g(·|x)
• Generate an answer, a ∼ g(·|x, z)

53

Meta-generators | chain

Motivating example: Chain-of-thought [Wei et al., 2022]:

Increases expressivity3

• Variable output length, analogous to a writeable tape

3E.g., [Feng et al., 2023, Merrill and Sabharwal, 2024, Nowak et al., 2024]

53

Meta-generators | chain

Extend to multiple steps:
• Each step:

• Generate query
• Call API

• Then generate an answer

Self-Ask [Press et al., 2023]

54

Meta-generators | chain4

View as programs:

• Outer function ≈ meta-generator

• Inner function ≈ generator

Demonstrate-Search-Predict (DSP)
[Khattab et al., 2022]

4[Khattab et al., 2022, Dohan et al., 2022, Schlag et al., 2023, Zheng et al., 2024]

55

Meta-generators | chain

Many other examples!

• Rewrite input before generating
(System-2 Attention [Weston and Sukhbaatar, 2023])

• Sketch proof, fill gaps, check proof
(Draft-Sketch-Prove [Jiang et al., 2023])

• ...

56

Meta-generators | chain

Chained meta-generation

• Key idea: decompose generation and incorporate tools/models
• Chaining alone does not explore the output space

57

Meta-generators | outline

• Strategies
• Chain
• Parallel
• Tree search
• Refinement

58

Meta-generators | parallel

• Generate candidates:

{y(1), . . . , y(N)} ∼ G(·|x)

• Aggregate:
y = h(y(1), . . . , y(N))

59

Meta-generators | parallel | Best-of-N/Rejection Sampling5

argmax
{y(1),...,y(N)}

v(y)︸︷︷︸
reward model

5[Stiennon et al., 2020, Nakano et al., 2022]

60

Meta-generators | parallel | Best-of-N/Rejection Sampling

Reward model v(y) → [0, 1]:

Train reward model with correct and incorrect examples.6

6E.g., [Cobbe et al., 2021]

61

Meta-generators | parallel | Best-of-N/Rejection Sampling

Reward model v(y) → [0, 1]:

Train reward model with preference data.6

6E.g., [Stiennon et al., 2020]

61

Meta-generators | parallel | Best-of-N/Rejection Sampling

Why Best-of-N?

• Approximates maximum acceptability:

Best-of-N = argmax
y∈{y(1),...,y(N)}

v(y)

≈ argmax
y

v(y) (2)

≈ argmax
y

A(y) (3)

(2) gets better as number of generations N increases!

(3) Suffers from imperfect reward model, aka “over-optimization”

62

Meta-generators | parallel | Best-of-N/Rejection Sampling

Why Best-of-N?

• Approximates maximum acceptability:

Best-of-N = argmax
y∈{y(1),...,y(N)}

v(y)

≈ argmax
y

v(y) (2)

≈ argmax
y

A(y) (3)

(2) gets better as number of generations N increases!

(3) Suffers from imperfect reward model, aka “over-optimization”

62

Meta-generators | parallel | Best-of-N/Rejection Sampling

Why Best-of-N?

• Approximates maximum acceptability:

Best-of-N = argmax
y∈{y(1),...,y(N)}

v(y)

≈ argmax
y

v(y) (2)

≈ argmax
y

A(y) (3)

(2) gets better as number of generations N increases!

(3) Suffers from imperfect reward model, aka “over-optimization”

62

Meta-generators | parallel | Best-of-N/Rejection Sampling7

7Plot adapted from Training Verifiers to Solve Math Word Problems [Cobbe et al., 2021] 63

Meta-generators | parallel | voting / self-consistency

Voting aggregation:8

argmax
a

N∑
i=1

1{y(i) = a},

8[Wang et al., 2023]

64

Meta-generators | parallel | weighted voting9

Weighted Voting:

argmax
a

N∑
i=1

v(y(i))︸ ︷︷ ︸
reward model

·1{y(i) = a},

9[Li et al., 2023b]

65

Meta-generators | parallel | voting

Can outperform Best-of-N, e.g.:10

10[Sun et al., 2024] Easy-to-Hard Generalization: Scalable Alignment Beyond Human Supervision.
Z. Sun, L. Yu, Y. Shen, W. Liu, Y. Yang, S. Welleck, C. Gan. NeurIPS 2024.

66

Meta-generators | parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...11

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z, a)g(z, a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Notation:

• (x, z, a): (input, solution, answer)

• M: number of test examples

11Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.

67

Meta-generators | parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...11

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z, a)g(z, a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Takeaway 1: Will accuracy keep improving with more samples?

• No, it eventually converges to the accuracy shown above

11Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.

67

Meta-generators | parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...11

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z, a)g(z, a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Takeaway 2: When is weighted voting better than voting?

• When v · g assigns more total mass to correct answers than g

11Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.

67

Meta-generators | parallel | why (weighted) voting?

As the number of candidates N→ ∞, voting accuracy converges to...11

1
M

M∑
i=1

I

a∗i = argmax
a

∑
z
v(x, z, a)g(z, a|x)︸ ︷︷ ︸

“Marginalize out paths z”



Takeaway 3: How do we improve performance further?

• Improve the reward model v
• Improve the generator g (better model and/or better algorithm)

11Theorem 2, [Wu et al., 2024b] Inference Scaling Laws. Y. Wu, Z. Sun, S. Li, S. Welleck, Y. Yang.

67

Meta-generators | parallel

Improve the reward model:

Parallel generation in the reward model too12

Active area of research!

12[Zhang et al., 2024]

68

Meta-generators | parallel

Parallel meta-generators

• Explores output space by generating full sequences
• Large performance gains in practice
• Bounded by the quality of the evaluator and generator

Insight: only uses the verifier at the end (on full sequences)

• Next: Can we better leverage intermediate evaluation?

69

Meta-generators | parallel

Parallel meta-generators

• Explores output space by generating full sequences
• Large performance gains in practice
• Bounded by the quality of the evaluator and generator

Insight: only uses the verifier at the end (on full sequences)

• Next: Can we better leverage intermediate evaluation?

69

Meta-generators | outline

• Strategies
• Chain
• Parallel
• Tree search
• Refinement

70

Meta-generators | tree search | basic idea

Design choices:

• States s
• Transitions s→ s′

• Scores v(s)
• Strategy (breadth-first, depth-first, ...)

71

Meta-generators | tree search | basic idea

Design choices:

• States s
• Transitions s→ s′

• Scores v(s)
• Strategy (breadth-first, depth-first, ...)

71

Meta-generators | tree search | example

1. Scores: “process reward model (PRM)”13

v(x, s1, s2, . . . , st)→ [0, 1]

13[Uesato et al., 2022, Lightman et al., 2024, Wang et al., 2024a]

72

Meta-generators | tree search | example (Rebase)

2. Reward Balanced Search (Rebase)14

explorei = Round
(
Budget exp (v(si)/τ)∑

j exp (v(sj)/τ)

)
, (4)

14[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.

73

Meta-generators | tree search | aggregation

Run tree search to get candidates for aggregation (e.g., voting).

• Key idea: Leverages scores on intermediate states
• Backtracking
• Exploration

74

Meta-generators | tree search | aggregation

Run tree search to get candidates for aggregation (e.g., voting).

• Key idea: Leverages scores on intermediate states
• Backtracking
• Exploration

74

Meta-generators | tree search | example15

15[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference. 75

Meta-generators | tree search | example

Go [Silver et al., 2016]
Proofs [Polu and Sutskever, 2020]

Agents [Koh et al., 2024]

76

Meta-generators | tree search

Tree-search meta-generators

• Can backtrack and explore using intermediate scores
• Requires a suitable environment and value function

• Decomposition into states
• Good reward signal

77

Meta-generators | outline

• Strategies
• Chain
• Parallel
• Tree search
• Refinement/self-correction

• Scaling meta-generators

78

Meta-generators | refinement / self-correction

Improve a generation

79

Meta-generators | refinement / self-correction

Improve a generation using feedback

79

Meta-generators | refinement / self-correction

Improve a generation using feedback

79

Meta-generators | refinement

In practice, the quality and source of feedback is crucial:

• Extrinsic: external information at inference time
• Intrinsic: no external information at inference time

80

Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Feedback: external program verifier16

16 [Aggarwal et al., 2024], AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.
81

Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.

81

Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Tutorial code demo: github.com/cmu-l3/neurips2024-inference-tutorial-code

81

https://github.com/cmu-l3/neurips2024-inference-tutorial-code

Meta-generators | refinement | extrinsic

1. Extrinsic: external feedback

Several success cases:

• Verifiers [Aggarwal et al., 2024]

• Code interpreters [Chen et al., 2024b]
• Retrievers [Asai et al., 2024]

• Tools + agent environment16

• ...

Intuition: adds new information, can detect and localize errors

16https://x.com/gneubig/status/1866172948991615177

81

https://x.com/gneubig/status/1866172948991615177

Meta-generators | refinement | intrinsic

2. Intrinsic: Re-prompt the same model:

Re-prompt a single LLM, e.g. [Madaan et al., 2023]

82

Meta-generators | refinement | intrinsic

Mixed results:

• Easy to evaluate tasks: positive [Wang et al., 2024b]
• E.g., missing info [Asai et al., 2024]

• Mathematical reasoning: mixed17

17E.g., [Huang et al., 2024] Large Language Models Cannot Self-Correct Reasoning Yet

82

Meta-generators | refinement | intrinsic

Takeaway: feedback is too noisy From [Huang et al., 2024]

82

Meta-generators | refinement

Generate “TAYLORSWIFT”
• Generator:

• p(character)

• Feedback:
• Incorrect characters

• Corrector:
• Regenerate incorrect

83

Meta-generators | refinement | intrinsic

3. Intrinsic: trained corrector

Directly learn to correct17

17[Welleck et al., 2023], Generating Sequences by Learning to [Self-]Correct.

84

Meta-generators | refinement | Case 3: fine-tuning

General pattern:18

• Collect (bad, better) pairs by generating and evaluating reward
• Update corrector pθ(better|bad) using the collected data
• Repeat

Prone to behavior collapse

• [Kumar et al., 2024]: overcome with regularization + RL

18E.g., Self-corrective learning [Welleck et al., 2023], SCoRe [Kumar et al., 2024].

85

Meta-generators | refinement | Case 3: fine-tuning

General pattern:18

• Collect (bad, better) pairs by generating and evaluating reward
• Update corrector pθ(better|bad) using the collected data
• Repeat

Prone to behavior collapse

• [Kumar et al., 2024]: overcome with regularization + RL

18E.g., Self-corrective learning [Welleck et al., 2023], SCoRe [Kumar et al., 2024].

85

Meta-generators | refinement | Case 3: fine-tuning

From SCoRe [Kumar et al., 2024]

86

Meta-generators | refinement / self-correction

Refinement / self-correction

• Extrinsic
• Positive results for environments that detect or localize errors

• Intrinsic, prompted
• Mixed results, depends on difficulty of verification

• Intrinsic, trained
• Possible improvements, requires specific training strategies

87

Meta-generators | outline

This talk:
• Strategies

• Chain
• Parallel
• Tree search
• Refinement

• Scaling meta-generators

88

Meta-generation | how do we allocate test-time compute?

Choose strategies based on task performance and compute cost

Cost is a function of:

• Model size
• Number of generated tokens

89

Meta-generation | compute-optimal inference19

For a compute budget C:

argminN,T,S s.t. cost(N,T,S)=Cerror(N, T, S)

• N: number of model parameters

• T : number of generated tokens

• S: inference strategy

• cost(N, T, S): in floating-point operations

19[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.

90

Meta-generation | compute-optimal inference20

Choose configurations on the compute-optimal frontier (green)

20[Wu et al., 2024b] Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference.
91

Meta-generation | how do we choose a meta-generator?

Question 1: is it better to use:

• A small model and more generations
• A large model and fewer generations

Experiment: Fix strategy, vary model size N and number of tokens T

92

Meta-generation | how do we choose a meta-generator?

Smaller models can be compute optimal [Wu et al., 2024b]. 93

Meta-generation | how do we choose a meta-generator?

Question 2: what is the compute-optimal meta-generation strategy?

Experiment: vary strategy (and model size and number of tokens)

94

Meta-generation | how do we choose a meta-generator?

Tree search (Rebase) can be compute-optimal [Wu et al., 2024b].

95

Meta-generation | recap

• Performance improves with increased compute...
• ... but it varies by the choice of model size and meta-generator

• The optimal model size and strategy varies with the compute
budget

• Sometimes smaller models are better!
• Goal: design strategies that are universally optimal

96

Meta-generation | recap

• Meta-generators: strategies for calling generators and
incorporating external information

• Several patterns: chain, parallel, tree search, refinement
• They can be combined and mixed together
• Choose and design methods based on task performance and
cost

97

Meta-generation | speeding up

Next: The preceding meta-generators

• Generate many tokens
• In diverse ways (e.g., tree search)

How do we do this quickly and efficiently?

98

Efficient meta-generation

Efficiency | goals

Scope:

• Basics of efficient generation
• How can we make meta-generation faster?
• Which specific meta-generators are most efficient?

99

Efficiency | basics

How do we measure “efficiency”?

• Latency
• How long does a user wait for a response?

• Throughput
• How many requests are completed per second?

100

Efficiency | basics

Latency, Throughput, and Quality often trade off at a given budget.

101

Efficiency | hardware

Hardware improvements have driven model improvements 21

The largest efficiency wins come from mapping operations onto
hardware (more) effectively!

21Figure: [Hobbhahn et al., 2023] 102

Efficiency | hardware

How do ML accelerator designs impact generation efficiency?

• How much data can we keep on-device?
• VRAM (GB)

• How many operations/second can the device perform?
• FLOP/s

• How long does it take to send operands from GPU memory
(HBM) to the processor?

• Memory Bandwidth (GB/s)

103

Efficiency | bottlenecks

• Loading inputs (activations) from memory
• Memory Bandwidth

• Loading weights from memory
• Memory Bandwidth

• Performing computation
• FLOP/s

• Communicating across devices
• Communication Speeds (GB/s)

• ...

104

Efficiency | bottlenecks

Time per operation can be modeled as22:

Time = max
(

Operation FLOP
Device FLOP/s

,
Data Transferred (GB)

Memory Bandwidth (GB/s)

)

Operations are either “compute-bound” or “memory-bound”23

22[He, 2022]
23H100 SXM: BF16 dense tensor core max FLOP/s ≈ 1× 1015 FLOP/s, Memory bandwidth
≈ 3.35× 1012 byte/s. � 100 FLOP/byte is “free”!

105

Efficiency | batching

Inputs to a model can be “batched”
together and computed
simultaneously.

Batching can be cost-free for
memory-bound operations!a

ahttps://www.artfintel.com/p/how-does-
batching-work-on-modern 106

Efficiency | KV cache

Prefill Stage: process prompt all at
once. Keys and values retained and
initialize the “KV Cache”.

Decode Stage: use cached KV values
to compute attention for current
timestep. Append new K, V to KV cache

Size = (batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

107

Efficient meta-generation

How to speed up sampling a single
token?

Efficiency | single-token

For a single decoding step, how do we work around hardware
constraints?

• Memory Bandwidth ↓
• FLOP/s ↑
• FLOP ↓

108

Efficiency | single-token

Memory Bandwidth ↓: reduce data transferred

• Quantize weights or activations24

(bytes per parameter) · (total parameters)

• Compress or distill model

(bytes per parameter) · (total parameters)

24Visual from
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization

109

Efficiency | single-token

FLOP/s ↑: improve hardware utilization

(FLOP per second) · (total operation FLOP)

Flash Attention [Dao et al., 2022] performs the same operations, but
optimizes the implementation to achieve far greater speed

110

Efficiency | single-token

FLOP ↓: reduce operations required

(FLOP per second) · (total operation FLOP)

Mixture-of-Experts models use fewer FLOP per token than equi-parameter
dense models [Fedus et al., 2022] 111

Efficient meta-generation

How to speed up a single generation?

Efficiency | single-generation

Generation of long outputs is bottlenecked by sequential next-token
prediction. But not all tokens are created equal!

... The cow jumped over the moon . <EOS>

How can we spend less time on “easier” tokens?

112

Efficiency | single-generation

Decoding is typically memory-bound.

Speculative decoding uses a smaller draft model to produce “guesses” for
the next N tokens cheaply, which are then “accepted” or “rejected” in parallel
by the main model [Xia et al., 2024]

113

Efficiency | single-generation

In speculative decoding:

• A lighter-weight draft model generates N “proposal” tokens
• These N “proposal” tokens can be passed in parallel into the
main generator

• All tokens which match the main generator’s predictions are
retained, and ones that do not are discarded

114

Efficiency | single-generation

Speculative decoding can harm throughput at low context but improves both
throughput and latency at long context lengths [Chen et al., 2024a]

115

Efficient meta-generation

How to speed up meta-generation?

Efficiency | meta-generators

• How do meta-generators interact with real-world efficiency and
hardware utilization?

• Which meta-generators are the fastest? Can we design more
efficient meta-generators?

116

Efficiency | meta-generators | KV Cache reuse

Common deployment and parallel generation scenarios have redundant
shared prefix content in prompts25

25Figure from [Juravsky et al., 2024]

117

Efficiency | meta-generators | KV Cache reuse

PagedAttention [Kwon et al., 2023] prevents redundant storage costs by
mapping KV cache blocks to physical “pages” of VRAM

118

Efficiency | meta-generators | KV cache reuse

KV Cache reuse is not limited to single-level shared prefixes!

Multiple levels of prefix sharing can arise frequently: for example, combining
a long few-shot prompt with Best-of-N generation26

26Figure from [Juravsky et al., 2024]
119

Efficiency | meta-generators | KV Cache reuse

RadixAttention enables complex prefix sharing patterns [Zheng et al., 2024],
evicting least-recently-used KV cache blocks from memory when needed

120

Efficiency | meta-generators | KV Cache reuse

Hydragen [Juravsky et al., 2024] makes shared-prefix attention components
faster via leveraging Tensor Cores 121

Efficiency | meta-generators | KV Cache compression

KV Cache size is a key bottleneck to larger batches and to longer
context inference

• Token Dropping: Selectively remove tokens from the KV Cache
• Quantization: Modify KV Cache datatype
• Architectural Modification: Reduce inherent size of a
prospective model’s KV Cache

122

Efficiency | meta-generators | KV Cache compression

Token Dropping:

(batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

An overview of approaches to control KV Cache size via token dropping
[Adams et al., 2024]

123

Efficiency | meta-generators | KV Cache compression

Quantization:

(batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

As with model weights, elements of the KV cache can be quantized to reduce
memory overheads

124

Efficiency | meta-generators | KV Cache compression

Architectural Modification:

(batch · n_ctx) · (2 · n_layer · n_heads · head_dim) · (n_bytes)

Architectural tweaks such as Multi-Query Attention [Shazeer, 2019] or
Grouped-Query Attention [Ainslie et al., 2023] reduce the number of Key +
Value attention heads to shrink the required KV Cache size

125

Efficiency | meta-generators | recap

Which meta-generators are most efficient?

• Parallelizable: trajectories can be run in parallel; not
sequentially bottlenecked

• Prefix-shareable: long inputs are presented as identical shared
prefix content, whose KV Caches can be reused across many
model calls

Token budget is not the only indicator of meta-generator efficiency!

126

Recap and takeaways

This tutorial

Beyond Decoding: Meta-Generation Algorithms for LLMs

• Primitive generators: Generating one token at a time
• Meta-generators: High-level strategies for calling generators
• Efficient meta-generation: Generating quickly and efficiently

127

Takeaways | Meta-generators

Meta-generation: strategies for calling generators

• Various strategies: chained, parallel, tree search, refinement
• Spend test-time compute to improve performance
• Use cost-performance tradeoffs to choose/design

128

Takeaways | Efficient meta-generation

• Parallelizability decreases latency and boosts throughput of
meta-generation

• Long inputs can be amortized via Prefix Sharing of KV Cache
• Prompt design and meta-generator structure can change
real-world efficiency significantly. Token budget can be an
oversimplification!

129

Looking ahead

• Hybrid meta-generators

[Aggarwal et al., 2024], AlphaVerus. P. Aggarwal, B. Parno, S. Welleck.

• Learning to search (e.g., explore, backtrack, self-correct)

• Agent environments

• How should we allocate compute?

Science: many conclusions are based on a few tasks!

130

Looking ahead

• Hybrid meta-generators

• Learning to search (e.g., explore, backtrack, self-correct)

• Agent environments

• How should we allocate compute?

Science: many conclusions are based on a few tasks!

130

Looking ahead

• Hybrid meta-generators

• Learning to search (e.g., explore, backtrack, self-correct)

• Agent environments

• How should we allocate compute?

Science: many conclusions are based on a few tasks!

130

Looking ahead

Survey Paper (TMLR 2024):

From Decoding to Meta-Generation:
Inference-time Algorithms for Large Language Models.

Sean Welleck, Amanda Bertsch∗, Matt Finlayson∗, Hailey Schoelkopf∗, Alex
Xie, Graham Neubig, Ilia Kulikov, Zaid Harchaoui. TMLR 2024.

https://arxiv.org/abs/2406.16838

131

https://arxiv.org/abs/2406.16838

Thank you!

https://cmu-l3.github.io/neurips2024-inference-tutorial

132

https://cmu-l3.github.io/neurips2024-inference-tutorial

Panel

Beidi Chen
CMU

@BeidiChen

Nouha Dziri
AI2

@nouhadziri

Rishabh Agarwal
DeepMind/McGill

@agarwl_

Jakob Foerster
Oxford/Meta AI

@j_foerst

Noam Brown
OpenAI

@polynoamial

Ilia Kulikov (Moderator)
Meta AI
@uralik1

https://cmu-l3.github.io/neurips2024-inference-tutorial
133

https://twitter.com/BeidiChen
https://twitter.com/nouhadziri
https://twitter.com/agarwl_
https://twitter.com/j_foerst
https://twitter.com/polynoamial
https://twitter.com/uralik1
https://cmu-l3.github.io/neurips2024-inference-tutorial

Appendix

Meta-generators | parallel | pairwise

Pairwise: Minimum Bayes Risk

MBR(g, v,N) = argmax
y∈{y(1),...,y(N)}

1
N

N∑
i=1

v(y, y(i))︸ ︷︷ ︸
≈Ey′∼p[v(y,y′)]

,

where {y(1), . . . , y(N)} ∼ g and v(y, y′) is a “utility” function.

Intuitively, selects the candidate with the highest “consensus” utility.

134

Meta-generators | parallel | pairwise

Pairwise: Minimum Bayes Risk

MBR(g, v,N) = argmax
y∈{y(1),...,y(N)}

1
N

N∑
i=1

v(y, y(i))︸ ︷︷ ︸
≈Ey′∼p[v(y,y′)]

,

where {y(1), . . . , y(N)} ∼ g and v(y, y′) is a “utility” function.

Intuitively, selects the candidate with the highest “consensus” utility.

134

Meta-generators | parallel | pairwise27

Utility: LLM(y, y(i)) → {1, 2, 3, 4, 5}:

Models
30

40

50

Al
pa
ca
Ev
al
2.0

w
in
ra
te
(%
) Beam Search

BoN (LLM utility)
MBR (Rouge)

MBR (LLM utility)

27Example from [Wu et al., 2024a] (Llama 3 70B). Utility: Prometheus 2 [Kim et al., 2024]. 135

Meta-generators | parallel | connecting MBR and voting

Weighted voting is an instance of Minimum Bayes Risk:28

v(y, y(i))︸ ︷︷ ︸
utility

= 1
[
a = a(i)

]
︸ ︷︷ ︸
same answer

· v(y(i))︸ ︷︷ ︸
sequence score

, (5)

where y = (z,a), y(i) = (z(i),a(i)).

28[Bertsch et al., 2023] It’s MBR All the Way Down: Modern Generation Techniques Through the Lens
of Minimum Bayes Risk. A. Bertsch, A. Xie, G. Neubig, M. Gormley.

136

Code examples

speculative decoding

1 def speculative_decode(tgt_m, drf_m, tok, inp: torch.Tensor, max_tok:
int, n_spec: int = 5, t: float = 1.0):

2 gen = inp; max_len = inp.shape[1] + max_tok
3 while gen.shape[1] < max_len:
4 tok_left = max_len - gen.shape[1]
5 spec_size = min(n_spec, tok_left - 1)
6 if spec_size > 0:
7 spec_id, spec_lprob = generate(drf_m, tok, gen, spec_size, t)
8 tgt_lprob = tgt_m(spec_id) # forwarding tgt model
9 rejs = compute_ll_rejs(tgt_lprob, spec_lprob)
10 if len(rejs) > 0:
11 accepted = spec_id[:, :rejs[0]]
12 adj_probs = compute_adjusted_dist(tgt_lprob, spec_lprob)
13 next_tok = Categorical(adj_probs)
14 else:
15 accepted = spec_id
16 next_tok = Categorical(tgt_lprob.exp())
17 gen = torch.cat([gen, accepted, next_tok])

137

speculative decoding

1 def compute_ll_rejs(tgt_lprob: torch.Tensor, spec_lprob: torch.Tensor,
spec_tok_id: torch.Tensor) -> torch.Tensor:

2 llrs = tgt_lprob[spec_tok_id] - spec_lprob[spec_tok_id]
3 uniform_lprobs = torch.log(torch.rand_like(llrs))
4 rej_idx = torch.nonzero((llrs <= uniform_lprobs))
5 return rej_idx
6

7 def compute_adjusted_dist(tgt_lprob: torch.Tensor, spec_lprob:
torch.Tensor, rej_idx: torch.Tensor) -> torch.Tensor:

8 adj_dist = torch.clamp(
9 torch.exp(tgt_lprob[rej_idx]) - torch.exp(spec_lprob[rej_idx]),
10 min=0
11)
12 adj_dist = torch.div(adj_dist, adj_dist.sum())
13 return adj_dist

138

References i

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985).
A learning algorithm for boltzmann machines.
Cognitive Science, 9(1):147–169.

Adams, G., Ladhak, F., Schoelkopf, H., and Biswas, R. (2024).
Cold compress: A toolkit for benchmarking kv cache
compression approaches.

Aggarwal, P., Parno, B., and Welleck, S. (2024).
Alphaverus: Bootstrapping formally verified code generation
through self-improving translation and treefinement.
https://arxiv.org/abs/2412.06176.

139

https://arxiv.org/abs/2412.06176

References ii

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebrón, F.,
and Sanghai, S. (2023).
Gqa: Training generalized multi-query transformer models from
multi-head checkpoints.

Ankner, Z., Paul, M., Cui, B., Chang, J. D., and Ammanabrolu, P.
(2024).
Critique-out-loud reward models.

Asai, A., He*, J., Shao*, R., Shi, W., Singh, A., Chang, J. C., Lo, K.,
Soldaini, L., Feldman, Tian, S., Mike, D., Wadden, D., Latzke, M.,
Minyang, Ji, P., Liu, S., Tong, H., Wu, B., Xiong, Y., Zettlemoyer, L.,
Weld, D., Neubig, G., Downey, D., Yih, W.-t., Koh, P. W., and
Hajishirzi, H. (2024).
OpenScholar: Synthesizing scientific literature with
retrieval-augmented language models.

140

References iii

Arxiv.
Basu, S., Ramachandran, G. S., Keskar, N. S., and Varshney, L. R.
(2021).
Mirostat: a neural text decoding algorithm that directly controls
perplexity.
In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

Bertsch, A., Xie, A., Neubig, G., and Gormley, M. (2023).
It’s MBR all the way down: Modern generation techniques
through the lens of minimum Bayes risk.
In Elazar, Y., Ettinger, A., Kassner, N., Ruder, S., and A. Smith, N.,
editors, Proceedings of the Big Picture Workshop, pages 108–122,
Singapore. Association for Computational Linguistics.

141

References iv

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V., Ré, C., and
Mirhoseini, A. (2024).
Large language monkeys: Scaling inference compute with
repeated sampling.
https://arxiv.org/abs/2407.21787.

Chen, J., Tiwari, V., Sadhukhan, R., Chen, Z., Shi, J., Yen, I. E.-H., and
Chen, B. (2024a).
Magicdec: Breaking the latency-throughput tradeoff for long
context generation with speculative decoding.

Chen, X., Lin, M., Schärli, N., and Zhou, D. (2024b).
Teaching large language models to self-debug.
In The Twelfth International Conference on Learning
Representations.

142

https://arxiv.org/abs/2407.21787

References v

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y.,
Wang, X., Dehghani, M., Brahma, S., Webson, A., Gu, S. S., Dai, Z.,
Suzgun, M., Chen, X., Chowdhery, A., Castro-Ros, A., Pellat, M.,
Robinson, K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V.,
Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean, J., Devlin, J.,
Roberts, A., Zhou, D., Le, Q. V., and Wei, J. (2022).
Scaling instruction-finetuned language models.
https://arxiv.org/abs/2210.11416.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L.,
Plappert, M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., and
Schulman, J. (2021).
Training verifiers to solve math word problems.
https://arxiv.org/abs/2110.14168.

143

https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2110.14168

References vi

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and R’e, C. (2022).
Flashattention: Fast and memory-efficient exact attention with
io-awareness.
ArXiv preprint, abs/2205.14135.

Dohan, D., Xu, W., Lewkowycz, A., Austin, J., Bieber, D., Lopes, R. G.,
Wu, Y., Michalewski, H., Saurous, R. A., Sohl-dickstein, J., Murphy,
K., and Sutton, C. (2022).
Language model cascades.
https://arxiv.org/abs/2207.10342.

Fan, A., Lewis, M., and Dauphin, Y. (2018).
Hierarchical neural story generation.
In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
889–898. Association for Computational Linguistics.

144

https://arxiv.org/abs/2207.10342

References vii

Fedus, W., Zoph, B., and Shazeer, N. (2022).
Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity.

Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L. (2023).
Towards revealing the mystery behind chain of thought: A
theoretical perspective.
In Thirty-seventh Conference on Neural Information Processing
Systems.

Finlayson, M., Hewitt, J., Koller, A., Swayamdipta, S., and
Sabharwal, A. (2024).
Closing the curious case of neural text degeneration.
In The Twelfth International Conference on Learning
Representations.

145

References viii

Freitag, M. and Al-Onaizan, Y. (2017).
Beam search strategies for neural machine translation.
In Proceedings of the First Workshop on Neural Machine
Translation, pages 56–60. Association for Computational
Linguistics.

He, H. (2022).
Making deep learning go brrrr from first principles.

Hewitt, J., Manning, C., and Liang, P. (2022).
Truncation sampling as language model desmoothing.
In Findings of the Association for Computational Linguistics:
EMNLP 2022, pages 3414–3427. Association for Computational
Linguistics.

146

References ix

Hobbhahn, M., Heim, L., and Aydos, G. (2023).
Trends in machine learning hardware.
Accessed: 2024-11-26.
Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. (2020).
The curious case of neural text degeneration.
In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu, A. W., Song, X., and
Zhou, D. (2024).
Large language models cannot self-correct reasoning yet.
In The Twelfth International Conference on Learning
Representations.

147

References x

Jiang, A. Q., Welleck, S., Zhou, J. P., Lacroix, T., Liu, J., Li, W., Jamnik,
M., Lample, G., and Wu, Y. (2023).
Draft, sketch, and prove: Guiding formal theorem provers with
informal proofs.
In The Eleventh International Conference on Learning
Representations.

Juravsky, J., Brown, B., Ehrlich, R., Fu, D. Y., Ré, C., and Mirhoseini, A.
(2024).
Hydragen: High-throughput llm inference with shared prefixes.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B.,
Child, R., Gray, S., Radford, A., Wu, J., and Amodei, D. (2020).
Scaling laws for neural language models.
https://arxiv.org/abs/2001.08361.

148

https://arxiv.org/abs/2001.08361

References xi

Khattab, O., Santhanam, K., Li, X. L., Hall, D. L. W., Liang, P., Potts, C.,
and Zaharia, M. A. (2022).
Demonstrate-search-predict: Composing retrieval and language
models for knowledge-intensive nlp.
ArXiv, abs/2212.14024.

Kim, S., Suk, J., Longpre, S., Lin, B. Y., Shin, J., Welleck, S., Neubig, G.,
Lee, M., Lee, K., and Seo, M. (2024).
Prometheus 2: An open source language model specialized in
evaluating other language models.
https://arxiv.org/abs/2405.01535.

Koh, J. Y., McAleer, S., Fried, D., and Salakhutdinov, R. (2024).
Tree search for language model agents.
arXiv preprint arXiv:2407.01476.

149

https://arxiv.org/abs/2405.01535

References xii

Kudo, T. (2018).
Subword regularization: Improving neural network translation
models with multiple subword candidates.
In Gurevych, I. and Miyao, Y., editors, Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 66–75, Melbourne, Australia.
Association for Computational Linguistics.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes, J. D., Singh, A.,
Baumli, K., Iqbal, S., Bishop, C., Roelofs, R., Zhang, L. M., McKinney,
K., Shrivastava, D., Paduraru, C., Tucker, G., Precup, D., Behbahani,
F., and Faust, A. (2024).
Training language models to self-correct via reinforcement
learning.

150

References xiii

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez,
J. E., Zhang, H., and Stoica, I. (2023).
Efficient memory management for large language model serving
with pagedattention.

Li, X. L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.,
Zettlemoyer, L., and Lewis, M. (2023a).
Contrastive decoding: Open-ended text generation as
optimization.
In Rogers, A., Boyd-Graber, J., and Okazaki, N., editors,
Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
12286–12312. Association for Computational Linguistics.

151

References xiv

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R.,
Eccles, T., Keeling, J., Gimeno, F., Lago, A. D., Hubert, T., Choy, P.,
de Masson d’Autume, C., Babuschkin, I., Chen, X., Huang, P.-S.,
Welbl, J., Gowal, S., Cherepanov, A., Molloy, J., Mankowitz, D. J.,
Robson, E. S., Kohli, P., de Freitas, N., Kavukcuoglu, K., and Vinyals,
O. (2022).
Competition-level code generation with alphacode.
Science, 378(6624):1092–1097.

Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., and Chen, W.
(2023b).
Making language models better reasoners with step-aware
verifier.
In Rogers, A., Boyd-Graber, J., and Okazaki, N., editors,
Proceedings of the 61st Annual Meeting of the Association for

152

References xv

Computational Linguistics (Volume 1: Long Papers), pages
5315–5333, Toronto, Canada. Association for Computational
Linguistics.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T.,
Leike, J., Schulman, J., Sutskever, I., and Cobbe, K. (2024).
Let’s verify step by step.
In The Twelfth International Conference on Learning
Representations.

Liu, A., Han, X., Wang, Y., Tsvetkov, Y., Choi, Y., and Smith, N. A.
(2024).
Tuning language models by proxy.

153

References xvi

Liu, A., Sap, M., Lu, X., Swayamdipta, S., Bhagavatula, C., Smith,
N. A., and Choi, Y. (2021).
DExperts: Decoding-time controlled text generation with
experts and anti-experts.
In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long
Papers), pages 6691–6706. Association for Computational
Linguistics.

154

References xvii

Lu, X., Brahman, F., West, P., Jung, J., Chandu, K., Ravichander, A.,
Ammanabrolu, P., Jiang, L., Ramnath, S., Dziri, N., Fisher, J., Lin, B.,
Hallinan, S., Qin, L., Ren, X., Welleck, S., and Choi, Y. (2023).
Inference-time policy adapters (IPA): Tailoring extreme-scale
LMs without fine-tuning.
In Bouamor, H., Pino, J., and Bali, K., editors, Proceedings of the
2023 Conference on Empirical Methods in Natural Language
Processing, pages 6863–6883. Association for Computational
Linguistics.

155

References xviii

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe,
S., Alon, U., Dziri, N., Prabhumoye, S., Yang, Y., Gupta, S., Majumder,
B. P., Hermann, K., Welleck, S., Yazdanbakhsh, A., and Clark, P.
(2023).
Self-refine: Iterative refinement with self-feedback.
In Thirty-seventh Conference on Neural Information Processing
Systems.

Meister, C., Cotterell, R., and Vieira, T. (2020).
If beam search is the answer, what was the question?
In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2173–2185.
Association for Computational Linguistics.

156

References xix

Meister, C., Pimentel, T., Wiher, G., and Cotterell, R. (2022).
Locally typical sampling.
Transactions of the Association for Computational Linguistics,
11:102–121.
Meister, C., Pimentel, T., Wiher, G., and Cotterell, R. (2023).
Locally typical sampling.
Transactions of the Association for Computational Linguistics,
11:102–121.
Merrill, W. and Sabharwal, A. (2024).
The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning
Representations.

157

References xx

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C.,
Jain, S., Kosaraju, V., Saunders, W., Jiang, X., Cobbe, K., Eloundou,
T., Krueger, G., Button, K., Knight, M., Chess, B., and Schulman, J.
(2022).
Webgpt: Browser-assisted question-answering with human
feedback.
https://arxiv.org/abs/2112.09332.

Nebius (2024).
Leveraging training and search for better software engineering
agents.
https://nebius.com/blog/posts/
training-and-search-for-software-engineering-agents.

158

https://arxiv.org/abs/2112.09332
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents
https://nebius.com/blog/posts/training-and-search-for-software-engineering-agents

References xxi

Nowak, F., Svete, A., Butoi, A., and Cotterell, R. (2024).
On the representational capacity of neural language models
with chain-of-thought reasoning.
In Ku, L.-W., Martins, A., and Srikumar, V., editors, Proceedings of
the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12510–12548, Bangkok,
Thailand. Association for Computational Linguistics.

OpenAI (2024).
Learning to reason with llms.
https://openai.com/index/
learning-to-reason-with-llms/.

Polu, S. and Sutskever, I. (2020).
Generative language modeling for automated theorem proving.

159

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

References xxii

Press, O., Zhang, M., Min, S., Schmidt, L., Smith, N., and Lewis, M.
(2023).
Measuring and narrowing the compositionality gap in language
models.
In Bouamor, H., Pino, J., and Bali, K., editors, Findings of the
Association for Computational Linguistics: EMNLP 2023, pages
5687–5711. Association for Computational Linguistics.

Schlag, I., Sukhbaatar, S., Celikyilmaz, A., tau Yih, W., Weston, J.,
Schmidhuber, J., and Li, X. (2023).
Large language model programs.
https://arxiv.org/abs/2305.05364.

Shazeer, N. (2019).
Fast transformer decoding: One write-head is all you need.

160

https://arxiv.org/abs/2305.05364

References xxiii

Shi, C., Yang, H., Cai, D., Zhang, Z., Wang, Y., Yang, Y., and Lam, W.
(2024).
A thorough examination of decoding methods in the era of
LLMs.
In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N., editors, Proceedings
of the 2024 Conference on Empirical Methods in Natural
Language Processing, pages 8601–8629, Miami, Florida, USA.
Association for Computational Linguistics.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N.,
Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
and Hassabis, D. (2016).

161

References xxiv

Mastering the game of go with deep neural networks and tree
search.
Nature, 529:484–503.

Stahlberg, F. and Byrne, B. (2019).
On nmt search errors and model errors: Cat got your tongue?
ArXiv, abs/1908.10090.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R., Voss, C.,
Radford, A., Amodei, D., and Christiano, P. F. (2020).
Learning to summarize with human feedback.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H.,
editors, Advances in Neural Information Processing Systems,
volume 33, pages 3008–3021. Curran Associates, Inc.

162

References xxv

Sun, Z., Yu, L., Shen, Y., Liu, W., Yang, Y., Welleck, S., and Gan, C.
(2024).
Easy-to-hard generalization: Scalable alignment beyond human
supervision.
In The Thirty-eighth Annual Conference on Neural Information
Processing Systems.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N., Wang, L.,
Creswell, A., Irving, G., and Higgins, I. (2022).
Solving math word problems with process- and outcome-based
feedback.

163

References xxvi

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen, D., Wu, Y., and
Sui, Z. (2024a).
Math-shepherd: Verify and reinforce LLMs step-by-step without
human annotations.
In Ku, L.-W., Martins, A., and Srikumar, V., editors, Proceedings of
the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9426–9439, Bangkok,
Thailand. Association for Computational Linguistics.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi, E. H., Narang, S.,
Chowdhery, A., and Zhou, D. (2023).
Self-consistency improves chain of thought reasoning in
language models.
In The Eleventh International Conference on Learning
Representations.

164

References xxvii

Wang, Y., Wu, Y., Wei, Z., Jegelka, S., and Wang, Y. (2024b).
A theoretical understanding of self-correction through
in-context alignment.
https://arxiv.org/abs/2405.18634.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., brian ichter, Xia, F.,
Chi, E. H., Le, Q. V., and Zhou, D. (2022).
Chain of thought prompting elicits reasoning in large language
models.
In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors,
Advances in Neural Information Processing Systems.

165

https://arxiv.org/abs/2405.18634

References xxviii

Welleck, S., Bertsch, A., Finlayson, M., Schoelkopf, H., Xie, A.,
Neubig, G., Kulikov, I., and Harchaoui, Z. (2024).
From decoding to meta-generation: Inference-time algorithms
for large language models.
https://arxiv.org/abs/2406.16838.

Welleck, S., Kulikov, I., Roller, S., Dinan, E., Cho, K., and Weston, J.
(2020).
Neural text generation with unlikelihood training.
In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

166

https://arxiv.org/abs/2406.16838

References xxix

Welleck, S., Lu, X., West, P., Brahman, F., Shen, T., Khashabi, D., and
Choi, Y. (2023).
Generating sequences by learning to self-correct.
In The Eleventh International Conference on Learning
Representations.

Weston, J. and Sukhbaatar, S. (2023).
System 2 attention (is something you might need too).

Wu, I., Fernandes, P., Bertsch, A., Kim, S., Pakazad, S., and Neubig,
G. (2024a).
Better instruction-following through minimum bayes risk.
https://arxiv.org/abs/2410.02902.

167

https://arxiv.org/abs/2410.02902

References xxx

Wu, Y., Sun, Z., Li, S., Welleck, S., and Yang, Y. (2024b).
Inference scaling laws: An empirical analysis of
compute-optimal inference for problem-solving with language
models.
https://arxiv.org/abs/2408.00724.

Xia, H., Yang, Z., Dong, Q., Wang, P., Li, Y., Ge, T., Liu, T., Li, W., and
Sui, Z. (2024).
Unlocking efficiency in large language model inference: A
comprehensive survey of speculative decoding.

Zaharia, M., Khattab, O., Chen, L., Davis, J. Q., Miller, H., Potts, C.,
Zou, J., Carbin, M., Frankle, J., Rao, N., and Ghodsi, A. (2024).
The shift from models to compound ai systems.
https://bair.berkeley.edu/blog/2024/02/18/
compound-ai-systems/.

168

https://arxiv.org/abs/2408.00724
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

References xxxi

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Kumar, A., and
Agarwal, R. (2024).
Generative verifiers: Reward modeling as next-token prediction.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H., Cao, S.,
Kozyrakis, C., Stoica, I., Gonzalez, J. E., Barrett, C., and Sheng, Y.
(2024).
Sglang: Efficient execution of structured language model
programs.

169

	I. Primitive Generators
	Generating one token at a time
	Decoding as optimization
	Sampling
	Constrained decoding

	Meta-generators
	Efficient meta-generation
	How to speed up sampling a single token?
	How to speed up a single generation?
	How to speed up meta-generation?

	Recap and takeaways
	Appendix
	Code examples

